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BLOW-UP OF SOLUTIONS FOR A SYSTEM OF NONLINEAR
PARABOLIC EQUATIONS

SHUN-TANG WU

ABSTRACT. The initial boundary value problem for a system of parabolic equa-
tions in a bounded domain is considered. We prove that, under suitable con-
ditions on the nonlinearity and certain initial data, the lower bound for the
blow-up time is determined if blow-up does occur. In addition, a criterion for
blow-up to occur and conditions which ensure that blow-up does not occur are
established.

1. INTRODUCTION

We consider the initial boundary value problem for the following nonlinear par-
abolic problems:

uy — div(p1 (|Vul?)Vu) = fi(u,v) in Q x [0, 00), (1.1)
vy — div((p2(|V]?) Vo) = fa(u,v)  in Q x [0,00), (1.2)
u(x,0) = ug(x), v(x,0)=1vo(x), z€, (1.3)
u(z,t) =v(z,t) =0, z€dQ, t>0, (1.4)

where (2 is a bounded domain in RY (N > 1) with a smooth boundary 99, p;,
i = 1,2, are positive C! functions and f;(-,-) : R — R, i = 1,2, are given functions
which will be specified later. ug(z), vo(x) are nonzero and nonnegative functions.
Questions related to the blow-up phenomena of the solutions for the nonlinear
parabolic equations and systems have attracted considerable attention in recent
years. A natural question concerning the blow-up properties is about whether the
solution blows up and, if so, at what time ¢* blow-up occurs. In this direction,
there is a vast literature to deal with the blow-up time when the solution does blow
up at finite time ¢* [1} 2 B, 4, Bl 6} [7, 8, [0} [12], [I5, page 3]. Yet, this blow-up
time can seldom be determined explicitly. Indeed, the methods used in the study
of blow-up very often have yielded only upper bound for ¢t*. However, a lower
bound on blow-up time is more important in some applied problems because of
the explosive nature of the solution. To the authors knowledge, some of the first
work on lower bounds for t* was by Weissler [16] [I7]. Recently, a number of papers
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deriving lower bounds for ¢* in various problems have appeared, beginning with the
paper of Payne and Schaefer [I3]. Payne et al. [14] considered the single equation

up — div (p(|Vul*)Vu) = f(u).

Under certain conditions on the nonlineartities, they obtained a lower bound for
blow-up time if blow-up does occur. Additionally, a criterion for blow-up and
conditions which ensure that blow-up does not occur are obtained.

Motivated by previous works, in this study, we establish the lower bound and
the upper bound for problem — when blow-up does occur. Besides, the
nonblow-up properties for a class of problem — are also investigated. Our
proof technique closely follows the arguments of [14], with some modifications being
needed for our problems. The paper is organized as follows. In section 2, under
suitable conditions on p;, f;, ¢ = 1,2, the lower bound for the blow-up time is
established if blow-up occurs when €2 is a bounded domain in R3. In Section 3,
the nonblow-up phenomena are investigated. Finally, the sufficient condition which
guarantees the blow-up occurs is obtained and an upper bound for the blow-up
time is also given.

2. LOWER BOUND FOR THE BLOW-UP TIME

In this section, we focus our attention to the lower bound time t* for the blow-
up time of the solutions to problem (|1.1)-(L.4). For this purpose, we give the
assumptions on p; and f;, i = 1,2 as follows.

(A1) p;(s), i = 1,2 are nonnegative C! function for s > 0 satisfying
p1(8) > b1 +b2s™,  pa(s) > b3 +b3s”, qi, g2, b; >0, i=1-4.
(A2) Concerning the functions f;(u,v) and fa(u,v), we take (see [9])

filu,v) = <a|u + o™ u+v) + b|u|m773|1)| m‘jlu), (2.1)

falu0) = (alu+ o™ (u+v) + bfo] “T Jul “F o), (2.2)
where a, b > 0 are constants and m satisfies

m>1, if N=1,2 or 1<m< xj;, if N > 3.

One can easily verify that
wfy(u,v) +vfa(u,v) = (m+ 1) F(u,v), Y(u,v) € R?,

where

1
F(u,v)=m+1

As in [9], we still have the following result.

<a|u +o|™ T 4 2b|uv|mT+l>.

