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ENERGY DECAY FOR DEGENERATE KIRCHHOFF
EQUATIONS WITH WEAKLY NONLINEAR DISSIPATION

MAMA ABDELLI, SALIM A. MESSAOUDI

Abstract. In this article we consider a degenerate Kirchhoff equation wave
equation with a weak frictional damping,

(|ut|l−2ut)t −
“Z

Ω
|∇xu|2 dx

”γ
∆xu+ α(t)g(ut) = 0.

We prove general stability estimates using some properties of convex functions,

without imposing any growth condition at the frictional damping term.

1. Introduction

In this article, we consider the initial-boundary value problem for the nonlinear
Kirchhoff equation

(|ut|l−2ut)t −
(∫

Ω

|∇u|2 dx
)γ

∆u+ α(t)g(ut) = 0, in Ω× (0,∞) (1.1)

u = 0, on ∂Ω× (0,∞) (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

where l ≥ 2, γ ≥ 0 are given constants, Ω is a bounded domain in Rn with a smooth
boundary ∂Ω, and g and α are one-variable functions satisfying some conditions
to be specified later. This problem has been studied by many authors and several
existence, nonexistence, and decay results have appeared. For instance, when l = 2
and γ = 0, the problem was treated by Mustafa and Massaoudi [11]. By using
some properties of convex functions, they established a general decay result without
imposing any growth condition on g at the origin. Abdelli and Benaissa [1] treated
system (1.1)-(1.3) for g having a polynomial growth near the origin and established
energy decay results depending on α and g under appropriate relations between l
and γ. In a realted work, Amroun and Benaissa [3] constructed an exact solution
of (1.1)-(1.3) in the presence of a nonlinear source term and for α ≡ 0. They also
proved a finite-time blow-up result for some specific initial data. Benaissa and
Guesmia [5] proved the existence of global solution, as well as, a general stability
result for the following equation

(|u′|l−2u′)′ −∆φu+ α(t)g(u′) = 0, in Ω× R+,
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where ∆φ =
∑n
i=1 ∂xi(φ(|∂xi |2)∂xi).

In this article, we use some technique from [11] to establish an explicit and
general decay result, depending on g and α. The proof is based on the multiplier
method and makes use of some properties of convex functions, the general Young
inequality and Jensen’s inequality. These convexity arguments were introduced
and developed by Lasiecka and co-workers ([7, 8, 9]) and used, with appropriate
modifications, by Liu and Zuazua [10], Alabau-Boussouira [2] and others.

The paper is organized as follows: in section 2, we give our hypotheses and
establish a useful lemma. In section 3, we state and prove our main result.

2. Preliminaries

To state and prove our result, we need the following hypotheses:
(H1) α : R+ → R+ is a nonincreasing differentiable function.
(H2) g : R→ R is a nondecreasing C0 function such that there exist ε, c1, c2 > 0,

and a convex and increasing function G : R+ → R+ of class C1(R+) ∩
C2(]0,+∞[) satisfying G(0) = G′(0) = 0 or G is linear on [0, ε] such that

c1|s|l−1 ≤ |g(s)| ≤ c2|s|p, if |s| ≥ ε;

|s|l + |g(s)|
l
l−1 ≤ G−1(sg(s)), if |s| ≤ ε;

with p satisfying

l − 1 ≤ p ≤ n+ 2
n− 2

, if n > 2;

l − 1 ≤ p <∞, if n ≤ 2 .

Now we define the energy associated to the solution of the system (1.1) -(1.3) by

E(t) =
l − 1
l
‖ut‖ll +

1
1 + γ

‖∇xu‖2(γ+1)
2 (2.1)

Lemma 2.1. Let u be the solution of (1.1)-(1.3). Then

E′(t) = −α(t)
∫

Ω

utg(ut) dx ≤ 0. (2.2)

Proof. Multiplying (1.1) by ut and integrating over Ω, using the boundary condi-
tions, the assertion of the lemma follows. �

3. Main Result

To prove our main result, first prove the following lemma.

Lemma 3.1. Assume that (H1), (H2) hold and that l ≥ 2(γ + 1). Then the
functional

F (t) = ME(t) +
∫

Ω

u|ut|l−2ut dx,

defined along the solution of (1.1)-(1.3), satisfies the following estimate, for some
positive constants M, c,m:

F ′(t) ≤ −mE(t) + c

∫
Ω

(|ut|l + |ug(ut)|
l
l−1 ) dx

and F (t) ∼ E(t).
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Proof. Using system (1.1)-(1.3), (2.1) and (2.2), we obtain

F ′(t) = ME′(t) +
∫

Ω

|ut|l dx+
∫

Ω

u(|ut|lut)t dx

≤
∫

Ω

|ut|l dx+
(∫

Ω

|∇u|2 dx
)γ ∫

Ω

u∆u dx− α(t)
∫

Ω

ug(ut) dx

≤
∫

Ω

|ut|l dx−
∫

Ω

|∇u|2(γ+1) dx− α(t)
∫

Ω

ug(ut) dx

≤ −mE(t) + c

∫
Ω

[|ut|l + |ug(ut)|] dx

To prove that F (t) ∼ E(t), we show that for some positive constants λ1 and λ2,

λ1E(t) ≤ E(t) ≤ λ2E(t) . (3.1)

