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GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR
PARABOLIC SYSTEMS WITH NONLINEAR NONLOCAL
BOUNDARY CONDITIONS

ZHOU SEN, ZUODONG YANG

ABSTRACT. In this article we study a nonlinear parabolic system with nonlin-
ear nonlocal boundary conditions. We prove the uniqueness of the solutions
and establish the conditions for global solutions and non-global solutions. It
is interesting to observe that the weight function for the nonlocal Dirichlet
boundary conditions plays a crucial role in determining whether the solutions
are global or blow up in finite time.

1. INTRODUCTION

In this article, we consider the parabolic system with nonlinear nonlocal bound-
ary conditions

u = Au+vP, e, t>0,
vw=Av+ul, €, t>0,

u(z,t) = /Qf(m,y)ur(y,t) dy, x€0Q,t>0, (1.1)

o) = [ oot dy, 2 e o0 t>0,
Q
u(x,0) = ug(x),v(x,0) = vo(x), x€Q,

where Q is a bounded domain in RN (N > 1) with smooth boundary 952, and
p,q,m > 0. The functions f and g are nonnegative, continuous, defined for x € 99,
y € Q and ¢t > 0. The initial data wug(z) and vo(z) are nonnegative continuous
functions satisfying the boundary conditions at ¢ = 0.

Over the previous twenty years, many physical phenomena were formulated into
nonlocal mathematical models (see [T}, 2, B [7, 13]). There has been a considerable
amount of literature dealing with the properties of solutions to local semilinear
parabolic equation or systems of heat equations with homogeneous Diriclet bound-
ary conditions or with nonlinear boundary conditions (see [5], [0 10, 1T}, [16l 17
18, [19] 20} 211, 22] 24 [26] and references therein). However, there are some impor-
tant phenomena formulated as parabolic equations which are coupled with nonlocal
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boundary conditions in mathematical modeling such as thermoelasticity theory (see
M, 6, 25]).

The problem of nonlocal boundary value for linear parabolic equations is of the
type

up — Au=c(x)u, z €, t>0,

u(z,t) = /QK(a:,y)u(y,t) dy, ze€0Q,t>0, (1.2)
u(z,0) =up(x), xe€

with uniformly elliptic operator

and c¢(x) < 0 was studied by Friedman [12]. The global existence and mono-
tonic decay of the solution of problem was obtained under the condition
Jo |l K(z,y)|dy < 1 for all z € 9Q. And later the problem with Au re-
placed by Au and the linear term c(x)u replaced by the nonlinear term g(x,u)
was discussed by Deng [§]. The comparison principle and the local existence were
established. On the basis of Deng’s work, Seo [23] investigated the above problem
with g(x,u) = g(u), by using the upper and lower solution’s technique, he gained
the blow-up condition of positive solution, and in the special case g(u) = u? or
g(u) = e* he also derived the blow-up rate estimates.

For more general discussions on the dynamics of parabolic problems with non-
local boundary conditions, Pao [20] consider the problem

ug — Lu = f(z,u), x€Q,t>0,
Bu = / K(z,y)u(y,t)dy, x €0, t>0, (1.3)
Q
u(z,0) =up(x), x€)

where

- 0%u " ou ou
UL j i—1 i

i,j=1 i=

The scalar problems with both nonlocal sources and nonlocal boundary conditions
have been studied as well. For example, the problem

uthu:/g(u)dy, x € t>0,
Q
Bu = / K(z,y)u(y,t)dy, x€dQ, t>0,
Q
u(z,0) =up(z), z€N

was studied by Lin and Liu [16], where [, g(u) dy = [, 9(u(y,t)) dy, and Zheng and
Kong [26] established global existence condition for solution to a nonlocal parabolic
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system subject to nonlocal Dirichlet boundary conditions

u = Au — um(m,t)/ o (y,t)dy, x €, t>0,
Q

vy = Av — vq(a:,t)/ uP(y,t)dy, ze€Q,t>0,
Q (1.5)

u = / oz, y)uly,t)dy, v= / Yz, y)o(y,t)dy, =€0Q, t>0,
Q Q
u(z,0) = ug(z), v(z,0)=vo(x), xe.

