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NONLINEARITY IN OSCILLATING BRIDGES

FILIPPO GAZZOLA

Abstract. We first recall several historical oscillating bridges that, in some

cases, led to collapses. Some of them are quite recent and show that, nowa-
days, oscillations in suspension bridges are not yet well understood. Next, we

survey some attempts to model bridges with differential equations. Although

these equations arise from quite different scientific communities, they display
some common features. One of them, which we believe to be incorrect, is the

acceptance of the linear Hooke law in elasticity. This law should be used only

in presence of small deviations from equilibrium, a situation which does not
occur in widely oscillating bridges. Then we discuss a couple of recent mod-

els whose solutions exhibit self-excited oscillations, the phenomenon visible in
real bridges. This suggests a different point of view in modeling equations and

gives a strong hint how to modify the existing models in order to obtain a re-

liable theory. The purpose of this paper is precisely to highlight the necessity
of revisiting the classical models, to introduce reliable models, and to indicate

the steps we believe necessary to reach this target.

1. Introduction

The story of bridges is full of many dramatic events, such as uncontrolled oscil-
lations which, in some cases, led to collapses. To get into the problem, we invite
the reader to have a look at the videos [101, 103, 104, 105]. These failures have to
be attributed to the action of external forces, such as the wind or traffic loads, or
to macroscopic mistakes in the projects. From a theoretical point of view, there is
no satisfactory mathematical model which, up to nowadays, perfectly describes the
complex behavior of bridges. And the lack of a reliable analytical model precludes
precise studies both from numerical and engineering points of views.

The main purpose of the present paper is to show the necessity of revisiting
the existing models since they fail to describe the behavior of actual bridges. We
will explain which are the weaknesses of the so far considered equations and sug-
gest some possible improvements according to the fundamental rules of classical
mechanics. Only with some nonlinearity and with a sufficiently large number of
degrees of freedom several behaviors may be modeled. We do not claim to have a
perfect model, we just wish to indicate the way to reach it. Much more work is
needed and we explain what we believe to be the next steps.

2000 Mathematics Subject Classification. 74B20, 35G31, 34C15, 74K10, 74K20.

Key words and phrases. Suspension bridges; nonlinear elasticity.
c©2013 Texas State University - San Marcos.

Submitted June 10, 2013. Published September 20, 2013.

1



2 F. GAZZOLA EJDE-2013/211

We first survey and discuss some historical events, we recall what is known in
elasticity theory, and we describe in full detail the existing models. With this data-
base at hand, our purpose is to analyse the oscillating behavior of certain bridges,
to determine the causes of oscillations, and to give an explanation to the possible
appearance of different kinds of oscillations, such as torsional oscillations. Due to
the lateral sustaining cables, suspension bridges most emphasise these oscillations
which, however, also appear in other kinds of bridges: for instance, light pedes-
trian bridges display similar behaviors even if their mechanical description is much
simpler.

According to [46], chaos is a disordered and unpredictable behavior of solutions
in a dynamical system. With this characterization, there is no doubt that chaos is
somehow present in the disordered and unpredictable oscillations of bridges. From
[46, Section 11.7] we recall a general principle (GP) of classical mechanics:

(GP) The minimal requirements for a system of first-order equations to exhibit
chaos is that they be nonlinear and have at least three variables.

This principle suggests that any model aiming to describe oscillating bridges should
be nonlinear and with enough degrees of freedom.

Most of the mathematical models existing in literature fail to satisfy (GP) and,
therefore, must be accordingly modified. We suggest possible modifications of the
corresponding differential equations and we believe that, if solved, this would lead
to a better understanding of the underlying phenomena and, perhaps, to several
practical actions for the plans of future bridges, as well as remedial measures for
existing structures. One of the scopes of this paper is to convince the reader that
linear theories are not suitable for the study of bridges oscillations whereas, although
they are certainly too naive, some recent nonlinear models do display self-excited
oscillations as visible in bridges.

In Section 2, we collect a number of historical events and observations about
bridges, both suspended and not. A complete story of bridges is far beyond the
scopes of the present paper and the choice of events is mainly motivated by the
phenomena that they displayed. The description of the events is accompanied by
comments of engineers and of witnesses, and by possible theoretical explanations
of the observed phenomena. This enables us to figure out a common behavior of
oscillating bridges; in particular, a quite evident nonlinear behavior is manifested.
Recent events testify that the problems of controlling and forecasting bridges oscil-
lations is still unsolved.

In Section 3, we discuss several equations appearing in literature as models for
oscillating bridges. Most of them use in some point the well-known linear Hooke law
(LHL in the sequel) of elasticity. This is what we believe to be a major weakness,
but not the only one, of all these models. This is also the opinion of McKenna [64,
p.16]:

We doubt that a bridge oscillating up and down by about 10 meters
every 4 seconds obeys Hooke’s law.

From [30], we recall what is known as LHL.

The linear Hooke law (LHL) of elasticity, discovered by the Eng-
lish scientist Robert Hooke in 1660, states that for relatively small
deformations of an object, the displacement or size of the deforma-
tion is directly proportional to the deforming force or load. Under
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these conditions the object returns to its original shape and size
upon removal of the load . . . At relatively large values of applied
force, the deformation of the elastic material is often larger than
expected on the basis of LHL, even though the material remains
elastic and returns to its original shape and size after removal of
the force. LHL describes the elastic properties of materials only in
the range in which the force and displacement are proportional.

Hence, by no means one should use LHL in presence of large deformations. In such
case, the restoring elastic force f is “more than linear”. Instead of having the usual
form f(s) = ks, where s is the displacement from equilibrium and k > 0 depends
on the elasticity of the deformed material, it has an additional superlinear term
ϕ(s) which becomes negligible for small displacements s. More precisely,

f(s) = ks+ ϕ(s) with lim
s→0

ϕ(s)
s

= 0 .

The superlinear term may be arbitrarily small and should be chosen in such a
way to describe with more precision the elastic behavior of a material when larger
displacements are involved. As we shall see, this apparently harmless and tiny
nonlinear perturbation has devastative effects on the models and, moreover, it is
amazingly useful to display self-excited oscillations as the ones visible in actual
bridges. On the contrary, linear models prevent to view the real phenomena which
occur in bridges, such as the sudden increase of the width of their oscillations and
the switch to different ones.

The necessity of dealing with nonlinear models is by now quite clear also in more
general elasticity problems; from the preface of the book by Ciarlet [23], let us quote

. . . it has been increasingly acknowledged that the classical linear
equations of elasticity, whose mathematical theory is now firmly
established, have a limited range of applicability, outside of which
they should be replaced by genuine nonlinear equations that they
in effect approximate.

To model bridges, the most natural way is to view the roadway as a thin nar-
row rectangular plate. In Section 3.1, we quote several references which show that
classical linear elastic models for thin plates do not describe with a sufficient ac-
curacy large deflections of a plate. But even linear theories present considerable
difficulties and a further possibility is to view the bridge as a one dimensional beam;
this model is much simpler but, of course, it prevents the appearance of possible
torsional oscillations. This is the main difficulty in modeling bridges: find simple
models which, however, display the same phenomenon visible in real bridges.

In Section 3.2 we survey a number of equations arising from different scientific
communities. The first equations are based on engineering models and mainly focus
the attention on quantitative aspects such as the exact values of the parameters
involved. Some other equations are more related to physical models and aim to
describe in full details all the energies involved. Finally, some of the equations are
purely mathematical models aiming to reach a prototype equation and proving some
qualitative behavior. All these models have to face a delicate choice: either consider
uncoupled behaviors between vertical and torsional oscillations of the roadway or
simplify the model by decoupling these two phenomena. In the former case, the
equations have many degrees of freedom and become terribly complicated: hence,
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very few results can be obtained. In the latter case, the model fails to satisfy the
requirements of (GP) and appears too far from the real world.

As a compromise between these two choices, in Section 4 we recall the model
introduced in [43, 45] which describes vertical oscillations and torsional oscillations
of the roadway within the same simplified beam equation. The solution to the
equation exhibits self-excited oscillations quite similar to those observed in suspen-
sion bridges. We do not believe that the simple equation considered models the
complex behavior of bridges but we do believe that it displays the same phenomena
as in more complicated models closer related to bridges. In particular, finite time
blow up occurs with wide oscillations. These phenomena are typical of differential
equations of at least fourth order since they do not occur in lower order equations,
see [43]. We also show that the same phenomenon is visible in a 2 × 2 system of
nonlinear ODE’s of second order related to a system suggested by McKenna [64].

Putting all together, in Section 5 we afford an explanation in terms of the en-
ergies involved. Starting from a survey of milestone historical sources [13, 87], we
attempt a qualitative energy balance and we attribute the appearance of torsional
oscillations in bridges to some “switch” of energy from vertical modes to torsional
modes. This phenomenon is usually called in literature flutter speed and has to be
attributed to Bleich [12]; in our opinion, the flutter speed should be seen as a criti-
cal energy threshold which, if exceeded, gives rise to uncontrolled phenomena such
as the appearance of torsional oscillations. We give some hints on how to deter-
mine the critical energy threshold, depending on the eigenvalues and eigenfunctions
which describe the oscillating modes of the roadway. This part is incomplete and
certainly needs further work.

In bridges one should always expect vertical oscillations and, in case they become
very large, also torsional oscillations; in order to display the possible transition
between these two kinds of oscillations, in Section 5.5 we suggest a new model
equation for suspension bridges, see (5.15). This problem does not seem to fit in
any classical solving scheme, we do not even know if it is well-posed; it is well-known
that equations modeling suspension bridges may be ill-posed, displaying multiple
solutions [68]. However, we hope (5.15) to become the starting point for future
fruitful discussions.

With all the results and observations at hand, in Section 6.1 we attempt a
detailed description of what happened on November 7, 1940, the day when the
Tacoma Narrows Bridge collapsed. As far as we are aware a universally accepted
explanation of this collapse in not yet available. Our explanation fits with all the
material developed in the present paper. This allows us to suggest a couple of
precautions when planning future bridges, see Section 6.2.

We recently had the pleasure to participate to a conference on bridge mainte-
nance, safety and management, see [51]. There were engineers from all over the
world, the atmosphere was very enjoyable and the problems discussed were ex-
tremely interesting. And there was a large number of basic questions still unsolved,
most of the results and projects had some percentage of incertitude. Many talks
were devoted to suggest new equations to model the studied phenomena and to
forecast the impact of new structural issues: even apparently simple questions are
still without an answer. We believe this should be a strong motivation for mathe-
maticians (from mathematical physics, analysis, numerics) to get more interested
in bridges modeling, experiments, and performances. Throughout the paper we
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suggest a number of open problems which, if solved, could be a good starting point
to reach a deeper understanding of oscillations in bridges.

2. What has been observed in bridges

Figure 1. Suspension bridges without girder and with girder

A simplified picture of a suspension bridge can be sketched as in Figure 1 where
one sees the difference between the elastic structure of a bridge without girder and
the more stiff structure of a bridge with girder. Although the first design of a
suspension bridge is due to the Italian engineer Verantius around 1615, see [94]
and [75, p.7] or [53, p.16], the first suspension bridges were built only about two
centuries later.

The Menai Straits Bridge was built in 1826 and it collapsed in 1839 due to
a hurricane. In that occasion, unexpected oscillations appeared and Provis [78]
provided the following description:

. . . the character of the motion of the platform was not that of a
simple undulation, as had been anticipated, but the movement of
the undulatory wave was oblique, both with respect to the lines of
the bearers, and to the general direction of the bridge.

Also the Broughton Suspension Bridge was built in 1826. It collapsed in 1831
due to mechanical resonance induced by troops marching over the bridge in step.
As a consequence of the incident, the British Army issued an order that troops
should “break step” when crossing a bridge.

Figure 2. Destruction of the Brighton Chain Pier

A further event deserving to be mentioned is the collapse of the Brighton Chain
Pier, built in 1823. It collapsed a first time in 1833, it was rebuilt and partially de-
stroyed once again in 1836. Both the collapses are attributed to violent windstorms.
For the second collapse a witness, William Reid, reported valuable observations and
sketched a picture illustrating the destruction [79, p.99], see Figure 2 which is taken
from [82]. These pictures are complemented with a report whose most interesting
part says:
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For a considerable time, the undulations of all the spans seemed
nearly equal . . . but soon after midday the lateral oscillations of the
third span increased to a degree to make it doubtful whether the
work could withstand the storm; and soon afterwards the oscillating
motion across the roadway, seemed to the eye to be lost in the
undulating one, which in the third span was much greater than in
the other three; the undulatory motion which was along the length
of the road is that which is shown in the first sketch; but there
was also an oscillating motion of the great chains across the work,
though the one seemed to destroy the other . . .