Lemma 2.1. There exists a positive constant 3 such that, for p > 0,
uP f1(u,v) + 0P fo(u,v) < B(lulP™™ + [v|PT™),  V(u,v) € R
We define

¢(t):/UQ(H_l)(QI+1)+2dx+/02("—1)(q2+1)+2dx
Q2 Q

:/u"ldm—i—/v‘”dx,
Q Q
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where 01 = 2(n — 1)(q1 + 1) + 2, 02 = 2(n — 1)(¢2 + 1) + 2 and n is a positive
constant satisfying

3(m—1)—2q 3(m—1)—2q 3(m—1)—2(3q — 2¢2)
2@ +1) 7 2@+l 7 208a-2¢+1)
3(m —1) — 2(3¢2 — 2q1) }
2(3q2 — 2q1 + 1) '

n > max{ (24)

Theorem 2.2. Suppose that (Al), (A2), hold and Q2 C R3 is a bounded do-
main. Assume further that m —1 > 2max(q1,q2) > 0 and ¢ > %qg > %ql > 0. Let
(u,v) be the nonnegative solution of problem -, which become unbounded
in the measure ¢ at time t*, then t* is bounded below as

* > 1
> s,
6(0) Dimy kip(s)H
where k; >0 and p; > 0, i =1—4 are constnats given in the proof.

Proof. Differentiating (2.3) and using (L.I)-(L.2)), (A1) and Lemma [2.1} we obtain

'(t) = 01/ u"l_lutdx—i—ag/ v Lo de
Q Q
=—0o1(01 — 1)/ u” 2 py (|Vul?)|Vul|?dx + 01/ u” "y (u, v)de
Q Q
— og(0g — 1)/ 07272 py (|V0]?) | Vo 2de + 02/ 072 fo (u, v)dx
Q Q
< —oy(o1 — 1)/ u 2| Vul* (by + bo|Vul?)dx (2.5)
Q
_|_ﬁ0_1/(um+r71—1 +Um+al—1)dx
Q
— oa(0s — 1)/ 072V 02 (bs + b | Vo[22 da
Q
+ Bog / (umtozmt g ymrez=ygg,
Q

Dropping the terms o1 (o1 —1)by [, u”* ~2|Vul*dz and o2(03 —1)bs [, v72~2|Vv|*dz
on the right-hand side of ([2.5) and using |Vw"|? = n?w?("~1|Vw|?, we deduce that

—1)b
' (t) < _W/QVU”|2(q1+1)d$+ﬁ01/9(um+”1_1+vm+"1_1)dx

02(0'2 — 1)b4

T 2(ge ) n|2aztl) m+oy—1 m-+oy—1
n2(g2+1) /QW” |2 d$+50’2/ﬂ(u T 4w > Hda.
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For simplicity, setting wy = u™, we = v™ and v, =m — 1 — 2¢; > 0, ¢ = 1,2, then
we obtain

)b
o (t) < %/ |V 2@+ gy
+501/( a0+ 2(q1+1)+ e
Q

o2(02 — 1)by 2gat+1)+22
T p2(atD) /|V |2(q2+1)d$+502/9w1 q2 dzx

+ﬁ0’2/ (q2+1)+ n d
Q

Next, we will estimate the right-hand side of (2.6)). It follows from [I4], (2.12)] that

2/3 3 \2/3
/wf(qlﬂHi‘ldag < Kl(/ |Vw1|2(‘“+1)dx) (/ wi = dﬂU) ;o (27)
o Q

da1+1 4(a1+1) .
where K1 = a); ° (1+1)" 35 ,a= 41/3 3712 . 7=2/3 and )\, is the first
eigenvalue in the fixed membrane problem

(2.6)

Aw+Adw=0, w>0inQ, and w=0on JN.
By using Holder inequality and (2.3)), we obtain

[ B = [
Q Q
< (/ arrdr) - joyt (2:8)
Q

< gty - |
which together with (2.7 implies

2 1+
/ wl(q1+ )+ dex < K;
Q

with g = 2U@EDEM - we note that py < 1 in view of (2.4). Further, thanks to

201

the inequality

ﬂ(/ |V [0 d)2/3,
Q

2y <rex+sy, r+s=1, x,y>0, (2.9)

we obtain, for a; > 0,

1 2
[t e < g [ aew + 2 [ [Fun et dd]. - (2.10)
Q 30[1 3 O

and similarly

2 —u 1 2
/ w;(q2+1)+ " dp < KﬂQ\M {72¢(t)2“2 + &/ |Vw2|2(qz+1)d$}7 (2.11)
o 3a3 3 Ja