Recently, Gladkov and Kim [I4] studied the heat equation with nonlinear non-
local boundary condition,

up = Au+c(z, t)u?, =€, t>0,

u(z,t) = / k(z,y, t)ul(y,t)dy, =€Q, t>0, (1.6)
Q
u(z,0) = up(z), =z €.

The comparison principle, the uniqueness of solution with any initial data for
min(p,!) > 1 and with nontrivial initial data otherwise, non-uniqueness of solu-
tion with trivial initial data for p < 1 or [ < 1, and local existence theorem had
been proved. And in [I5] they presented some criteria for the existence of global
behavior of the coefficients ¢(z,t) and k(x,y,t) as t tends to infinity.

Motivated by the above works, we are interested in the blow-up properties of
problem . The aim of this paper is to establish the global existence and finite
time blow-up conditions for the solution of problem .

Before stating our main results, we state the following assumptions on the kernels
f(z,y), g(x,y) and the initial data ug(z), vo(x):

(H1) f(z,y) and g(x,y) are continuous and nonnegative functions on 9Q x Q and
satisfy

/ fz,y)dy >0, / g(x,y)dy >0 for all z € O9Q.
Q Q

(H2) uo(z),vo(z) € C**(Q) for some a € (0,1), up(z) > 0 and vo(z) > 0 in
satisfy

to(z) = / F(yyu() dy,  volz) = / o(e.y)0(y) dy on 9.

This article is organized as follows. Section 2 is devoted to dealing with the
comparison principle and the local existence in time for problem . In Section
3 we give the global existence for p,q < 1. The blow-up conditions for p,q > 1
with large initial data will be established in Section 4. In Section 5, we discuss the
blow-up solutions and the existence of global solutions for p >1 > qgor ¢ > 1 > p.

2. THE COMPARISON PRINCIPLE AND EXISTENCE OF LOCAL SOLUTIONS

In this section we start with the definition of supersolution and subsolution of
problem . Then we present some material needed in the proof of our main
results. For convenience, We set Qr = Q2 x (0,T], Sp = 9Q x (0,T], Q¢ = 2 x (0,1,
0 <t<T < oo, where Qp and @, are their respective closures.
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Definition 2.1. A pair of nonnegative functions @, € C%'(Q7)NC(Q7) is called
a subsolution of (1.1)) if

ay < Au+0°, (x,t) € Qr,

oy <A+ al,  (x,t) € Qr,

i) < [ Fen)d 0 0dy, (@0 € Sr. o)

#(o,t) < /Q 9o, 9)7 (y,t)dy, (2,t) € Sr,
w(x,0) < wup(x),0 <wvo(xz), x€.

and a pair of functions 4,9 € C**(Q7)NC(Qr) is a supersolution of problem (L.1))
if 4,0 > 0 and it satisfies inequalities in ([2.1]) in the reverse order. Furthermore, we
say that u and v are solutions of problem (|1.1)) in Q7 if they are both subsolutions

and supersolutions of (I.1)) in Q7.

Definition 2.2. We say a pair of nonnegative functions @, v is a strict subsolution
of (1.1) in Q7 if it is a subsolution and the equalities in boundary conditions in (2.1
is strict. Similarly, a strict supersolution is defined by the opposite inequalities.

The following lemma and comparison principle play a crucial role in our discus-
sions.

Lemma 2.3. Let ug,vo be nontrivial functions in Q and assume that the assump-
tions (H1)-(H2) hold. Suppose that (i,) is a supersolution of (L.1) in Qr, then
4>0,0>0in Qp forallt>0.