We use (2.1), Poincaré’s and Young’s inequalities with exponents l
l−1 and 1

l and
recall that 2 ≤ l ≤ p+ 1 ≤ 2n

n+2 , to obtain∫
Ω

u|ut|l−2ut dx ≤ Cε
∫

Ω

|u|l dx+ ε

∫
Ω

|ut|l dx

≤ Cε‖∇u‖l2 + ε‖ut||ll
≤ CεE

l
2(γ+1) (t) + cεE(t)

≤ CεE
l−2(γ+1)
2(γ+1) (t)E(t) + cεE(t).

By noting that l ≥ 2(γ + 1) and using (2.2), we have∫
Ω

u|ut|l−2ut dx ≤ CεE
l−2(γ+1)
2(γ+1) (0)E(t) + cεE(t),

and ∫
Ω

u|ut|l−2ut dx ≥ −Cε
∫

Ω

|u|l dx− ε
∫

Ω

|ut|l dx

≥ −CεE
l−2(γ+1)
2(γ+1) (t)E(t)− cεE(t)

≥ −CεE
l−2(γ+1)
2(γ+1) (0)E(t)− cεE(t)

Then, for M large enough, we obtain (3.1). This completes the proof. �

Taking 0 < ε1 < ε such that

sg(s) ≤ min{ε,G(ε)}, if |s| ≤ ε1, (3.2)

and {
c′1|s|l−1 ≤ |g(s)| ≤ c′2|s|p, if |s| ≥ ε1

|s|l + |g(s)|
l
l−1 ≤ G−1(sg(s)), if |s| ≤ ε1.

(3.3)

Considering the following partition of Ω,

Ω1 = {x ∈ Ω : |ut| ≤ ε1}, Ω2 = {x ∈ Ω : |ut| > ε1}

and using the embedding H1
0 (Ω) ↪→ Lp+1(Ω) and Hölder’s inequality, we obtain∫

Ω2

|ug(ut)| dx ≤
(∫

Ω2

|u|p+1 dx
) 1
p+1
(∫

Ω2

|g(ut)|1+ 1
p dx

)p/(p+1)
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≤ c‖u‖H1
0 (Ω)

(∫
Ω2

|g(ut)|1+ 1
p dx

)p/(p+1)

Using Poincaré’s inequality and (3.3) yields∫
Ω2

[|ut|l + |ug(ut)|] dx

≤ c
∫

Ω2

|ut|l−1|ut| dx+ c
(∫

Ω

|∇u|2 dx
)1/2(∫

Ω2

|g(ut)|1+ 1
p dx

)p/(p+1)

≤ c
∫

Ω2

utg(ut) dx+ c
(∫

Ω

|∇u|2 dx
)1/2(∫

Ω2

utg(ut) dx
)p/(p+1)

≤ −cE′(t) + cE
1

2(γ+1) (−E′(t))p/(p+1).

Then, we use Young’s inequality and the fact that p ≥ l−1 ≥ 2γ+1, for any δ > 0,
we have ∫

Ω2

[|ut|l + |ug(ut)|] dx ≤ −cE′(t) + cδE
p+1

2(γ+1) (t) + Cδ(−E′(t))

≤ cδE
p+1

2(γ+1) (t)− CδE′(t)

≤ cδE
p−(2γ+1)
2(γ+1) (0)E(t)− CδE′(t)

(3.4)

Similarly, using (2.1) and Young’s inequality, we have, for any δ > 0,∫
Ω1

[|ut|l + |ug(ut)|] dx ≤
∫

Ω1

|ut|l dx+ δ

∫
Ω1

|u|l dx+ Cδ

∫
Ω1

|g(ut)|
l
l−1 dx

≤
∫

Ω1

|ut|l dx+ cδE
l

2(γ+1) (t) + Cδ

∫
Ω1

|g(ut)|
l
l−1 dx

(3.5)

By Lemma 3.1, (3.4) and (3.5), for δ small enough, the function L = F + CδE
satisfies

L′(t) ≤
(
−m+ cδE

p−(2γ+1)
2 (0) + cδE

l−2(γ+1)
2(γ+1) (0)

)
E(t)

+
∫

Ω1

|ut|l dx+ Cδ

∫
Ω1

|g(ut)|
l
l−1 dx

≤ −dE(t) + c

∫
Ω1

(
|ut|l + |g(ut)|

l
l−1

)
dx

(3.6)

and
L(t) ∼ E(t). (3.7)

Theorem 3.2. Assume that (H1), (H2) hold and l ≥ 2(γ + 1). Then there exist
positive constants k1, k2, k3 and ε0 such that the solution of (1.1)-1.3 satisfies

E(t) ≤ k3G
−1
1

(
k1

∫ t

0

α(s) ds+ k2

)
∀t ≥ 0, (3.8)

where

G1(t) =
∫ 1

t

1
G2(s)

ds, G2(t) = tG′(ε0t). (3.9)

Here, G1 is strictly decreasing and convex on (0, 1] with limt→0G1(t) = +∞.
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Proof. Multiplying (3.6) by α(t), we have

α(t)L′(t) ≤ −dα(t)E(t) + cα(t)
∫

Ω1

(
|ut|l + |g(ut)|

l
l−1

)
dx (3.10)

Case 1. G is linear on [0, ε], then we deduce that

α(t)L′(t) ≤ −dα(t)E(t) + cα(t)
∫

Ω1

utg(ut) dx = −dα(t)E(t)− cE′(t)

Consequently, we arrive at

(αL+ cE)′(t) ≤ −dα(t)E(t).