From the above accidents we learn that different kinds of oscillations may appear
and some of them are considered destructive. Some decades earlier, at the end of
the eighteenth century, the German physicist Ernst Chladni was touring Europe
and showing, among other things, the nodal line patterns of vibrating plates, see
Figure 3.

Figure 3. Chladni patterns in a vibrating plate

Chladni’s technique, first published in [22], consisted of creating vibrations in a
square-shaped metal plate whose surface was covered with light sand. The plate was
bowed until it reached resonance, when the vibration caused the sand to concentrate
along the nodal lines of vibrations, see [102] for the nowadays experiment. In
Figure 3 we see how complicated may be the vibrations of a thin plate and hence,
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see Section 3.1, of a bridge. And, indeed, the above described events testify that,
besides the somehow expected vertical oscillations, also different kinds of oscillations
may appear. The description of different coexisting forms of oscillations is probably
the most important open problem in suspension bridges.

The Tacoma Narrows Bridge collapse, occurred in 1940 just a few months after
its opening, is certainly the most celebrated bridge failure both because of the
impressive video [104] and because of the large number of studies that it has inspired
starting from the reports [4, 13, 32, 33, 34, 87, 96]. Let us recall some observations
made on the Tacoma collapse. Since we were unable to find the Federal Report [4]
that we repeatedly quote below, we refer to it by trusting the valuable historical
research by Scott [86] and by McKenna and coauthors, see in particular [58, 64, 65,
69]. A good starting point to describe the Tacoma collapse is. . . the Golden Gate
Bridge, inaugurated a few years earlier, in 1937. This bridge is usually classified as
“very flexible” although it is strongly stiffened by a thick girder. The bridge can
swing more than an amazing 8 meters and flex about 3 meters under big loads,
which explains why the bridge is classified as very flexible. The huge mass involved
and these large distances from equilibrium explain why LHL certainly fails. Due
to high winds around 120 kilometers per hour, the Golden Gate Bridge has been
closed, without suffering structural damage, only three times: in 1951, 1982, and
1983. Moreover, in 1938 important vertical oscillations appeared: in [4, Appendix
IX], the chief engineer of the Golden Gate Bridge writes

. . . I observed that the suspended structure of the bridge was un-
dulating vertically in a wavelike motion of considerable amplitude
. . .

see also the related detailed description in [69, Section 1]. We sketch pure vertical
oscillations (similar to traveling waves) in the first picture in Figure 4.

Figure 4. Vertical and torsional oscillations in bridges without girder

So, vertical oscillations show up also in apparently stiff structures. And in pres-
ence of extremely flexible structures, these oscillations can transform into the more
dangerous torsional oscillations, see the second picture in Figure 4.

Of course, the girder gives more stiffness to the bridge; this is certainly the main
reason why at the Golden Gate Bridge no torsional oscillation was ever detected.
The Tacoma Bridge was rebuilt in 1950 with a thick girder acting as a strong
stiffening structure, see [34] for some remarks on the project, and still stands today
as the westbound lanes of the present-day twin bridge complex; the eastbound
lanes opened in 2007. Figure 5 - picture by Michael Goff, Oregon Department of
Transportation, USA - shows the striking difference between the original Tacoma
Bridge collapsed in 1940 and the twin bridges as they are today.

Let us go back to the original Tacoma Bridge: even if it was more flexible, the
reason of the appearance of torsional oscillations is still unclear. Scanlan [84, p.841]
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Figure 5. The collapsed Tacoma Bridge and the current twins
Tacoma Bridges

discards the possibility of the appearance of von Kármán vortices and raises doubts
on the appearance of a resonance. It is reasonable to expect resonance in presence
of a single-mode solicitation, such as for the Broughton Bridge. But for the Tacoma
Bridge, Lazer-McKenna [58, Section 1] raise the question

. . . the phenomenon of linear resonance is very precise. Could it
really be that such precise conditions existed in the middle of the
Tacoma Narrows, in an extremely powerful storm?

So, no plausible explanation is available nowadays. While describing the Tacoma
collapse in a letter, Farquharson [31] wrote that

. . . a violent change in the motion was noted. This change appeared
to take place without any intermediate stages and with such ex-
treme violence . . . The motion, which a moment before had involved
nine or ten waves, had shifted to two.

All this happened under not extremely strong winds, about 80km/h, and under a
relatively high frequency of oscillation, see [32, p.23]. See also [64, Section 2.3] for
more details and for the conclusion that

there is no consensus on what caused the sudden change to torsional
motion.

Besides the lack of consensus on the causes of the switch between vertical and
torsional oscillations, all the above comments highlight a strong instability of the
vertical oscillations as if, after reaching some critical energy threshold, an impulse
(a Dirac delta) generated a new unexpected oscillation. We refer to Section 6 for
our own interpretation of this phenomenon. Roughly speaking, we believe that part
of the energy responsible of vertical oscillations switches to another energy which
generates torsional oscillations; the switch occurs without intermediate stages. In
order to explain the “switch of oscillations” several mathematical models were sug-
gested in literature: in next section we survey some of these models.

The Tacoma Bridge collapse is just the most celebrated and dramatic evidence of
oscillating bridge but bridges oscillations are still not well understood nowadays. On
May 2010, the Russian authorities closed the Volgograd Bridge to all motor traffic
due to its strong vertical oscillations (traveling waves) caused by windy conditions,
see [105] for the BBC report and video.

As already observed, the wind is not the only possible external source which
generates bridges oscillations which also appear in pedestrian bridges where lateral
swaying is the counterpart of torsional oscillation. In June 2000, the very same



EJDE-2013/211 NONLINEARITY IN OSCILLATING BRIDGES 9

day when the London Millennium Bridge opened and the crowd streamed on it,
the bridge started to sway from side to side, see [103]. Many pedestrians fell spon-
taneously into step with the vibrations, thereby amplifying them. According to
Sanderson [83], the bridge wobble was due to the way people balanced themselves,
rather than the timing of their steps. Therefore, the pedestrians acted as nega-
tive dampers, adding energy to the bridge’s natural sway. Macdonald [61, p.1056]
explains this phenomenon by writing

. . . above a certain critical number of pedestrians, this negative
damping overcomes the positive structural damping, causing the
onset of exponentially increasing vibrations.

Although we have some doubts about the real meaning of “exponentially increasing
vibrations” we have no doubts that this description corresponds to a superlinear
behavior. The Millennium Bridge was made secure by adding some lateral dampers.

Another pedestrian bridge, the Assago Bridge in Milan (310m long), had a similar
problem. In February 2011, just after a concert the publics crossed the bridge and,
suddenly, swaying became so violent that people could hardly stand, see [35] and
[101]. Even worse was the subsequent panic effect when the crowd started running
in order to escape from a possible collapse; this amplified swaying but, quite luckily,
nobody was injured. In this case, the project did not take into account that a large
number of people would go through the bridge just after the events; when swaying
started there were about 1.200 pedestrians on the footbridge. Also this problem
was solved by adding positive dampers, see [88].

It is not among the scopes of this paper to give the complete story of bridges
collapses for which we refer to [13, Section 1.1], to [82, Chapter IV], to [24, 32,
50, 98], to the recent monographs [3, 53], and also to [52] for a complete database.
Let us just mention that between 1818 and 1889, ten suspension bridges suffered
major damages or collapsed in windstorms, see [32, Table 1, p.13]. The story of
bridges, suspended and not, contains many further dramatic events, an amazing
amount of bridges had troubles for different reasons such as the wind, the traffic
loads, or macroscopic mistakes in the project, see e.g. [49, 76]. According to [52],
around 400 recorded bridges failed for several different reasons and the ones who
failed after year 2000 are more than 70. We also refer to the book by Akesson [3]
for the technical analysis of these failures.

As we have seen, the reasons of failures in bridges are of different kinds. Firstly,
strong and/or continued winds: these may cause wide vertical oscillations which
may switch to different kinds of oscillations. Especially for suspension bridges
the latter phenomenon appears quite evident, due to the many elastic components
(cables, hangers, towers, etc.) which appear in it. A second cause are traffic loads,
such as some precise resonance phenomenon, or some unpredictable synchronised
behavior, or some unexpected huge load; these problems are quite common in many
different kinds of bridges. Finally, a third cause are mistakes in the project; these
are both theoretical, for instance assuming LHL, and practical, such as wrong
assumptions on the possible maximum external actions.

Trusses or dampers do not solve completely the problem and torsional oscillations
may still appear but, of course, only in presence of very large energy inputs. In this
respect, we quote from [32, p.13] a comment on suspension bridges strengthened
by stiffening trusses:
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That significant motions have not been recorded on most of these
bridges is conceivably due to the fact that they have never been
subjected to optimum winds for a sufficient period of time.

So, it is expected that under prolonged winds, not necessarily hurricanes, or heavy
and synchronized traffic loads, a stiffening truss may become useless. Moreover,
Steinman [89] writes that

It is more scientific to eliminate the cause than to build up the
structure to resist the effect.

Therefore we can say that instead of just solving the problem, one should understand
the problem.

And precisely in order to understand the problem, we described above some
events which displayed the pure elastic behavior of bridges. These were mostly
suspension bridges without girders and were free to oscillate. This is a good reason
why the Tacoma collapse should be further studied for deeper knowledge: it displays
the pure motion without stiffening constraints which hide the elastic features of
bridges. Finite elements methods may be fruitfully used to quantify the role of
trusses, see e.g. [36]. The next step is to find correct mathematical models able
to reproduce these oscillations and to explain what causes them. In particular,
the above events and deep studies in [19, 55] show that suspension bridges behave
nonlinearly and that nonlinear models have to be considered, as suggested by (GP).

3. How to model bridges

The amazing number of failures described in the previous section shows that
the existing theories and models are not adequate to describe the statics and the
dynamics of oscillating bridges. In this section we survey different points of view,
different models, and we underline their main weaknesses. We also suggest how to
modify them in order to fulfill the requirements of (GP).

3.1. A quick overview on elasticity: from linear to semilinear models. A
quite natural way to describe the bridge roadway is to view it as a thin rectangular
plate. This is also the opinion of Rocard [82, p.150]:

The plate as a model is perfectly correct and corresponds mechan-
ically to a vibrating suspension bridge.

In this case, a commonly adopted theory is the linear one by Kirchhoff-Love [54, 60],
see also [42, Section 1.1.2], which we briefly recall. The bending energy of a plate
involves curvatures of the surface. Let κ1, κ2 denote the principal curvatures of
the graph of a smooth function u representing the deformation of the plate, then a
simple model for the bending energy of the deformed plate Ω is

E(u) =
∫

Ω

(κ2
1

2
+
κ2

2

2
+ σκ1κ2

)
dx1 dx2 (3.1)

where σ denotes the Poisson ratio defined by σ = λ/(2(λ + µ)) with the so-called
Lamé constants λ, µ that depend on the material. For physical reasons it holds
that µ > 0 and usually λ ≥ 0 so that 0 ≤ σ < 1/2. In the linear theory of elastic
plates, for small deformations u the terms in (3.1) are considered to be purely
quadratic with respect to the second order derivatives of u. More precisely, for
small deformations u, one has

(κ1 + κ2)2 ≈ (∆u)2 , κ1κ2 ≈ det(D2u) = (ux1x1ux2x2 − u2
x1x2

) ,
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and therefore
κ2

1

2
+
κ2

2

2
+ σκ1κ2 ≈

1
2

(∆u)2 + (σ − 1) det(D2u).

Then (3.1) yields

E(u) =
∫

Ω

(1
2

(∆u)2 + (σ − 1) det(D2u)
)
dx1 dx2 . (3.2)

Note that for −1 < σ < 1 the functional E is convex; it is also coercive in suitable
Sobolev spaces such as H2

0 (Ω) or H2∩H1
0 (Ω). This modern variational formulation

appears in [39], while a discussion for a boundary value problem for a thin elastic
plate in a somehow old fashioned notation is made by Kirchhoff [54]. And precisely
the choice of the boundary conditions is quite delicate since it depends on the
physical model considered.