Proof. Since ug is a nontrivial nonnegative function and 4; — Aa > 9P > 0, a
minimum of u over Q7 should be attained only at a parabolic boundary point by
the strong maximum principle. Thus, a(x,t) > 0 in Q x (0,7]. By and (H1),
we have @(x,t) > 0 for x € 9Q, 0 < t < T. Similarly, 9(x,t) > 0in Q for all t > 0
can be proved. O

Lemma 2.4. Let (4, 0) and (@, 0) be a nonnegative supersolution and a nonnegative
subsolution of (L.1) in Qr, respectively, and @(x,0) > u(x,0),0(x,0) > v(x,0) in
). Suppose (H1) holds or (u,v) is a strict supersolution. Then @ > @ and © > ¥
hold in Q.
Proof. Set p(x,t) =4 —a, Y =0 — 0, then ¢, satisfy

SothQOZ{)p*IDq > pl(ev)wv (I7t) € QT7

2.2
bi— A P - 10> a(B)p, (5,0) € Qr, 22
with the following boundary and initial conditions
o) 2 [ e pm@e0dy. (0.0 € S,
@ (2.3)

Y(w,t) > /Qg(ﬂ%y)hz(@v)l/)(%t) dy, (z,t) € Sr,
o(z,0) >0, (z,0)>0, x€Q, (2.4)

where 6, is between @ and 4, and 6, is between ¥ and v.
Since ¢(x,0),(x,0) > 0, by continuity, there exists 6 > 0 such that ¢, > 0
for (z,t) € Q x (0,0). Suppose for a contradiction that tg = sup{t € (0,7, p, ¢ >
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Oon Q x (0,t)} < T. Then ¢,9 > 0 on Q;,, and at least one of ¢, vanishes at
(z0,t0) for some xg € ). Without loss of generality, we suppose ¢(xg,t9) = 0. Let
G(z,y;t) denote the Green’s function for

Lu=u—Au, z€Q, t>0
with boundary conditions
u=0, x€d t>0.

Then for y € 99, G(z,y;t) = 0 and W < 0. Applying G(z,y;t) to (2.2), we
have

ola,t) > /Q G, y; 1)y, 0) dy

+/ /G(‘r>y;t_n)pl(ey)’g[}(y,n)dydn

//em 8Gm§, — /ffyhl o(y,n) dy d dn.

Since p,9 > 0 for all x € Q, 0 < t < tg, and f(x,y) > 0, we find that

p(x,t0) 2 / G(z,y;t)e(y,0) dy > 0.
Q
In particular, ¢(xg,to) > 0, which contradicts our previous assumption. ([

Remark 2.5. If [, f(z,y)dy <1, [, 9(x,y)dy < 1, we need only 4(x,0) > a(z,0),
9(x,0) > o(z,0) in §, since for any € > 0, @(x,t) = 4+ & — @, = 0+ — ¥ satisfy
all inequalities in —, then we have &4+ > u, v +& > 0, and it follows that
4>, 0> 0.

Let &,, be decreasing to 0 such that 0 < ¢, < 1. For ¢ = g, let uge, voe
be the functions with the following properties: uo.,vo: € C(Q), upe > €,vp: > €,
U051 > UQe 5 "u057 > ’UOE for g; > 5J, uge — up(x), voe — vo(x) as ¢ — 0, and
uOE fQ z,y)ub.(y )dy, voe () = [ 9(z,y)vp.(y) dy. Since the nonlinearities
in do not satisfy the Llpschltz condition, we need to consider the following
auxiliary problem:

u = Au+vP, e, t>0,
vw=Av+ul, €N t>0,

u(z,t) = / fle,y)u"(y, t)dy+e, x€09Q,t>0,
Q

o) = [ ooty dy e weon >0
Q
U(I,O) = UO(ZZI), U([an) = U0(17)7 HAS Qa

where € = &,,. The notion of a solution u. for problem (2.5 can be defined in a
similar way as in Definition

Theorem 2.6. There exists T* (0 < T* < 00) such that (2.5)) has a unique solution
(u(z,t),v(z,t)) € C(2 x [0,T%)) NC1(2 x (0,T%)).
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Let €2 > e1. Obviously, uc,(z.+), Ve, (,t) is a pair of strict supersolution of (2.5)
with € = €;. By the comparison principle for problem (2.5 we have that u., < u.,,
Vs, < Vg,. Taking ¢ — 0, we get

up(x,t) = lin(l)us(z,t), vy (x,t) = lin(l)vg(x,t)
E—> E—>
with ups(2,t) > 0,vp(x,t) > 0. Tt is easy to check that (ups(x,t),va(z,t)) are
solutions of (1.1]). Let @, be any solution of (|1.1)), then by comparison principle
Ue > U, ve > v. Taking € — 0, we conclude that up; > u, vy > ©. So we have the

existence of a local solution.