4g9o+1
where ap >0, Ky = oAy ° (g2 +1) 5 and iy _w<1

To estimate the other two terms in the right hand side of ( -7 we use Holder
inequality and the following result (see [14 (2.7)-(2.10)])

/w4(q+1)dw < a3(q+ 1) 4(g+1) ) / |Vw|2(q+1)d$) , qg>0, (2.12)
Q
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to obtain
2(qa+1)+21
/wQ(ql )+ dzr
Q
4(q2+1) 2(q1+1 74(Q2+1)+771
:/w2 s owQ(ql e
Q

4(ga+1 1/3 3g1—2¢2+14+3L . \2/3 (2.13)
< (/QwZ((h-‘r )d(E) </Qw2<h q2 Zn dCE)

2/3 - 371 2/3
< KQ(/ |Vw2|2(Q2+1)dx) (/ wgCh 2q2+1+ 27”1 dx) .
@ Q

As in deriving (2.8)), we see that

371 3
3q1—2q2+14+ 5+ _ 571
/w2q1 T /Un(sql 2a2+ 1)+ 1.
Q Q

< (/ Uffzdx)#s . |Q|1*#3 (2-14)
Q
<o) - |t~
where pg = 2n(3q17332:1)+371 < 1. Substituting (2.14) into (2.13) and using (2.9)

once more, we obtain, for ag > 0,

e 2(1— 1 2
[ b < g [0 + 2 [ [FuaPeVda]. (215)
Q 3az 3 Ja

and similarly

o2 — ]_ 2
/ wi T dr < g |0 [ e + = / [Vun 2 dz), (216)
O 3a 3 Ja

where ay > 0 and py = 22B2=2080%3% 4 Combining [2.10), @.11), @.15)

2(71

and (2.16]) with (2.6), we conclude that
¢'(t) < *01/ |Vw1|2(q1+1)d:c702/ |Vw2|2(qz+1)dm
Q2 Q

+ k1p(8)* + koo (£)*H2 + ks (t)*H + kg ()4,

where

0'1(0'1 — 1)b2 20&1K1,60’1 2(1—pq) 20[4K1502 2(1—pyg)
e L e
_oa(oa —1)by  200Ks801 20—k 203K3005 | 20-u)
R

P (<11 NS (0110 b

! 302 b 3a2 ’

(1—p3) 2(1—p4)
fn Ko|Q| == = Boy by Ki|Q~ 5 Boy
s 303 ro 3a2 ’

Now, setting oy = aw, g3 = a4, and choosing a1, a3 such that C7; =0 and Cy = 0,
hence, we have
¢'(t) < g(9), (2.17)
where
g(s) = k1 s 4 kos?2 4 kM3 o kys?Ha,
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An integration of from 0 to t leads to
() Js
/¢<o> a5 ="
so that if (u,v) blows up in the measure of ¢ as t — t*, we derive the lower bound
/ T s < t*
s 9(s) =7
and Theorem is proved. Clearly, the integral is bounded since 27 > 1. g

3. NON BLOW-UP CASE

In this section, we consider the non blow-up property of problem (|L.1])-(1.4)) when
2max(q1,g2) > m — 1 > 0. To achieve this, we define the auxiliary function

o(t) = %/QUde—F%/Qdem. (3.1)

Theorem 3.1. Suppose that (A1), (A2) hold and that 2max(q1,q2) > m —1 > 0.

Let (u,v) be the nonnegative solution of problem (1.1)-(1.4)), then (u,v) can not
blow up in the measure ¢ in finite time.

Proof. From(3.1)), (1.1), (1.2) and (A2), we have

¢'(t) :/Uutdw-i-/ vopde
Q Q
S_/ |vu|2(b1+bz|VU|2ql)da}—/ V|2 (bs + bs| V0| da
£ Q

+ﬁ/(um+1+vm+1)dx
Q

(3.2)
< /(ﬁum+1 _b2‘vu|2(fh+1))dl‘+/(ﬁvm+l —b4|Vv|2(q2+1))dx
Q Q
</ (ﬂum“ —bz(L)qﬁlu%qu))dm
- Ja (gn +1)2