Destuynder-Salaun [28, Section I.2] describe this modeling by
. . . Kirchhoff and Love have suggested to assimilate the plate to a
collection of small pieces, each one being articulated with respect
to the other and having a rigid-body behavior. It looks like these
articulated wooden snakes that children have as toys. Hence the
transverse shear strain remains zero, while the planar deformation
is due to the articulation between small blocks. But this simpli-
fied description of a plate movement can be acceptable only if the
components of the stress field can be considered to be negligible.

The above comment says that LHL should not be adopted if the components
of the stress field are not negligible. An attempt to deal with large deflections for
thin plates is made by Mansfield [62, Chapters 8-9]. He first considers approximate
methods, then he deals with three classes of asymptotic plate theories: membrane
theory, tension field theory, inextensional theory. Roughly speaking, the three
theories may be adopted according to the ratio between the thickness of the plate
and the typical planar dimension: for the first two theories the ratio should be
less than 10−3, whereas for the third theory it should be less than 10−2. Since a
roadway has a length of the order of 1km, the width of the order of 10m, even for
the less stringent inextensional theory the thickness of the roadway should be less
than 10cm which, of course, appears unreasonable. Once more, this means that
LHL should not be adopted in bridges. In this respect, Mansfield [62, p.183] writes

The exact large-deflection analysis of plates generally presents con-
siderable difficulties. . .

Destuynder-Salaun [28, Section I.2] also revisit an alternative model due to
Naghdi [73] by using a mixed variational formulation. They refer to [71, 80, 81] for
further details and modifications, and conclude by saying that none between the
Kirchhoff-Love model or one of these alternative models is always better than the
others. Moreover, also the definition of the transverse shear energy is not univer-
sally accepted: from [28, p.149], we quote

. . . this discussion has been at the origin of a very large number
of papers from both mathematicians and engineers. But to our
best knowledge, a convincing justification concerning which one of
the two expressions is the more suitable for numerical purpose, has
never been formulated in a convincing manner. This question is
nevertheless a fundamental one . . .
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It is clear that a crucial role is played by the word “thin”. Which width is a
plate allowed to have in order to be considered thin? If we assume that the width
is zero like for a sheet of paper, but a quite unrealistic assumption for bridges,
a celebrated two-dimensional equation was suggested by von Kármán [97]. This
equation has been widely, and satisfactorily, studied from several mathematical
points of view such as existence, regularity, eigenvalue problems, semilinear versions,
see e.g. [42] for a survey of results. But several doubts have been raised on their
physical soundness, see the objections by Truesdell [92, pp.601-602] who concludes
by writing

These objections do not prove that anything is wrong with von
Kármán strange theory. They merely suggest that it would be
difficult to prove that there is anything right about it.

Classical books for elasticity theory are due to Love [60], Timoshenko [90], Ciarlet
[23], Villaggio [95], see also [72, 73, 91] for the theory of plates. Let us also point
out a celebrated work by Ball [7] who was the first analyst to approach the real
3D boundary value problems for nonlinear elasticity. Further nice attempts to
tackle nonlinear elasticity in particular situations were done by Antman [5, 6] who,
however, appears quite skeptic on the possibility to have a general theory:

. . . general three-dimensional nonlinear theories have so far proved
to be mathematically intractable.

The above discussion shows that classical modeling of thin plates should be
carefully revisited. This suggestion is absolutely not new. In this respect, let us
quote a couple of sentences written by Gurtin [47] about nonlinear elasticity:

Our discussion demonstrates why this theory is far more difficult
than most nonlinear theories of mathematical physics. It is hoped
that these notes will convince analysts that nonlinear elasticity is
a fertile field in which to work.

Since the previously described Kirchhoff-Love model implicitly assumes LHL,
and since quasilinear equations appear too complicated in order to give useful in-
formation, we intend to add some nonlinearity only in the source f in order to have
a semilinear equation, something which appears to be a good compromise between
too poor linear models and too complicated quasilinear models. This compromise
is quite common in elasticity, see e.g. [23, p.322] which describes the method of
asymptotic expansions for the thickness ε of a plate as a “partial linearisation”

. . . in that a system of quasilinear partial differential equations; i.e.,
with nonlinearities in the higher order terms, is replaced as ε → 0
by a system of semilinear partial differential equations; i.e., with
nonlinearities only in the lower order terms.

In Section 5.5, we suggest a new 2D mathematical model described by a semilin-
ear fourth order wave equation. Before doing this, in next section we survey some
existing models and we suggest some possible variants based on the observations
listed in Section 2.

3.2. Equations modeling suspension bridges. Although it is oversimplified
in several respects, the celebrated report by Navier [75] has been for about one
century the only mathematical treatise of suspension bridges. The second milestone
contribution is certainly the monograph by Melan [70]. After the Tacoma collapse,
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the engineering communities felt the necessity to find accurate equations in order
to attempt explanations of what had occurred. A first source is certainly the work
by Smith-Vincent [87] which was written precisely with special reference to the
Tacoma Narrows Bridge. The bridge is modeled as a one dimensional beam, say on
the interval (0, L), and in order to obtain an autonomous equation, Smith-Vincent
consider the function η = η(x) representing the amplitude of the oscillation at the
point x ∈ (0, L). By linearising they obtain a fourth order linear ODE [87, (4.2)]
which can be integrated explicitly. We will not write this equation because we
prefer to deal with the function v = v(x, t) representing the deflection at any point
x ∈ (0, L) and at time t > 0; roughly speaking, v(x, t) = η(x) sin(ωt) for some
ω > 0. In this respect, a slightly better job was done in [13] although this book
was not very lucky since two of the authors (McCullogh and Bleich) passed away
during its preparation. Equation [13, (2.7)] coincides with [87, (4.2)]; but [13, (2.6)]
considers the deflection v and reads

mvtt + EIvxxxx −Hwvxx +
wh

Hw
= 0 ; , x ∈ (0, L) , t > 0 , (3.3)

where E and I are, respectively, the elastic modulus and the moment of inertia of
the stiffening girder so that EI is the stiffness of the girder; moreover, m denotes
the mass per unit length, w = mg is the weight which produces a cable stress
whose horizontal component is Hw, and h is the increase of Hw as a result of the
additional deflection v. In particular, this means that h depends on v although [13]
does not emphasize this fact and considers h as a constant.

An excellent source to derive the equation of vertical oscillations in suspension
bridges is [82, Chapter IV] where all the details are well explained. The author,
the French physicist Yves-André Rocard (1903-1992), also helped to develop the
atomic bomb for France. Consider again that a long span bridge roadway is a beam
of length L > 0 and that it is oscillating; let v(x, t) denote the vertical component
of the oscillation for x ∈ (0, L) and t > 0. The equation derived in [82, p.132] reads

mvtt +EIvxxxx −
(
Hw + γ(v)

)
vxx +

w

Hw
γ(v) = f(x, t) , x ∈ (0, L) , t > 0, (3.4)

where Hw, EI and m are as in (3.3), γ(v) is the variation h of Hw supposed to vary
linearly with v, and f is an external forcing term. Note that a nonlinearity appears
here in the term γ(v)vxx. In fact, (3.4) is closely related to an equation suggested
much earlier by Melan [70, p.77] but it has not been subsequently attributed to
him.

Problem 3.1. Study oscillations and possible blow up in finite time for traveling
waves to (3.4) having velocity c > 0, v = v(x, t) = y(x − ct) for x ∈ R and t > 0,
in the cases where f ≡ 1 is constant and where f depends superlinearly on v.
Assuming that γ(v) = γv and putting τ = x− ct one is led to find solutions to the
ODE

EIy′′′′(τ)−
(
γy(τ) +Hw −mc2

)
y′′(τ) +

wγ

Hw
y(τ) = 1 , τ ∈ R .

By letting w(τ) = y(τ)− Hw
w γ and normalising some constants, we arrive at

w′′′′(τ)−
(
αw(τ) + β

)
w′′(τ) + w(τ) = 0 , τ ∈ R , (3.5)

for some α > 0 and β ∈ R; we expect different behaviors depending on α and β.
It would be interesting to see if local solutions to (3.5) blow up in finite time with
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wide oscillations. Moreover, one should also consider the more general problem

w′′′′(τ)−
(
αw(τ) + β

)
w′′(τ) + f(w(τ)) = 0 , τ ∈ R ,

with f being superlinear, for instance f(s) = s+εs3 with ε > 0 small. Incidentally,
we note that such f satisfies (3.13) and (4.4)-(4.5) below.

Rocard [82, pp.166-167] also studies the possibility of simultaneous excitation of
different bending and torsional modes and obtains a coupled system of linear equa-
tions of the kind of (3.4). With few variants, equations (3.3) and (3.4) seem nowa-
days to be well-accepted among engineers, see e.g. [24, Section VII.4]; moreover,
quite similar equations are derived to describe related phenomena in cable-stayed
bridges [20, (1)] and in arch bridges traversed by high-speed trains [56, (14)-(15)].

Let v(x, t) and θ(x, t) denote respectively the vertical and torsional components
of the oscillation of the bridge, then the following system is derived in [25, (1)-
(2)] for the linearised equations of the elastic combined vertical-torsional oscillation
motion:

mvtt + EIvxxxx −Hwvxx +
w2

H2
w

EA

L

∫ L

0

v(z, t) dz = f(x, t)

I0θtt + C1θxxxx − (C2 +Hw`
2)θxx +

`2w2

H2
w

EA

L

∫ L

0

θ(z, t) dz = g(x, t)

x ∈ (0, L) , t > 0,

(3.6)

where m, w, Hw are as in (3.3), EI, C1, C2, EA are respectively the flexural,
warping, torsional, extensional stiffness of the girder, I0 the polar moment of inertia
of the girder section, 2` the roadway width, f(x, t) and g(x, t) are the lift and the
moment for unit girder length of the self-excited forces. The linearisation here
consists in dropping the term γ(v)vxx but a preliminary linearisation was already
present in (3.4) in the zero order term. And the nonlocal linear term

∫ L
0
v, which

replaces the zero order term in (3.4), is obtained by assuming LHL. The nonlocal
term in (3.6) represents the increment of energy due to the external wind during a
period of time; this will be better explained in Section 5.1.

A special mention is deserved by an important paper by Abdel-Ghaffar [1] where
variational principles are used to obtain the combined equations of a suspension
bridge motion in a fairly general nonlinear form. The effect of coupled vertical-
torsional oscillations as well as cross-distortional of the stiffening structure is clar-
ified by separating them into four different kinds of displacements: the vertical
displacement v, the torsional angle θ, the cross section distortional angle ψ, the
warping displacement u, although u can be expressed in terms of θ and ψ. These
displacements are well described in Figure 6 which are taken from [1, Figure 2].

A careful analysis of the energies involved is made, reaching up to fifth derivatives
in the equations, see [1, (15)]. Higher order derivatives are then neglected and the
following nonlinear system of three PDE’s of fourth order in the three unknown
displacements v, θ, ψ is obtained, see [1, (28)-(29)-(30)]:

w

g
vtt + EIvxxxx −

(
2Hw +H1(t) +H2(t)

)
vxx +

b

2

(
H1(t)−H2(t)

)
(θxx + ψxx)

+
w

2Hw

(
H1(t) +H2(t)

)
− wsr

2

g

(
1 +

EI

2Gµr2

)
vxxtt +

w2
sr

2

4gGµ
vtttt = 0 ,
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Figure 6. The four different kinds of displacements

Imθtt + EΓθxxxx −GJθxx −
Hwb

2

2
(θxx + ψxx)− γΓ

g
θxxtt

− b2

4

(
H1(t) +H2(t)

)
(θxx + ψxx) +

b

2

(
H1(t)−H2(t)

)
vxx

− γλ

g
ψxxtt +

bw

4Hw

(
H2(t)−H1(t)

)
+ EΛψxxxx +

wcb
2

4g
ψtt = 0 ,

wcb
2

4g
(ψtt + θtt) +

EAb2d2

4
ψxxxx −

Hwb
2

2
(ψxx + θxx)

− γAb2d2

4g
ψxxtt −

γλ

g
θxxtt + EΛθxxxx −

b2

4

(
H1(t) +H2(t)

)
(θxx + ψxx)

+
b

2

(
H1(t)−H2(t)

)
vxx +

wb

4Hw

(
H2(t)−H1(t)

)
= 0 .