Theorem 2.7. There exists T (0 < T < o) such that (L.1) has a mazimal solution
(u(z,t),v(z,t)) € C(Q x [0,7)) N C*HQ x (0,7T)).

We now give the uniqueness for solutions to (1.1f).

Theorem 2.8. Assume that (H1), (H2) hold. Ifp,q,m > 1, orifp,q <1 orr <1,
then (1.1) has a unique solution (u(z,t),v(z,t)) € C(Qx[0,T))NC*1 (2 x (0,T)).

Lemma 2.9. Assume (H1) holds, min{max{p, q},r} <1, and up(z) =0, vo(z) =
0. Then maximal solution uyr, vy of . is strictly positive for x € Q and all
positive time, as long as it exists.

Proof of Theorem [2.8. Case 1: p,q,7 > 1. Assume that has the maximal so-
lution (ups(x,t),vpr(x,t)) and another solution (u(zx,t),v(x,t)). Then there exists
to > 0, such that (uas(x,t),var(z,t)) = (u(w,t),v(x,t)) for € Q, 0 < t <ty and
(upr(z, ), var (2, ) 2 (u(x,t),v(z, ) for o € Q, tg <t < to+v with vy € (0,7 —to).
We can assume that top = 0. Let G(x,y;¢) denote the Green’s function for the heat
equation
—Au=0, z€Q,t>0
with a boundary condition u = 0 for z € 99, ¢t > 0. Then from we obtain

o (2,1) — u(, 1) / G(@, it —m)p1(60) (vm — v) dy
Q

t
_/ aG“t /fgyhl )t — w) dy d€ d,
0 JOQ

where p;(6,) and hy(6,,) are continuous functions in Q7. Due to the assumptions
of in this theorem and Lemma we have

U (z,t) — u(z,t) < oy (T){sup(vm(z,t) — v(z,t)) + sup(um,(z,t) — u(z,t))},

T T

—sup/ /Gwy, p1(0y) dy dn
+sup//m slual /f& o1 (6,) dy d€ dn.

Similarly we can prove that

Um(2,1) = v(z,t) < o2(T){sup(um(z,t) — u(w,t)) + sup(vm(z,t) — v(z,t))}.
Qr Qr

Choosing T' so small that o1(T) 4+ 02(T") < 1, we prove the uniqueness of solution

for (1.1)) in Q.

where
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Case 2: p,g < 1 or r < 1. We distinguish three cases: r <1 and p,q < 1;r <1
and p,qg > 1;0orr > 1 and p,q < 1.
To prove the uniqueness it suffices to show that if (u,v) is any solution of ,
then
u(z,t) > up(x,t), vz, t) > op(z,t). (2.6)
Let r <1and p,g<1. Set w =up —u,z=wvy —v. Since r < 1 and p,q < 1, it is
easy to verify that

wy < Aw + 2P, (z,t) € Qpy,
2z < Az+wt  (z,t) € Qry,

umws[ymwwmﬂ@7@ﬁe&b

Aat) < [ glen)e @)y, (2,0) € S,
Q
w(z,0) =0, 2z(z,00=0, =z

By Lemma there exists a unique solution w®(z,t) > 0,2°(x,t) for x € Q,
0 < t < Ty satisfying the equations in (1.1)) and the boundary conditions

w’(x,0) =0, 2°=x,0)=0.
In a similar way as that used in Lemma we can prove that w®(z,t) > w(z,t),
22z, t) > 2(z,t) and ups(z,t) > w(z,t), var(z,t) > 2w, t). We put a(z,t) =
w®(x,t) —w(x, t), b(x,t) = 2%(x,t) — z(x,t) and obtain

at > Aa + bpa (ZI:,t) € QTg?

bt ZAb+aq, (x,t) GQT;;,

amwzéfmwwmw@,uwe&b

bo.t) > [ gle)¥ (. 0)dy. (@.0) € St
Q

a(z,0) =0, b(z,0)=0, ze€q.
It is not difficult to prove that a(z,t) > 0,b(x,t) > 0in Q7. Thus by the comparison
principle we conclude that a(z,t) > w®(z,t), b(x,t) > 2°(x,t). This implies (2.6)
and the theorem holds under the assumptions r < 1 and p,q < 1. For the other
cases we can discuss in a similar way. O

3. EXISTENCE OF GLOBAL SOLUTIONS FOR p,q < 1

Theorem 3.1. Let p,q < 1. Then for all r < 1, the solution (u,v) of (L.1)) exists
globally for any nonnegative initial data.