Recalling that
αL+ cE ∼ E, (3.11)

we obtain
E(t) ≤ c′e−c

′′ R t
0 α(s) ds

Thus, we have

E(t) ≤ c′e−c
′′ R t

0 α(s) ds = c′G−1
1 (c′′

∫ t

0

α(s) ds)

by a simple computation.
Case 2. G is nonlinear on [0, ε]. In this case, we define

I(t) =
1
|Ω1|

∫
Ω1

utg(ut) dx.

and exploit Jensen’s inequality and the concavity of G−1 to obtain

G−1(I(t)) ≥ c
∫

Ω1

G−1(utg(ut)) dx.

By using this inequality and (3.3), we obtain

α(t)
∫

Ω1

[|ut|l+ |g(ut)|
l
l−1 ] dx ≤ α(t)

∫
Ω1

G−1(utg(ut)) dx ≤ cα(t)G−1(I(t)). (3.12)

Let us set H0 = αL+E and exploit (2.2), (3.10), (3.12), and α being nonincreasing,
to obtain

H ′0(t) ≤ −dα(t)E(t) + cα(t)G−1(I(t)) + E′(t)

≤ −dα(t)E(t) + cα(t)G−1(I(t)),
(3.13)

and recall (3.7), to deduce that H0 ∼ E.
For ε0 < ε and c0 > 0, we define H1 by

H1(t) = G′(ε0
E(t)
E(0)

)H0(t) + c0E(t).

Then, we see easily that, for a1, a2 > 0,

a1H1(t) ≤ E(t) ≤ a2H1(t), (3.14)

By recalling that E′ ≤ 0, G′ > 0, G′′ > 0 on (0, ε] and making use of (2.1) and
(3.13), we obtain

H ′1(t) = ε0
E′(t)
E(0)

G′′(ε0
E(t)
E(0)

)H0(t) +G′(ε0
E(t)
E(0)

)H ′0(t) + c0E
′(t)

≤ −dα(t)E(t)G′(ε0
E(t)
E(0)

) + cα(t)G′(ε0
E(t)
E(0)

)G−1(I(t)) + c0E
′(t).

(3.15)
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Let G∗ be the convex conjugate of G in the sense of Young (see Arnold [4, p.
61-64]), then

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)], if s ∈ (0, G′(ε)], (3.16)

and G∗ satisfies the generalized Young’s inequality

AB ≤ G∗(A) +G(B), if A ∈ (0, G′(ε)], B ∈ (0, ε]. (3.17)

with A = G′(ε0E(t)/E(0)) and B = G−1(I(t)), using (2.2), (3.2) and (3.15)–(3.16),
we obtain

H ′1(t) ≤ −dα(t)E(t)G′(ε0
E(t)
E(0)

) + cα(t)G∗
(
G′(ε0

E(t)
E(0)

)
)

+ cα(t)I(t) + c0E
′(t)

≤ −dα(t)E(t)G′(ε0
E(t)
E(0)

) + cε0α(t)
E(t)
E(0)

G′(ε0
E(t)
E(0)

)− cE′(t) + c0E
′(t).

Choosing c0 > c and ε0 small enough, we obtain

H ′1(t) ≤ −kα(t)
E(t)
E(0)

G′
(
ε0
E(t)
E(0)

)
= −kα(t)G2

(E(t)
E(0)

)
(3.18)

where G2(t) = tG′(ε0t). Since

G′2(t) = G′(ε0t) + ε0tG
′′(ε0t).

and G is convex on (0, ε], we find that G′2(t) > 0 and G2(t) > 0 on (0, 1]. By setting
H(t) = a1H1(t)

E(0) (a1 is given in (3.14)), we easily see that, by (3.14), we have

H(t) ∼ E(t) (3.19)

Using (3.18), we arrive at

H ′(t) ≤ −k1α(t)G2(H(t))

By recalling (3.9), we deduce G2(t) = −1/G′1(t), hence

H ′(t) ≤ k1α(t)
1

G′1(H(t))
,

which gives

[G1(H(t))]′ = H ′(t)G′1(H(t)) ≤ k1α(t)

A simple integration leads to

G1(H(s)) ≤ k1

∫ t

0

α(s) ds+G1(H(0))

Consequently,

H(t) ≤ G−1
1 (k1

∫ t

0

α(s) ds+ k2) (3.20)

Using (3.19) and (3.20) we obtain (3.8). The proof is complete. �
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