We will not explain here what is the meaning of all the constants involved: some
of the constants have a clear meaning, for the interpretation of the remaining ones,
we refer to [1]. Let us just mention that H1 and H2 represent the vibrational
horizontal components of the cable tension and depend on v, θ, ψ, and their first
derivatives, see [1, (3)]. We wrote these equations in order to convince the reader
that the behavior of the bridge is modeled by terribly complicated equations. After
making such huge effort, Abdel-Ghaffar simplifies the problem by neglecting the
cross section deformation, the shear deformation and rotatory inertia; he obtains a
coupled nonlinear vertical-torsional system of two equations in the two unknowns
functions v and θ. These equations are finally linearised, by neglecting H1 and
H2 which are considered small when compared with the initial tension Hw. Then
the coupling effect disappears and equations (3.6) are recovered, see [1, (34)-(35)].
What a pity, an accurate modeling ended up with a linearisation! But there was no
choice, how can one imagine to get any kind of information from the above system?

After the previously described pioneering models from [13, 70, 75, 82, 87] there
has not been much work among engineers about alternative differential equations;
the attention has turned to improving performances through design factors, see e.g.
[48], or on how to solve structural problems rather than how to understand them
more deeply. In this respect, from [64, p.2] we quote a personal discussion between
McKenna and a distinguished civil engineer who said
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. . . having found obvious and effective physical ways of avoiding the
problem, engineers will not give too much attention to the mathe-
matical solution of this fascinating puzzle . . .

Only modeling modern footbridges has attracted some interest from a theoretical
point of view. As already mentioned, pedestrian bridges are extremely flexible and
display elastic behaviors similar to suspension bridges, although the oscillations
are of different kind. When a suspension bridge is attacked by the wind its starts
oscillating, but soon afterwards the wind itself modifies its behavior according to the
bridge oscillation; so, the wind amplifies the oscillations by blowing synchronously.
A qualitative description of this phenomenon was already attempted by Rocard
[82, p.135]:

. . . it is physically certain and confirmed by ordinary experience,
although the effect is known only qualitatively, that a bridge vi-
brating with an appreciable amplitude completely imposes its own
frequency on the vortices of its wake. It appears as if in some
way the bridge itself discharges the vortices into the fluid with a
constant phase relationship with its own oscillation. . . .

This reminds the above described behavior of footbridges where pedestrians fall
spontaneously into step with the vibrations: in both cases, external forces synchro-
nise their effect and amplify the oscillations of the bridge. This is one of the reasons
why self-excited oscillations appear in suspension and pedestrian bridges.

In [18] a simple 1D model was proposed in order to describe the crowd-flow
phenomena occurring when pedestrians walk on a flexible footbridge. The resulting
equation [18, (2)] reads(

ms(x) +mp(x, t)
)
utt + δ(x)ut + γ(x)uxxxx = g(x, t) (3.7)

where x is the coordinate along the beam axis, t the time, u = u(x, t) the lateral
displacement, ms(x) is the mass per unit length of the beam, mp(x, t) the linear
mass of pedestrians, δ(x) the viscous damping coefficient, γ(x) the stiffness per unit
length, g(x, t) the pedestrian lateral force per unit length. In view of the superlinear
behavior for large displacements observed for the London Millennium Bridge, see
Section 2, we wonder if instead of a linear model one should consider a lateral force
also depending on the displacement, g = g(x, t, u), being superlinear with respect
to u.

Problem 3.2. Study (3.7) modified as follows

utt + δut + γuxxxx + f(u) = g(x, t) (x ∈ R , t > 0)

where δ > 0, γ > 0 and f(s) = s + εs3 for some ε > 0 small. One could first
consider the Cauchy problem

u(x, 0) = u0(x) , ut(x, 0) = u1(x) (x ∈ R)

with g ≡ 0. Then one could seek traveling waves such as u(x, t) = w(x− ct) which
solve the ODE

γw′′′′(τ) + c2w′′(τ) + δcw′(τ) + f(w(τ)) = 0 (x− ct = τ ∈ R).

Finally, one could also try to find properties of solutions in a bounded interval
x ∈ (0, L).
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Scanlan-Tomko [85] introduce a model in which the torsional angle θ of the
roadway section satisfies the equation

I[θ′′(t) + 2ζθωθθ′(t) + ω2
θθ(t)] = Aθ′(t) +Bθ(t) , (3.8)

where I, ζθ, ωθ are, respectively, associated inertia, damping ratio, and natural
frequency. The right-hand side of (3.8) represents the aerodynamic force and was
postulated to depend linearly on both θ′ and θ with the positive constants A and B
depending on several parameters of the bridge. Since (3.8) may be seen as a two-
variables first order linear system, it fails to fulfil both the requirements of (GP).
Hence, (3.8) is not suitable to describe the disordered behavior of a bridge. And
indeed, elementary calculus shows that if A is sufficiently large, then solutions to
(3.8) are positive exponentials times trigonometric functions which do not exhibit a
sudden appearance of self-excited oscillations, they merely blow up in infinite time.
In order to have a more reliable description of the bridge, in Section 4 we consider
the fourth order nonlinear ODE w′′′′ + kw′′ + f(w) = 0 (k ∈ R). We will see
that solutions to this equation blow up in finite time with self-excited oscillations
appearing suddenly, without any intermediate stage.

That linearization yields wrong models is also the opinion of McKenna [64, p.4]
who comments (3.8) by writing

This is the point at which the discussion of torsional oscillation
starts in the engineering literature.

He claims that the problem is in fact nonlinear and that (3.8) is obtained after
an incorrect linearisation. McKenna concludes by noticing that Even in recent
engineering literature . . . this same mistake is reproduced. The mistake claimed by
McKenna is that the equations are often linearized by taking sin θ = θ and cos θ =
1 also for large amplitude torsional oscillations θ. The corresponding equation
then becomes linear and the main torsional phenomenon disappears. Avoiding
this rude approximation, but considering the cables and hangers as linear springs
obeying LHL, McKenna reaches an uncoupled second order system for the functions
representing the vertical displacement y of the barycenter B of the cross section of
the roadway and the deflection from horizontal θ, see Figure 7. Here, 2` denotes
the width of the roadway whereas C1 and C2 denote the two lateral hangers which
have opposite extension behaviors.

Figure 7. Vertical and torsional displacements of the cross section
of the roadway

McKenna-Tuama [67] suggest a slightly different model. They write:
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. . . there should be some torsional forcing. Otherwise, there would
be no input of energy to overcome the natural damping of the sys-
tem . . . we expect the bridge to behave like a stiff spring, with a
restoring force that becomes somewhat superlinear.

McKenna-Tuama end up with the following coupled second order system

m`2

3
θ′′ = ` cos θ

(
f(y − ` sin θ)− f(y + ` sin θ)

)
,

my′′ = −
(
f(y − ` sin θ) + f(y + ` sin θ)

)
,

(3.9)

see again Figure 7. The delicate point is the choice of the superlinearity f which
[67] take first as f(s) = (s+ 1)+− 1 and then as f(s) = es− 1 in order to maintain
the asymptotically linear behavior as s → 0. Using (3.9), [64, 67] were able to
numerically replicate the phenomenon observed at the Tacoma Bridge, namely the
sudden transition from vertical oscillations to torsional oscillations. They found
that if the vertical motion was sufficiently large to induce brief slackening of the
hangers, then numerical results highlighted a rapid transition to a torsional motion.
By commenting the results in [64, 67], McKenna-Moore [66, p.460] write that

. . . the range of parameters over which the transition from verti-
cal to torsional motion was observed was physically unreasonable
. . . the restoring force due to the cables was oversimplified . . . it was
necessary to impose small torsional forcing.

In fact, McKenna-Tuama [67] numerically show that a purely vertical forcing in
(3.9) may create a torsional response. Therefore, (3.9) seems to be the first model
able to reproduce the behavior of the Tacoma Bridge but, perhaps, it may be
improved. First, one could allow the nonlinearity to appear before the possible
slackening of the hangers. Second, the restoring force and the parameters involved
should be chosen carefully.

Problem 3.3. Try a doubly superlinear term f in (3.9). For instance, take f(s) =
s+ εs3 with ε > 0 small, so that (3.9) becomes

m`2

3
θ′′ + 2`2 cos θ sin θ

(
1 + 3εy2 + ε`2 sin2 θ

)
= 0

my′′ + 2
(

1 + 3ε`2 sin2 θ
)
y + 2εy3 = 0 .

(3.10)

It appears challenging to determine some features of the solution (y, θ) to (3.10) and
also to perform numerical experiments to see what kind of oscillations are displayed
by the solutions.

System (3.9) is a 2× 2 system which should be considered as a nonlinear fourth
order model; therefore, it fulfills the necessary conditions of the general principle
(GP). Another fourth order differential equation was suggested in [57, 68, 69] as
a one-dimensional model for a suspension bridge, namely a beam of length L sus-
pended by hangers. When the hangers are stretched there is a restoring force which
is proportional to the amount of stretching, according to LHL. But when the beam
moves in the opposite direction, there is no restoring force exerted on it. Under
suitable boundary conditions, if u(x, t) denotes the vertical displacement of the
beam in the downward direction at position x and time t, the following nonlinear
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beam equation is derived

utt + uxxxx + γu+ = W (x, t) , x ∈ (0, L) , t > 0 , (3.11)

where u+ = max{u, 0}, γu+ represents the force due to the cables and hangers
which are considered as a linear spring with a one-sided restoring force, and W
represents the forcing term acting on the bridge, including its own weight per
unit length, the wind, the traffic loads, or other external sources. After some
normalisation, by seeking traveling waves u(x, t) = 1 + w(x − ct) to (3.11) and
putting k = c2 > 0, McKenna-Walter [69] reach the ODE

w′′′′(τ) + kw′′(τ) + f(w(τ)) = 0 (x− ct = τ ∈ R) (3.12)

where k ∈ (0, 2) and f(s) = (s + 1)+ − 1. Subsequently, in order to maintain
the same behavior but with a smooth nonlinearity, Chen-McKenna [21] suggest to
consider (3.12) with f(s) = es − 1. For later discussion, we notice that both these
nonlinearities satisfy

f ∈ Liploc(R) , f(s) s > 0 ∀s ∈ R \ {0}. (3.13)

Hence, when W ≡ 0, (3.11) is just a special case of the more general semilinear
fourth order wave equation

utt + uxxxx + f(u) = 0 , x ∈ (0, L) , t > 0 , (3.14)

where the natural assumptions on f are (3.13) plus further conditions, according
to the model considered. Traveling waves to (3.14) solve (3.12) with k = c2 being
the squared velocity of the wave. Recently, for f(s) = (s+ 1)+− 1 and its variants,
Benci-Fortunato [8] proved the existence of special solutions to (3.12) deduced by
solitons of the beam equation (3.14).

Problem 3.4. It could be interesting to insert into the wave-type equation (3.14)
the term corresponding to the beam elongation; that is,∫ L

0

(√
1 + ux(x, t)2 − 1

)
dx.

This would lead to a quasilinear equation such as

utt + uxxxx −
( ux√

1 + u2
x

)
x

+ f(u) = 0

with f satisfying (3.13). What can be said about this equation? Does it admit
oscillating solutions in a suitable sense? One should first consider the case of an
unbounded beam (x ∈ R) and then the case of a bounded beam (x ∈ (0, L))
complemented with some boundary conditions.

Motivated by the fact that it appears unnatural to ignore the motion of the
main sustaining cable, a slightly more sophisticated and complicated string-beam
model was suggested by Lazer-McKenna [58, Section 3.4]. They treat the cable as
a vibrating string, coupled with the vibrating beam of the roadway by piecewise
linear springs that have a given spring constant k if expanded, but no restoring
force if compressed. The sustaining cable is subject to some forcing term such as
the wind or the motions in the towers. This leads to the system

vtt − c1vxx + δ1vt − k1(u− v)+ = f(x, t) x ∈ (0, L) , t > 0 ,

utt + c2uxxxx + δ2ut + k2(u− v)+ = W0 x ∈ (0, L) , t > 0 ,
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where v is the displacement from equilibrium of the cable and u is the displacement
of the beam, both measured in the downwards direction. The constants c1 and c2
represent the relative strengths of the cables and roadway respectively, whereas k1

and k2 are the spring constants and satisfy k2 � k1. The two damping terms can
possibly be set to 0, while f and W0 are the forcing terms. We also refer to [2] for
a study of the same problem in a rigorous functional analytic setting.