Proof. We first suppose 0 < r < 1. By the conditions for f(z,y), g(x,y), there exists
a constant M > 1 such that f(z,y) < M and g(z,y) < M for all (z,y) € 02 x Q. It
is easy to see that the pair of functions (@, 9) = (Ce’*, Cef?) is a strict supersolution
of if 5> M and C > max{supg uo(z), supg vo(x), (M|Q\)ﬁ}

In the case r = 1, the pair of function (i, ) = (Ce’t, CeP?) is a strict superso-
lution of if and only if

/ flz,y)dy < 1,/ g(z,y)dy <1 for all x € 9. (3.1)
Q Q
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Therefore, when is not valid, we need to construct another supersolution.
Denote by ¢(x) the eigenfunction corresponding to the first eigenvalue A{® of the
elliptic problem

—Ap=Xp, €8; =0, xec. (3.2)
and that for 0 < ¢ < 1 satisfies

1
M/ —— dy<1
oely) +e

Now we set 4 = @?;)15 U= W?;;E. A simple computation shows
AP 2|Vel|?
athaf@pzwfa( 1% [Veel 2)7@20,
p(x)+e  (p(z)+e)
2O 2|V |2 (3.3)
ﬁt—A@—aqu—ﬁ( 1P L 2)—@20,
e(x)+e  (p(z)+e)

if we choose

C = max{sup(p(z) + €), sup ug(x) sup(p(z) + €), sup vo(z) sup(p(x) + )},

Q Q Q Q Q
and )
v > A+ sup 2[Vel® +1
a (pte)y
It is clear from and the choice of C,~ that (@,?) is a strict supersolution of
. Thus the solution of problem exists globally. (]

4. BLOW-UP IN FINITE TIME FOR p,q > 1

In this section we will get some blow-up results for (L.1). First, we give the
following lemma which is crucial in proving the blow-up results.

Lemma 4.1. There exists a positive solution ¢ for the elliptic eigenvalue problem

—Ap=Xp, €, ming=1. (4.1)
e

Proof. Since (2 is a bounded domain in RV (N > 1) with smooth boundary 992, we
can choose another bounded domain € such that Q ccC €. Let )\?1 be the first
eigenvalue of following elliptic eigenvalue problem

7A¢:A¢7 erla ¢:07 x €0
and ¢, is the corresponding eigenfunction with ¢; > 0. Then ¢; > 6 > 0 in Q. Set
o= %(ﬁl, then ¢ is the function satisfying (4.1)). O

Remark 4.2. From the continuity of eigenvalue to the domain 2, we can choose
Q; such that AL > A% > A2 — ¢ for some constant &, sufficiently small.

Now we turn to the blow-up conclusions. We denote

K= r;leagcﬁ(w)» ho = min{ min /Q f(=,y) dy, min /Q g9(z,y) dy}.

From Lemma [4.1] and the assumption (H1) we can see K > 1 and hg > 0.

Theorem 4.3. Let p,q > 1. Then if r > 1 and ho|Q| > K™{Pa} | the solution
(u,v) of (1.1)) blows up in finite time for the large initial data.
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Proof. Without lose of generality, we can assume that p > ¢. Set @ = s'(t)¢9(x), v =
sl(t)¢?(x), where [ is a constant and satisfies p > ¢ > [, r > [. The function ¢ is
defined as in Lemma Let s(t) be the solution to the problem

§'(t) = =APgs(t) + s4(t), t>0, s(0)=so. (4.2)

with initial data sp > m:aux{()\?lq)ﬁ7 1}. Tt is easy to see that s(t) > 1 and blows
up in finite time T5,. A direct computation yields