A1
+ oMt g a2+1,,2(q2+1) dz,
/Q(ﬁ 4((6124—1)2) )

where the last inequality is obtained by using [14, (2.10]. For ¢ > 0,

2
/w2(q+1)dx<((Q+l) )q+1/ V|26 gy
Q IR Q 7

where \; is the first eigenvalue in the fixed membrane problem, as defined in Section
2. Employing Holder inequality, we have

_m+1 21 —m+1
/uerldx < (/ u2(q1+1)d$) SR e (3.3)
Q Q

#:—}rl) 299 —m+1
/vm-i-ldx < (/ v2<qz+1>dx) Q| Hat (3.4)
Q Q

_2 _
/u2dx < (/ um“dz) Bk (3.5)
Q Q
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Inserting (3.3)-(3.5) into (3.2), we see that

() g/um—Hdm(ﬁ—Mﬂ/ qum)M)dx
) ) 2qo—m+1 (36)
—1—2/va+1dx(ﬁ_M2(/Q ”2d$)qu)dx
where
M, =0b )‘1 q1+1 9] _2q1;m+1 Mo —b )\1 Gt 0 _w
G A

Apparently, if (u,v) blows up in the ¢ measure at some time ¢ then ¢’'(¢) would be
negative which leads to a contradiction. Thus, the solution (u,v) can not blow up
in the measure ¢. The proof is complete. O

4. CRITERION FOR BLOW-UP

In this section, we investigate the blow up properties of solutions for (1.1])-(1.4)
with

p1(8) = b1 +bas?,  pa(s) =bs + 0382, q1,q92,0; >0, i=1-—4. (4.1)

For this purpose, we first define

1 1
o(t) = f/ u?dr + f/ vida (4.2)
2 Ja 2 Ja
and
_ bz 2 2a1+1) g, _ 03012
0lt) = =G IVall = 52 [ Va0 s~ vl
. o (4.3)
- Vol|?l22+ dx+/ F(u,v)dz,
2(g2 +1) /Q' | Q ()
where || - |2 is the L?(Q)-norm.

Theorem 4.1. Suppose that (4.1) and (A2) hold. Assume further that m —1 >
2max(q1,q2) > 0 and ¥(0) > 0. If (u,v) is the non-negative solution of problem
(1.1)-(1.4), then the solution blows up at finite time t* with

S
P GmtDmrD

Proof. From —, we have
& (1) :-/ |Vu|2(b1+b2|Vu|2q1)dx—/ V0|2 (bs + ba| V0|2 da
Q Q

—|—(m+1)/F(u,v)dm
Q
bl/ 2 b2 / 2( 1 (4.4)
>m+1)| - = [ [VuPde — ——— [ |Vu*@tq
ma D] =g [Vl = gy [V

b b
;”ang2(q2j_1)/Q|V”U|2(q2+1)dx+/QF(u,v)dx}
= (m+1)3(1),
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P (t) = —by / Vu - Vugdr — bg/ |Vu*"Vu - Vugdr — bz | Vv - Vuuda
Q o Q
— b4/ |Vul?2 Vv - Voda — / alu 4 o™ (w4 v) (ug + ve)dx
@ @ (4.5)

+1

— b/ (\u|m773\11|m7+1uut + |v|mTfS|u|mTvvt)dx
Q

= /(uf +v2)dz > 0.
Q

This, together with 1(0) > 0, implies that ¢ (t) > 1(0) > 0, for ¢ > 0. By using
Hélder inequality, Schwarz inequality, (4.2 and (4.5]), we obtain

(1) = ( /Q wpda + /Q vuyde)”

< ull3lluell3 + loll3lvel3 + llell3llvel3 + llall3]lull? (4.6)
1
= LoD ()
Then, using (4.4) and (4.6)), we deduce that
1
/ < / 2 < !/
FOU) < e () < g (1),
which implies that
(W ()o(t)~>"%) > 0. (4.7)
An integration of (4.7) from 0 to ¢ gives to
D(t)p(t) 7" 2 > 4p(0)9(0) 7> = M. (4.8)

Combining (4.4) with (4.8) and integrating the resultant differential inequality, we
have

()72 < p(0) 2 — (2m + 1) (m + 1) Mt (4.9)
Since ¢(0) > 0, (4.9) shows that ¢ becomes infinite in a finite time
—2m—1
T = $(0) _
2m+1)(m+1)
This completes the proof. (I
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