In a series of recent papers, Bochicchio-Giorgi-Vuk [14, 15, 16, 17], generalized
the above model by taking into account the midplane stretching of the roadway
due to its elongation. They consider a beam identified with the interval (0, L) and
they end up with the nonlinear system

vtt − vxx + bvt − F (u− v, ut − vt) = f x ∈ (0, L) , t > 0 ,

utt + uxxxx + aut +
(
p−M(‖ux‖2L2(0,1))

)
uxx + F (u− v, ut − vt) = g

x ∈ (0, L) , t > 0 ,

where u is the downward deflection of the beam, v is the vertical displacement of
the sustaining cable, f and g are external forcing, a and b are damping constants, p
is the axial force acting at one end of the beam which is negative when the beam is
stretched and is positive when the beam is compressed; F (u− v, ut− vt) represents
the nonlinear response of the hangers connecting the beam with the cable and the
term M(‖ux‖2L2(0,1)) takes into account the geometric nonlinearity of the beam due
to its stretching.

Classical linear models viewing a suspension bridge as a beam connected to a
sustaining cable go back to Biot-von Kármán [11]. They are still used nowadays
by engineers for first qualitative information on the plans, see [99]. The above
nonlinear problems are by far more precise. However, if one wishes to view torsional
oscillations, the bridge cannot be considered as a one dimensional beam. In this
respect, Rocard [82, p.148] states

Conventional suspension bridges are fundamentally unstable in the
wind because the coupling effect introduced between bending and
torsion by the aerodynamic forces of the lift.

Hence, if some model wishes to display any possible instability of bridges, it should
necessarily take into account more degrees of freedom of the roadway. To be exhaus-
tive one should consider vertical oscillations y of the roadway, its torsional angle
θ, and coupling with the two sustaining cables u and v. This model was suggested
by Matas-Očenášek [63] who consider the hangers as linear springs and obtain a
system of four equations; three of them are second order wave-type equations, the
last one is again a fourth order equation such as

mytt + k yxxxx + δyt + E1(y − u− ` sin θ) + E2(y − v + ` sin θ) = W (x) + f(x, t) ;

we refer to [29, (SB4)] for an interpretation of the parameters involved.
In our opinion, any model which describes the bridge as a one dimensional beam

is too simplistic, unless the model takes somehow into account the possible appear-
ance of a torsional motion. In [43] it was suggested to maintain the one dimensional
model provided one also allows displacements below the equilibrium position and
these displacements replace the deflection from horizontal of the roadway of the
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bridge; in other words,
the unknown function w represents the upwards vertical displace-
ment when w > 0 and the deflection from horizontal, computed
in a suitable unity measure, when w < 0.

(3.15)

In this setting, instead of (3.11) one should consider the more general semilinear
fourth order wave equation (3.14) with f satisfying (3.13) plus further conditions
which make f(s) superlinear and unbounded when both s → ±∞; hence, LHL
is dropped by allowing f to be as close as one may wish to a linear function but
eventually superlinear for large displacements. The superlinearity assumption is
justified both by the observations in Section 2 and by the fact that more the position
of the bridge is far from the horizontal equilibrium position, more the action of
the wind becomes relevant because the wind hits transversally the roadway of the
bridge. If ever the bridge would reach the limit vertical position, in case the roadway
is torsionally rotated of a right angle, the wind would hit it orthogonally, that is,
with full power.

In this section we listed a number of attempts to model bridges mechanics by
means of differential equations. The sources for this list are very heterogeneous.
However, except for some possible small damping term, none of them contains odd
derivatives. Moreover, none of them is acknowledged by the scientific community
to perfectly describe the complex behavior of bridges. Some of them fail to satisfy
the requirements of (GP) and, in our opinion, must be accordingly modified. Some
others seem to better describe the oscillating behavior of bridges but still need some
improvements.

4. Blow up oscillating solutions to some fourth order differential
equations

If the trivial solution to some dynamical system is unstable one may hope to
magnify self-excitement phenomena through finite time blow up. In this section we
survey and discuss several results about solutions to (3.12) which blow up in finite
time. Let us rewrite the equation with a different time variable, namely

w′′′′(t) + kw′′(t) + f(w(t)) = 0 (t ∈ R) . (4.1)

We first recall the following results proved in [9].

Theorem 4.1. Let k ∈ R and assume that f satisfies (3.13).
(i) If a local solution w to (4.1) blows up at some finite R ∈ R, then

lim inf
t→R

w(t) = −∞ and lim sup
t→R

w(t) = +∞ . (4.2)

(ii) If f also satisfies

lim sup
s→+∞

f(s)
s

< +∞ or lim sup
s→−∞

f(s)
s

< +∞, (4.3)

then any local solution to (4.1) exists for all t ∈ R.

If both the conditions in (4.3) are satisfied then global existence follows from
classical theory of ODE’s; but (4.3) merely requires that f is “one-sided at most
linear” so that statement (ii) is far from being trivial and, as shown in [43], it does
not hold for equations of order at most 3. On the other hand, Theorem 4.1 (i)
states that, under the sole assumption (3.13), the only way that finite time blow



22 F. GAZZOLA EJDE-2013/211

up can occur is with “wide and thinning oscillations” of the solution w; again, in
[43] it was shown that this kind of blow up is a phenomenon typical of at least
fourth order problems such as (4.1) since it does not occur in related lower order
equations. Note that assumption (4.3) includes, in particular, the cases where f is
either concave or convex.

Theorem 4.1 does not guarantee that the blow up described by (4.2) indeed
occurs. For this reason, we assume further that

f ∈ Liploc(R) ∩ C2(R \ {0}) , f ′(s) ≥ 0 ∀s ∈ R , lim inf
s→±∞

|f ′′(s)| > 0 (4.4)

and the growth conditions: There exist p > q ≥ 1, α ≥ 0, 0 < ρ ≤ β such that

ρ|s|p+1 ≤ f(s)s ≤ α|s|q+1 + β|s|p+1 ∀s ∈ R . (4.5)

Notice that (4.4)-(4.5) strengthen (3.13). In [45] the following sufficient conditions
for the finite time blow up of local solutions to (4.1) has been proved.

Theorem 4.2. Let k ≤ 0, p > q ≥ 1, α ≥ 0, and assume that f satisfies (4.4) and
(4.5). Assume that w = w(t) is a local solution to (4.1) in a neighborhood of t = 0
which satisfies

w′(0)w′′(0)− w(0)w′′′(0)− kw(0)w′(0) > 0 . (4.6)
Then, w blows up in finite time for t > 0; that is, there exists R ∈ (0,+∞) such
that (4.2) holds.
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Figure 8. Solution to (4.1) for [w(0), w′(0), w′′(0), w′′′(0)] =
[1, 0, 0, 0], k = 3, f(s) = s + s3. The three intervals are t ∈ [0, 7],
t ∈ [7, 8], t ∈ [8, 8.16]

Unfortunately, the oscillations displayed by the solutions to (4.1) cannot be
prevented since they arise suddenly after a long time of apparent calm. In Figure 8,
we display the plot of a solution to (4.1). It can be observed that the solution has
oscillations with increasing amplitude and rapidly decreasing “nonlinear frequency”;
numerically, the blow up seems to occur at t = 8.164. Even more impressive appears
the plot in Figure 9.

Here the solution has “almost regular” oscillations between −1 and +1 for t ∈
[0, 80]. Then the amplitude of oscillations nearly doubles in the interval [80, 93]
and, suddenly, it violently amplifies after t = 96.5 until the blow up which seems to
occur only slightly later at t = 96.59. We also refer to [43, 44, 45] for further plots.

We also refer to [43, 45] for numerical results and plots of solutions to (4.1) with
nonlinearities f = f(s) having different growths as s → ±∞. In such case, the
solution still blows up according to (4.2) but, although its “limsup” and “liminf”
are respectively +∞ and −∞, the divergence occurs at different rates.

Traveling waves to (3.14) which propagate at some velocity c > 0, depending on
the elasticity of the material of the beam, solve (4.1) with k = c2 > 0. Further
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Figure 9. Solution to (4.1) for [w(0), w′(0), w′′(0), w′′′(0)] =
[0.9, 0, 0, 0], k = 3.6, f(s) = s + s3. The three intervals are
t ∈ [0, 80], t ∈ [80, 95], t ∈ [95, 96.55]

numerical results obtained in [43, 45] suggest that a statement similar to Theorem
4.2 also holds for k > 0 and, as expected, that the blow up time R is decreasing with
respect to the initial height w(0) and increasing with respect to k. Since k = c2

and c represents the velocity of the traveling wave, this means that the time of
blow up is an increasing function of k. In turn, since the velocity of the traveling
wave depends on the elasticity of the material used to construct the bridge (larger
c means less elastic), this tells us that more the bridge is stiff more it will survive
to exterior forces such as the wind and/or traffic loads.

Problem 4.3. Prove Theorem 4.2 when k > 0. This would allow to show that
traveling waves to (3.14) blow up in finite time. Numerical results in [43, 45] suggest
that a result similar to Theorem 4.2 also holds for k > 0.

Problem 4.4. Prove that the blow up time of solutions to (4.1) depends increas-
ingly with respect to k ∈ R. The interest of an analytical proof of this fact relies
on the important role played by k within the model.

Problem 4.5. The blow up time R of solutions to (4.1) may be related to the
expectation of life of the oscillating bridge. Provide an estimate of R in terms of f
and of the initial data.

Problem 4.6. Condition (4.5) is a superlinearity assumption which requires that
f is bounded both from above and below by the same power p > 1. Prove Theorem
4.2 for more general kinds of superlinear functions f .

Problem 4.7. Can assumption (4.6) be relaxed? Of course, it cannot be com-
pletely removed since the trivial solution w(t) ≡ 0 is globally defined, that is,
R = +∞. Numerical experiments in [43, 45] could not detect any nontrivial global
solution to (4.1). If we put an equality in (4.6) we obtain a 3D manifold in the phase
space R4 but since the stable manifold of {0} is a 2D manifold, see [9, Proposition
20], one has probability 0 to find a global solution even in this case.

Problem 4.8. Study (4.1) with a damping term: w′′′′(t) + kw′′(t) + δw′(t) +
f(w(t)) = 0 for some δ > 0. Study the competition between the damping term δw′

and the nonlinear self-exciting term f(w).

Note that Theorems 4.1 and 4.2 ensure that there exists an increasing sequence
{zj}j∈N such that:

(i) zj ↗ R as j →∞;
(ii) w(zj) = 0 and w has constant sign in (zj , zj+1) for all j ∈ N.
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It is also interesting to compare the rate of blow up of the displacement and of the
acceleration on these intervals. By slightly modifying the proof of [45, Theorem 3]
one can obtain the following result which holds for any k ∈ R.

Theorem 4.9. Let k ∈ R, p > q ≥ 1, α ≥ 0, and assume that f satisfies (4.4) and
(4.5). Assume that w = w(t) is a local solution to

w′′′′(t) + kw′′(t) + f(w(t)) = 0 (t ∈ R)

which blows up in finite time as t ↗ R < +∞. Denote by {zj} the increasing
sequence of zeros of w such that zj ↗ R as j → +∞. Then∫ zj+1

zj

w(t)2 dt�
∫ zj+1

zj

w′′(t)2 dt ,

∫ zj+1

zj

w′(t)2 dt�
∫ zj+1

zj

w′′(t)2 dt (4.7)

as j →∞. Here, g(j)� ψ(j) means that g(j)/ψ(j)→ 0 as j →∞.

The estimate (4.7), clearly due to the superlinear term, has a simple interpreta-
tion in terms of comparison between blowing up energies, see Section 5.1.