— Al — P =17 1) s (t) T — s () [~ Aigd? + q(q — 1)pT 2|V |?] — s (t)pP?
S U7 ()¢ + 5! (1) Agd? — ' (t)o?
= Is'"71(t) (s (t) + Aigs(t) — s'(t))¢? = 0,

— AB— @9 = 15"V ()7 — sL(t)[~A1qe? + qlq — 1)¢T 2| V|2 — s()¢T
< lsl L' (t)p? + s L) Agp? — s'¢?
L) (S (1) + Migs(t) — ()9 = 0,

(4.4)
in Q x (0,T%,), and for z € 9Q x (0,T,,). So we have
a(x,t) < s'(t)K? < hos'()|Q]
< [ s o) dy
Q
~ [ fen)a .t d
@ (4.5)

B(x,t) < s'(t)K? < hos'(t)|Q]
</g< y)s ()67 () dy

= [ st .0y

From we can see that (u 0) is a subsolution provided the initial data

SO large that s( )01 (z) < ugp(x), s ( ) U(z) < vo(x) for z € Q. Thus by Lemma

24] the solution (u,v) of problem (I.I)) blows up because (&, ¥) blows up in finite

time. (]
5. BLOW-UP AND GLOBAL SOLUTION FORp>1>qOR¢g>1>0p

Theorem 5.1. Letp>1>qorgq>1>p. Ifpg<1,r <1, and

/f(x,y)dySL /g<z,y>dys1
Q Q

for all x € 99, then the solution (u,v) of (1.1) exists globally for sufficiently small
initial data.

Proof. We assume p > 1 > ¢. Since pq < 1, there exists a constant [ such that
0 < pg <1< 1. Let s(t) be the unique solution to the problem

s'(t) = si(t), t>0, s(0)=sg
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with initial data sg > 1. It is easy to see that s(¢) > 1 and exists globally. Set
@ = sPT1(t) and © = s9t1(¢). Then we have
— Al — 0P = (p+ 1)sP(t)s'(t) — s DP(¢)
= (p+1)s()s'(t) — s7DP(1) (5.1)
> sPH (1) — slatDP(1) > 0,
b0 = A — 1 = (g + 1)s(0)s' (1) — 5010
= (¢ +1)sU(t)s' (1) — s@TDI(t) (5.2)
> 1M (1) — sPTVa(1) > 0,
in 2 x (0,00), and for x € 9§ x (0,00). So we have

no_ optl P+ () dy = 0 d
i = sL(t) > / £ ()5 I" () dy /Q f(, ) dy,

b= s (t) 2/@9(%1/)8(““”(?5) dy:/Qg(x,dey-

Frorn we see that (4,) is a supersolution provided that sh™" > wg(x),
t> vo( ) for z € Q. The case ¢ > 1 > p can be treated by exchanging the roles
of u and v in the above case. (]

(5.3)

Theorem 5.2. Letp>1>qorq>1>p. Ifpg>1,r>1, and

/Qf(x,y) dy > 1,/Qg(x,y) dy > 1
for all x € 99, then the solution (u,v) of blows up in finite time for sufficiently

large initial data.

Proof. We assume p > 1 > ¢q. Since pq > 1, there exists a constant [ such that
1 <1< pg. Let s(t) be the unique solution to the problem

s'(t) = s'(t), t>0, s(0)=sp

with the initial data so > 1. It is easy to see that s(¢) > 1 and blows up in finite
time. Set @ = sPT1(t), o = s7t1(t), then we have

i — A= " = (p-+ 1)s"(0)5/(1) — s (1)
= (p+1)s"(t)s'(t) — s DP(1) (5-4)
< sPHU(t (q+1)p( t) <0,

)s
) —
A = (g4 )0 (1) — ()
= (g +1)s9()s' (1) — s@TD(t) (5-5)
< sq+l(t) _ 8(P+1)’1(t) <0,
in 2 x (0,00), and for x € 9 x (0,00). So we have
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From (5.4)-(5.6) we can see that (i, ) is a supersolution provided sh™" < ug(a),
sdtt < wo(z) for = € Q. Since (#,?) blows up in finite time. The case ¢ > 1 > p
can be treated by exchanging the roles of v and v in the above case. The proof is
complete. O
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