Remark 4.10. Equation (4.1) also arises in several different contexts, see the book
by Peletier-Troy [77] where one can find some other physical models, a survey of
existing results, and further references. Moreover, besides (3.14), (4.1) may also be
fruitfully used to study some other partial differential equations. For instance, one
can consider nonlinear elliptic equations such as

∆2u+ eu =
1
|x|4

in R4 \ {0} ,

∆2u+ |u|8/(n−4)u = 0 in Rn (n ≥ 5),

∆
(
|x|2∆u

)
+ |x|2|u|8/(n−2)u = 0 in Rn (n ≥ 3);

(4.8)

it is known (see, e.g. [42]) that the Green function for some fourth order elliptic
problems displays oscillations, differently from second order problems. Further-
more, one can also consider the semilinear parabolic equation

ut + ∆2u = |u|p−1u in Rn+1
+ , u(x, 0) = u0(x) in Rn

where p > 1+4/n and u0 satisfies suitable assumptions. It is shown in [38, 41] that
the linear biharmonic heat operator has an “eventual local positivity” property: for
positive initial data u0 the solution to the linear problem with no source is eventually
positive on compact subsets of Rn but negativity can appear at any time far away
from the origin. This phenomenon is due to the sign changing properties, with
infinite oscillations, of the biharmonic heat kernels. We also refer to [9, 45] for
some results about the above equations and for the explanation of how they can be
reduced to (4.1) and, hence, how they display self-excited oscillations.

Problem 4.11. For any q > 0 and parameters a, b, k ∈ R, c ≥ 0, study the equation

w′′′′(t) + aw′′′(t) + kw′′(t) + bw′(t) + cw(t) + |w(t)|qw(t) = 0 (t ∈ R) . (4.9)

Any reader who is familiar with the second order Sobolev space H2 recognises the
critical exponent in the first equation in (4.8). In view of Liouville-type results in
[27] when q ≤ 8/(n−4), it would be interesting to study the equation ∆2u+|u|qu = 0
with the same technique. The radial form of this equation may be written as (4.1)
only when q = 8/(n− 4) since for other values of q the transformation in [40] gives
rise to the appearance of first and third order derivatives as in (4.9): this motivates
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(4.9). The values of the parameters corresponding to the equation ∆2u+ |u|qu = 0
can be found in [40].

Figure 10. Beam subject to two-sided restoring springs

We now describe an ideal model obeying to (4.1). Consider an infinite beam fixed
at some point O and subject to the restoring forces of a large number of nonlinear
two-sided springs as in Figure 10. If the beam had finite length, it could model
the roadway of a suspension bridge and the springs would model the hangers. Let
u = u(x) denote the vertical displacement of the beam. Assume that, besides the
nonlinear restoring force g = g(u) due to the springs, there is a uniform downwards
load p(x) ≡ p > 0 acting on the beam, for instance, its weight per unit length.
Then, the same arguments which lead to (3.5) yield the semilinear equation

EIu′′′′(x)− Tu′′(x) = p− g(u(x)) (x ∈ R) .

This is the general equation of an infinite beam having flexural rigidity EI, constant
tension T ≥ 0, and subject to both a downwards load p (its weight) and to the
restoring action g = g(u) due to some elastic springs. Take, for instance, g(u) =
u+u3 and let up > 0 be the unique solution of g(up) = p. Put f(s) := g(s+up)−p
so that f satisfies (4.4)-(4.5). Put w(x) = u(x)− up; then w solves the equation

EIw′′′′(x)− Tw′′(x) + f(w(x)) = 0 (x ∈ R)

and Theorem 4.2 applies.
Our next target is to reproduce the self-excited oscillations found in Theorem

4.2 in the second order system

x′′ − f(y − x) + β(y + x) = 0 , y′′ − f(y − x) + δ(y + x) = 0 , (4.10)

where β, δ ∈ R and f is a superlinear function. This will facilitate a precise study
of the behavior of the solutions when the nonlinear part of f tends to vanish. To
(4.10) we associate the initial value problem

x(0) = x0 , x′(0) = x1 , y(0) = y0 , y′(0) = y1 . (4.11)

The following statement holds.

Theorem 4.12. Assume that β < δ ≤ −β (so that β < 0). Assume also that
f(s) = σs+ cs2 + ds3 with d > 0 and c2 ≤ 2dσ. Let (x0, y0, x1, y1) ∈ R4 satisfy

(3β − δ)x0y1 + (3δ − β)x1y0 > (β + δ)(x0x1 + y0y1) . (4.12)

If (x, y) is a local solution to (4.10)-(4.11) in a neighborhood of t = 0, then (x, y)
blows up in finite time for t > 0 with self-excited oscillations; that is, there exists
R ∈ (0,+∞) such that

lim inf
t→R

x(t) = lim inf
t→R

y(t) = −∞ and lim sup
t→R

x(t) = lim sup
t→R

y(t) = +∞ .
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Proof. After performing the change of variables

w := y − x , z := y + x , (4.13)

system (4.10) becomes

w′′ + (δ − β)z = 0 , z′′ − 2f(w) + (β + δ)z = 0 ,

which may be rewritten as a single fourth order equation

w′′′′(t) + (β + δ)w′′(t) + 2(δ − β)f(w(t)) = 0 . (4.14)

Assumption (4.12) reads

w′(0)w′′(0)− w(0)w′′′(0)− (β + δ)w(0)w′(0) > 0 .

Furthermore, in view of the above assumptions, f satisfies (4.4)-(4.5) with ρ = d/2,
p = 3, α = 2σ, q = 1, β = 3d. Whence, Theorem 4.2 states that w blows up in
finite time for t > 0 and that there exists R ∈ (0,+∞) such that

lim inf
t→R

w(t) = −∞ and lim sup
t→R

w(t) = +∞ . (4.15)

Next, we remark that (4.14) admits a first integral, namely

E(t) :=
β + δ

2
w′(t)2 + w′(t)w′′′(t) + 2(δ − β)F (w(t))− 1

2
w′′(t)2

=
β + δ

2
w′(t)2 + (β − δ)w′(t)z′(t) + 2(δ − β)F (w(t))− (β − δ)2

2
z(t)2 ≡ E ,

(4.16)
for some constant E. By (4.15) there exists an increasing sequence mj → R of local
maxima of w such that

z(mj) =
w′′(mj)
β − δ

≥ 0 , w′(mj) = 0 , w(mj)→ +∞ as j →∞ .

By plugging mj into the first integral (4.16) we obtain

E = E(mj) = 2(δ − β)F (w(mj))−
(β − δ)2

2
z(mj)2

which proves that z(mj) → +∞ as j → +∞. We may proceed similarly in order
to show that z(µj)→ −∞ on a sequence {µj} of local minima of w. Therefore, we
have

lim inf
t→R

z(t) = −∞ and lim sup
t→R

z(t) = +∞ .

Assume for contradiction that there exists K ∈ R such that x(t) ≤ K for all
t < R. Then, recalling (4.13), on the above sequence {mj} of local maxima for w,
we would have y(mj)−K ≥ y(mj)−x(mj) = w(mj)→ +∞ which is incompatible
with (4.16) since

2(δ − β)F (y(mj)− x(mj))−
(β − δ)2

2
(y(mj) + x(mj))2 ≡ E

and F has growth of order 4 with respect to its divergent argument. Similarly, by
arguing on the sequence {µj}, we rule out the possibility that there exists K ∈ R
such that x(t) ≥ K for ll t < R. Finally, by changing the role of x and y we find
that also y(t) is unbounded both from above and below as t→ R. This completes
the proof. �
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Remark 4.13. Numerical results in [45] suggest that the assumption δ ≤ −β is
not necessary to obtain (4.15). So, most probably, Theorem 4.12 and the results of
this section hold true also without this assumption. Assumption (4.12) is related
to (4.6) and is a kind of initial energy condition; it cannot be completely removed,
as explained in Problem 4.7.

A special case of function f satisfying the assumptions of Theorem 4.12 is fε(s) =
s + εs3 for any ε > 0. We wish to study the situation when the problem tends to
become linear; that is, when ε→ 0. Plugging such fε into (4.10) gives the system

x′′ + (β + 1)x+ (β − 1)y + ε(x− y)3 = 0

y′′ + (δ + 1)x+ (δ − 1)y + ε(x− y)3 = 0
(4.17)

so that the limit linear problem obtained for ε = 0 reads

x′′ + (β + 1)x+ (β − 1)y = 0

y′′ + (δ + 1)x+ (δ − 1)y = 0 .
(4.18)

The theory of linear systems tells us that the shape of the solutions to (4.18) depends
on the signs of the parameters

A = β + δ , B = 2(δ − β) , ∆ = (β + δ)2 + 8(β − δ) .

Under the same assumptions of Theorem 4.12, for (4.18) we have A ≤ 0 and B > 0
but the sign of ∆ is not known a priori and three different cases may occur.
• If ∆ < 0 (a case including also A = 0), then we have exponentials times

trigonometric functions so either we have self-excited oscillations which increase
amplitude as t → ∞ or we have damped oscillations which tend to vanish as
t → ∞. Consider the case δ = −β = 1 and (x0, y0, x1, y1) = (1, 0, 1,−1), then
(4.12) is fulfilled and Theorem 4.12 yields

Corollary 4.14. For any ε > 0 there exists Rε > 0 such that the solution (xε, yε)
to the Cauchy problem

x′′ − 2y + ε(x− y)3 = 0

y′′ + 2x+ ε(x− y)3 = 0

x(0) = 1, y(0) = 0, x′(0) = 1, y′(0) = −1

(4.19)

blows up as t→ Rε and satisfies

lim inf
t→Rε

xε(t) = lim inf
t→Rε

yε(t) = −∞, lim sup
t→Rε

xε(t) = lim sup
t→Rε

yε(t) = +∞ .Out[9]=
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Figure 11. The solution xε (black) and yε (green) to (4.19) for
ε = 0.1
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A natural conjecture, supported by numerical experiments, is that Rε → ∞ as
ε → 0. For several ε > 0, we plotted the solution to (4.19) and the pictures all
looked like Figure 11. When ε = 0.1 the blow up seems to occur at Rε = 4.041.
Notice that xε and yε “tend to become the same”, in the third picture they are
indistinguishable. After some time, when wide oscillations amplifies, xε and yε

move almost synchronously. When ε = 0, the solution to (4.19) is explicitly given
by x0(t) = et cos(t) and y0(t) = −et sin(t), thereby displaying oscillations blowing
up in infinite time similar to those visible for solutions to (3.8).

If we replace the Cauchy problem in (4.19) with

x(0) = 1, y(0) = 0, x′(0) = −1, y′(0) = 1

then (4.12) is not fulfilled. However, for any ε > 0 that we tested, the corresponding
numerical solutions looked like in Figure 11. In this case, the limit problem with
ε = 0 admits as solutions x0(t) = e−t cos(t) and y0(t) = e−t sin(t) which do exhibit
oscillations but, now, strongly damped.

Let us also consider the two remaining limit systems which, however, do not
display oscillations.

• If ∆ = 0, since A ≤ 0, there are no trigonometric functions in the limit case
(4.18).
• If ∆ > 0, then necessarily A < 0 since B > 0, and hence only exponential

functions are involved: the solution to (4.18) may blow up in infinite time
or vanish at infinity.

These remarks enable us to conclude that the linear case cannot be seen as a limit
situation of the nonlinear case since the behavior of the solution to (4.18) depends
on β, δ, and on the initial conditions, while nothing can be deduced from the
sequence of solutions (xε, yε) to problem (4.17) as ε→ 0 because these solutions all
behave similarly independently of β and δ. Furthermore, the solutions to the limit
problem (4.18) may or may not exhibit oscillations and if they do, these oscillations
may be both of increasing amplitude or of vanishing amplitude as t → +∞. All
this shows that linearisation may give misleading and unpredictable answers.

The above results also explain why we believe that (3.8) is not suitable to display
self-excited oscillations as the ones which appeared for the TNB. Since it has only
two degrees of freedom, it fails to consider both vertical and torsional oscillations
which, on the contrary, are visible in the McKenna-type system (4.10). We have
seen in Theorem 4.12 that destructive self-excited oscillations may blow up in finite
time, something very similar to what may be observed in [104]. Hence, (4.10) shows
more realistic self-excited oscillations than (3.8). Although the blow up occurs at
t = 4.04, the solution plotted in Figure 11 is relatively small until t = 3.98. This,
together with the behavior displayed in Figures 8 and 9, allows us to conclude
that in nonlinear systems, self-excited oscillations appear suddenly, without any
intermediate stage.

5. Affording an explanation in terms of energies

5.1. Energies involved. A precise description of all the energies involved in a
structure would lead to perfect models and would give all the information for correct
plans. Unfortunately, bridges, as well as many other structures, do not allow simple
characterizations of all the energies present in the structure and, maybe, not all
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possible existing energies have ever been detected. But let us make an attempt to
classify the different kinds of energy.

Let Ω be either a segment (beam model) or a thin rectangle (plate model). If
v(x, t) denotes the vertical displacement at x ∈ Ω and at t > 0, then the total
kinetic energy at time t is given by

m

2

∫
Ω

vt(x, t)2 dx

where m is the mass. This energy gives rise to the term mvtt in the corresponding
Euler-Lagrange equation, see Section 3.2.

Then one should consider potential energy, which is more complicated. In order
to avoid confusion, in the sequel we call potential energy only the energy due
to gravity which, in the case of a bridge, is computed in terms of the vertical
displacement v. From [13, pp.75-76], we quote

The potential energy is stored partly in the stiffening frame in the
form of elastic energy due to bending and partly in the cable in the
form of elastic stress-strain energy and in the form of an increased
gravity potential.

Hence, an important role is played by stored energy which is somehow hidden. Part
of the stored energy is potential energy but the largest part of the stored energy in
a bridge is its elastic energy.

The distinction between elastic and potential stored energies, which in our opin-
ion appears essential, is not highlighted with enough care in [13] nor in any subse-
quent treatise of suspension bridges. A further criticism about [13] is that it often
makes use of LHL, see [13, p.214]. Apart these two weak points, [13] makes a
quite careful quantitative analysis of the energies involved. In particular, concern-
ing the elastic energy, the contribution of each component of the bridge is taken
into account in [13]: the chords (p.145), the diagonals (p.146), the cables (p.147),
the towers (pp.164-168), as well as quantitative design factors (pp.98-103).

A detailed energy method is also introduced at p.74, as a practical tool to de-
termine the modes of vibrations and natural frequencies of suspension bridges:
the energies considered are expressed in terms of the amplitude of the oscillation
η = η(x) and therefore, they do not depend on time. As already mentioned, the
nonlocal term in (3.6) represents the increment of energy due to the external wind
during a period of time. Recalling that v(x, t) = η(x) sin(ωt), [13, p.28] represents
the net energy input per cycle by

A :=
w2

H2
w

EA

L

∫ L

0

η(z) dz − C
∫ L

0

η(z)2 dz (5.1)

where L is the length of the beam and C > 0 is a constant depending on the
frequency of oscillation and on the damping coefficient, so that the second term is
a quantum of energy being dissipated as heat: mechanical hysteresis, solid friction
damping, aerodynamic damping, etc. It is explained in Figure 13 in [13, p.33] that

the kinetic energy will continue to build up and therefore the am-
plitude will continue to increase until A = 0.

Hence, the larger is the input of energy
∫ L

0
η due to the wind, the larger needs to be

the displacement v before the kinetic energy will stop to build up. This is related
to [13, pp.241-242], where an attempt is made
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to approach by rational analysis the problem proper of self-excitation
of vibrations in truss-stiffened suspension bridges. . . . The theory
discloses the peculiar mechanism of catastrophic self-excitation in
such bridges.

The word “self-excitation” suggests behaviors similar to (4.2). As shown in [45],
the oscillating blow up of solutions described by (4.2) occurs in many fourth order
differential equations, including PDE’s, see also Remark 4.10, whereas it does not
occur in lower order equations as expected from (GP). But these oscillations, and
the energy generating them, are somehow hidden also in fourth order equations; let
us explain qualitatively what we mean by this. Engineers usually say that the wind
feeds into the structure an increment of energy (see [13, p.28]) and that the bridge
eats energy but we think it is more appropriate to say that the bridge ruminates
energy. That is, first the bridge stores the energy due to prolonged external sources.
Part of this stored energy is indeed dissipated (eaten) by the structural damping
of the bridge. From [13, p.211], we quote

Damping is dissipation of energy imparted to a vibrating structure
by an exciting force, whereby a portion of the external energy is
transformed into molecular energy.

Every bridge has its own damping capacity defined as the ratio between the energy
dissipated in one cycle of oscillation and the maximum energy of that cycle. The
damping capacity of a bridge depends on several components such as elastic hys-
teresis of the structural material and friction between different components of the
structure, see [13, p.212]. A second part of the stored energy becomes potential
energy if the bridge is above its equilibrium position. The remaining part of the
stored energy, namely the part exceeding the damping capacity plus the poten-
tial energy, is stored into inner elastic energy; only when this stored elastic energy
reaches a critical threshold (saturation), the bridge starts “ruminating” energy and
gives rise to torsional or more complicated oscillations.

When (4.2) occurs, the estimate (4.7) shows that |w′′(t)| blows up at a higher
rate when compared to |w(t)| and |w′(t)|. Although any student is able to see if a
function or its first derivative are large just by looking at the graph, most people are
unable to see if its second derivative is large. Roughly speaking, the term

∫
w′′(t)2

measures the elastic energy, the term
∫
w′(t)2 measures the kinetic energy, whereas∫

w(t)2 is a measure of the potential energy due to gravity. Hence, (4.7) states that
the elastic energy has a higher rate of blow up when compared to the kinetic and
potential energies. But since large |w′′(t)| cannot be easily detected, the bridge
may have large elastic energy, and hence large total energy, without revealing it;
so, there seems to be some “hidden” elastic energy. This interpretation well agrees
with the numerical results described in Section 4 which show that blow up in finite
time for (4.1) occurs after a long waiting time of apparent calm and sudden wide
oscillations.

A flavor of what we call hidden energy was already present in [13] where the en-
ergy storage capacity of a bridge is often discussed, see (p.34, p.104, p.160, p.164)
for the storage capacity of the different vibrating components of the bridge. More-
over, the displayed comment just before (3.9) shows that McKenna-Tuama [67] also
had the feeling that some energy could be hidden.
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5.2. Energy balance. As far as we are aware, the first attempt for a precise
quantitative energy balance in a beam representing a suspension bridge was made
in [87, Chapter VII]. Although all the computations are performed with precise
values of the constants, in our opinion the analysis there is not complete since it
does not distinguish between different kinds of potential energies; what is called
potential energy is just the energy stored in bending a differential length of the
beam.

A better attempt is made in [13, p.107] where the plot displays the behavior of
the stored energies: the potential energy due to gravity and the elastic energies of
the cables and of the stiffening frame. Moreover, the important notion of flutter
speed is first used therein. Rocard [82, p.185] attributes to Bleich [12]

to have pointed out the connection with the flutter speed of aircraft
wings . . . He distinguishes clearly between flutter and the effect of
the staggered vortices and expresses the opinion that two degrees of
freedom (bending and torsion) at least are necessary for oscillations
of this kind.

A further comment on [12] is given at [86, p.80]:

Bleich’s work . . . ultimately opened up a whole new field of study.
Wind tunnel tests on thin plates suggested that higher wind veloc-
ities increased the frequency of vertical oscillation while decreasing
that of torsional oscillation.

The conclusion is that if the two frequencies correspond, a flutter critical velocity
is reached, as manifested in a potentially catastrophic coupled oscillation. In order
to define the flutter speed, [13, pp.246-247] assumes that the bridge is subject to a
natural steady state oscillating motion; the flutter speed is then defined by:

With increasing wind speed the external force necessary to maintain
the motion at first increases and then decreases until a point is
reached where the air forces alone sustain a constant amplitude
of the oscillation. The corresponding velocity is called the critical
velocity or flutter speed.

The importance of the flutter speed is then described by

Below the critical velocity Vc an exciting force is necessary to main-
tain a steady-state motion; above the critical velocity the direc-
tion of the force must be reversed (damping force) to maintain the
steady-state motion. In absence of such a damping force the slight-
est increase of the velocity above Vc causes augmentation of the
amplitude.

This means that self-excited oscillations appear as soon as the flutter speed is
exceeded. Also Rocard devotes a large part of [82, Chapter VI] to

. . . predict and delimit the range of wind speeds that inevitably
produce and maintain vibrations of restricted amplitudes.

This task is reached by a careful study of the natural frequencies of the structure.
Moreover, Rocard aims to

. . . calculate the really critical speed of wind beyond which oscilla-
tory instability is bound to arise and will always cause fracture.
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The flutter speed Vc for a bridge without damping is computed on [82, p.163] and
reads

V 2
c =

2r2`2

2r2 + `2
ω2
T − ω2

B

α
(5.2)

where 2` denotes the width of the roadway, see Figure 7, r is the radius of gyration,
ωB and ωT are the lowest modes circular frequencies of the bridge in bending and
torsion respectively, α is the mass of air in a unit cube divided by the mass of
steel and concrete assembled within the same unit length of the bridge; usually,
r ≈ `/

√
2 and α ≈ 0.02. More complicated formulas for the flutter speed are

obtained in presence of damping factors. Moreover, Rocard [82, p.158] shows that,
for the original Tacoma Bridge, (5.2) yields Vc = 47mph while the bridge collapsed
under the action of a wind whose speed was V = 42mph; he concludes that his
computations are quite reliable.

In pedestrian bridges, the counterpart of the flutter speed is the critical number
of pedestrians, see the quoted sentence by Macdonald [61] in Section 2. For this
reason, we find it more suitable to deal with energies rather than with velocities:
the flutter speed Vc corresponds to a critical energy threshold E above which the
bridge displays self-excited oscillations. We believe that

the wind in suspension bridges and pedestrians on footbridges in-
sert elastic energy in the structure; if the wind reaches the flutter
speed or the pedestrians reach the critical number, the correspond-
ing amount of energy is the critical energy threshold and is the
threshold where the nonlinear behavior of the bridge manifests, due
to sufficiently large displacements of the roadway from equilibrium.

We believe that when the total energy within the structure reaches the threshold E
an impulse transfers part of the energy of the vertical oscillations to the energy of
a torsional oscillation. The threshold E is a structural parameter depending only
on the elasticity of the bridge, namely on the materials used for its construction.
We refer to Section 5.4 for an attempt to characterize E and a possible way to
determine it.

Remark 5.1. With some numerical results at hand, Lazer-McKenna [58, p.565]
attempt to explain the Tacoma collapse with the following comment:

An impact, due to either an unusual strong gust of wind, or to
a minor structural failure, provided sufficient energy to send the
bridge from one-dimensional to torsional orbits.

We believe that what they call an unusual impact is, in fact, an impulse for the
transition from vertical to torsional modes.

5.3. Oscillating modes in suspension bridges: seeking the correct bound-
ary conditions. Smith-Vincent [87, Section I.2] analyse the different forms of
motion of a suspension bridge and write

The natural modes of vibration of a suspension bridge can be clas-
sified as vertical and torsional. In pure vertical modes all points
on a given cross section move vertically the same amount and in
phase. . . The amount of this vertical motion varies along the longi-
tudinal axis of the bridge as a modified sine curve.

Then, concerning torsional motions, they write
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In pure torsional modes each cross section rotates about an axis
which is parallel to the longitudinal axis of the bridge and is in the
same vertical plane as the centerline of the roadway. Corresponding
points on opposite sides of the centerline of the roadway move equal
distances but in opposite directions.

Moreover, Smith-Vincent also analyse small oscillations:

For small torsional amplitudes the movement of any point is essen-
tially vertical, and the wave form or variation of amplitude along
a line parallel to the longitudinal centerline of the bridge . . . is the
same as for a corresponding pure vertical mode.

With these remarks at hand, in this section we try to set up a reliable eigenvalue
problem. We consider the roadway bridge as a long narrow rectangular thin plate,
simply supported on its short sides. So, let Ω = (0, L) × (−`, `) ⊂ R2 where L is
the length of the bridge and 2` is its width; a realistic assumption is that 2`� L.

As already mentioned in Section 3.1, the choice of the boundary conditions is
delicate since it depends on the physical model considered. We first recall that the
boundary conditions u = ∆u = 0 are the so-called Navier boundary conditions.
On flat parts of the boundary where no curvature is present, they describe simply
supported plates, see e.g. [42]. When x1 is fixed, either x1 = 0 or x1 = L, these
conditions reduce to u = ux1x1 = 0. And precisely on these two sides, the roadway
Ω is assumed to be simply supported; this is assumed in any of the models we met.
The delicate point is the determination of the boundary conditions on the other
sides.

To get into the problem, we start by dealing with the linear Kirchhoff-Love
theory described in Section 3.1. In view of (3.2), the elastic energy of the vertical
deformation u of the rectangular plate Ω subject to a load f = f(x1, x2) is given
by

E(u) =
∫

Ω

(1
2

(∆u)2 + (σ − 1) det(D2u)− f u
)
dx1 dx2 (5.3)

and yields the Euler-Lagrange equation ∆2u = f in Ω. For a fully simply supported
plate, that is u = ux1x1 = 0 on the vertical sides and u = ux2x2 = 0 on the horizontal
sides, this problem has been solved by Navier [74] in 1823, see also [62, Section 2.1].
Since the bridge is not a fully simply supported plate, different boundary conditions
should be considered on the horizontal sides. The load problem on the rectangle
Ω with only the vertical sides being simply supported was considered by Lévy
[59], Zanaboni [100], and Nadai [72], see also [62, Section 2.2] for the analysis of
different kinds of boundary conditions on the remaining two sides x2 = ±`. Let us
also mention the more recent monograph [93, Chapter 3] for a clear description of
bending of rectangular plates.

It appears natural to consider the horizontal sides to be free. If no physical
constraint is present on the horizontal sides, then the boundary conditions there
become (see e.g. [93, (2.40)])

ux2x2(x1,±`) + σux1x1(x1,±`) = 0 ,

ux2x2x2(x1,±`) + (2− σ)ux1x1x2(x1,±`) = 0 , x1 ∈ (0, L) .
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We are so led to consider the eigenvalue problem

∆2u = λu x = (x1, x2) ∈ Ω ,

u(x1, x2) = ux1x1(x1, x2) = 0 x ∈ {0, L} × (−`, `) ,
ux2x2(x1, x2) + σux1x1(x1, x2) = 0 x ∈ (0, L)× {−`, `} ,

ux2x2x2(x1, x2) + (2− σ)ux1x1x2(x1, x2) = 0 x ∈ (0, L)× {−`, `} .

(5.4)

The oscillating modes of Ω are the eigenfunctions to (5.4). By separating variables,
one sees that the eigenfunctions have the form

ψm(x2) sin
(mπ
L
x1

)
(m ∈ N \ {0}) (5.5)

for some ψm ∈ C4(−`, `) satisfying a suitable linear fourth order ODE, see [37].

Problem 5.2. Determine all the eigenvalues and eigenfunctions to (5.4). Which
subspace of H2(Ω) is spanned by these eigenfunctions?

Then one should investigate the equilibrium of the corresponding loaded plate.

Problem 5.3. For any f ∈ L2(Ω) study existence and uniqueness of a function u ∈
H4(Ω) satisfying ∆2u = f in Ω and (5.4)2-(5.4)3-(5.4)4. Try first some particular
forms of f as in [62, Sections 2.2, 2.2.2] and then general f = f(x1, x2).

5.4. Seeking the critical energy threshold. The title of this section should not
deceive. We will not give a precise method how to determine the energy threshold
which gives rise to torsional oscillations in a plate. We do have an idea how to
proceed but several steps are necessary before reaching the final goal.

Consider the plate Ω = (0, L) × (−`, `) and the incomplete eigenvalue problem
with missing conditions on the sides x2 = ±`:

∆2u = λu x ∈ Ω ,

u(x1, x2) = ux1x1(x1, x2) = 0 (x1, x2) ∈ {0, L} × (−`, `) .
(5.6)

We consider first the simple case where the plate is square, Ω = (0, π) × (−π2 ,
π
2 ),

and we complete (5.6) with the “simplest” boundary conditions, namely the Navier
boundary conditions which represent a fully simply supported plate. As already
mentioned the square is not a reasonable shape and these are certainly not the
correct boundary conditions for a bridge, but they are quite helpful to describe the
method we are going to suggest. So, consider the problem

∆2u = λu x ∈ Ω ,

u(x1, x2) = ux1x1(x1, x2) = 0 (x1, x2) ∈ {0, π} × (−π
2
,
π

2
) ,

u(x1, x2) = ux2x2(x1, x2) = 0 (x1, x2) ∈ (0, π)× {−π
2
,
π

2
} .

(5.7)

It is readily seen that, for instance, λ = 625 is an eigenvalue for (5.7) and that there
are 4 linearly independent corresponding eigenfunctions

{sin(24x1) cos(7x2), sin(20x1) cos(15x2), sin(15x1) cos(20x2), sin(7x1) cos(24x2)} .
(5.8)

It is well-known that similar facts hold for the second order eigenvalue problem
−∆u = λu in the square, so what we are discussing is not surprising. What we
want to emphasise here is that, associated to the same eigenvalue λ = 625, we have
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4 different kinds of vibrations in the x1-direction and each one of these vibrations
has its own counterpart in the x2-direction corresponding to torsional oscillations.

Consider now a general plate Ω = (0, L)× (−`, `) and let f ∈ L2(Ω); in view of
[62, Section 2.2], we expect the solution to the problem

∆2u = f x ∈ Ω ,

u(x1, x2) = ux1x1(x1, x2) = 0 (x1, x2) ∈ {0, π} × (−π
2
,
π

2
) ,

other boundary conditions (x1, x2) ∈ (0, π)× {−π
2
,
π

2
} ,

(5.9)

to be of the kind

u(x1, x2) =
∞∑
m=1

ψm(x2) sin
(mπ
L
x1

)
(x1, x2) ∈ Ω

for some functions ψm depending on the Fourier coefficients of f . Since we have in
mind small `, we can formally expand ψm in Taylor polynomials and obtain

ψm(x2) = ψm(0) + ψ′m(0)x2 + o(x2) as x2 → 0 .

Hence, u may approximately be written as

u(x1, x2) ≈
∞∑
m=1

[am + bmx2] sin
(mπ
L
x1

)
(x1, x2) ∈ Ω

where am = ψm(0) and bm = ψ′m(0). If instead of a stationary problem such
as (5.9), u = u(x1, x2, t) satisfies an evolution problem with the same boundary
conditions, then also its coefficients depend on time:

u(x1, x2, t) ≈
∞∑
m=1

(
am(t) + bm(t)x2

)
sin
(mπ
L
x1

)
(x1, x2) ∈ Ω , t > 0 . (5.10)

We now attempt a qualitative description of what we believe to happen in the
combination of vertical and torsional oscillations. We call “small” any quantity
which is less than unity and “almost zero” (in symbols ∼= 0) any quantity which
has a smaller order of magnitude when compared with small quantities. Moreover,
in order to avoid delicate sign arguments, we will often refer to a2

m and b2m instead of
am and bm. Different situations occur according to the instantaneous total energy
E = E(t) of the bridge.
• Small energy. As long as E(t) is small one may not even see the oscillations,

but if somebody stands on the bridge he might be able to feel oscillations. For
instance, standing on the sidewalk of a bridge, one can feel the oscillations created
by a car going through the roadway but the oscillations will not be visible to
somebody watching the roadway from a point outside the bridge. For small energies
E(t) only small oscillations appear and the corresponding solution (5.10) has small
coefficients am(t) while bm(t) ∼= 0. More precisely,

∀ε > 0 ∃δ > 0 such that E(t) < δ =⇒ am(t)2 < ε ∀m,

∃γ > 0 such that E(t) < γ =⇒ bm(t) ∼= 0 ∀m.
(5.11)

The reason of the second of (5.11) is that even small variations of the bm’s corre-
spond to a large variation of the total energy E because the huge masses of the cross
sections would rotate along the large length L of the roadway. On the other hand,
the first of (5.11) may be strengthened by assuming that also some of the am’s are
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almost zero for small E ; in particular, we expect that this happens for large m since
these coefficients correspond to higher eigenvalues: for all m ∈ N \ {0}, there exists
Em > 0 such that

E(t) < Em =⇒ am(t) ∼= 0 ∀m > m. (5.12)
To better understand this point, let us compute the elongation Γm due to the m-th
mode:

Γm(t) :=
∫ L

0

(√
1 +

m2π2

L2
am(t)2 cos2

(mπ
L
x1

)
− 1
)
dx1 ; (5.13)

this is part of the stretching energy, that is, the difference between the length of
the roadway deformed by one single mode and the length of the roadway at rest.
Due to the coefficient m2π2

L2 , it is clear that if a2
m ≡ a2

m+1 then Γm(t) < Γm+1(t).
This is the reason why (5.12) holds.
• Increasing energy. According to (5.12), as long as E(t) < Em one has

am(t) ∼= 0 for all m > m. If E(t) increases but remains smaller than Em, then
the coefficients am(t)2 for m = 1, . . . ,m also increase. But they do not increase
to infinity, when the total energy E(t) reaches the threshold Em the superlinear
elastic response of the bridge forces the solution (5.10) to add one mode, so that
am+1(t) 6∼= 0. Hence, the number of modes 6∼= 0 is a nondecreasing function of E .
• Critical energy threshold. What is described above is purely theoretical,

but the bridge has several physical constraints. Of course, it cannot be stretched
to infinity, it will break down earlier. In particular, the number of active modes
cannot increase to infinity. The elastic properties of the bridge determine a critical
(maximal) number of possible active modes, say µ. If the energy is distributed on
the µ coefficients a1,. . . ,aµ, and if it increases up to Eµ, once again the superlinear
elastic response of the bridge forces the solution (5.10) to change mode, but this
time from the am to the bm; due to (5.13), further stretching of the roadway would
require more energy than switching oscillations on torsional modes. And which
torsional modes will be activated depends on which coupled modes have the same
eigenvalue; as an example, consider (5.8) which, roughly speaking, says that the
motion may change from 24 to 7 oscillations in the x1-direction with a consequent
change of oscillation also in the x2-direction.
• Summarizing. Let u in (5.10) describe the vertical displacement of the road-

way. The bridge has several characteristic values which depend on its elastic struc-
ture.

• An integer number µ ∈ N such that am(t) ∼= 0 and bm(t) ∼= 0 for all m > µ,
independently of the value of E(t).

• µ different “intermediate energy thresholds” E1, . . . , Eµ, one for each ver-
tical mode.

• The critical energy threshold E = Eµ.
Assume that E(0) = 0, in which case u(x1, x2, 0) = 0, and that t 7→ E(t) is in-
creasing. As long as E(t) ≤ E1 we have am ∼= 0 for all m ≥ 2 and bm ∼= 0 for
all m ≥ 1; moreover, t 7→ a1(t)2 is increasing. When E(t) reaches and exceeds
E1 there is a first switch: the function a2

2 starts being positive while, as long as
E(t) ≤ E2, we still have am ∼= 0 for all m ≥ 3 and bm ∼= 0 for all m ≥ 1. And so
on, until E(t) = Eµ = E. At this point, the energy forces the solution to have a
nonzero coefficient b1 rather than a nonzero coefficient aµ+1. The impulse forces u
to lower the number of modes for which am 6∼= 0. For instance, the observation by
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Farquharson (The motion, which a moment before had involved nine or ten waves,
had shifted to two) quoted in Section 2 shows that, for the Tacoma Bridge, there
was a change such as(

am ∼= 0 ∀m ≥ 11, bm ∼= 0 ∀m ≥ 1
)
−→

(
am ∼= 0 ∀m ≥ 3, bm ∼= 0 ∀m ≥ 2

)
.

(5.14)
To complete the material in this section, two major problems are still to be

solved.

• Find the correct boundary conditions on x2 = ±`, are these as in (5.4)?
• Find at which energy levels the “transfer of energy between modes” occurs.

5.5. A new mathematical model for suspension bridges. We suggest here a
new initial-boundary value problem to model oscillations in suspension bridges; it
involves dynamic nonlocal boundary conditions and, although it does not enter in
any classical scheme, we feel that it might be a good starting point for propaedeu-
tical discussions to deeper studies. We expect its solution (if any) to display both
self-excited oscillations and instantaneous switch between vertical and torsional
oscillations. The critical energy threshold (related to the flutter speed) appears
explicitly in the model. Dynamic boundary conditions appear necessary due to the
fact that the impact with the wind often occurs at the free edges of the rectangle
modeling the roadway; moreover, in oscillating pedestrian bridges these free bound-
aries have shown to be quite flexible and appear to be the good place where to put
dampers, as at the London Millennium Bridge. Let us underline that, at present
time, the model suggested in this section should just be seen as a tentative idea
in order to change the point of view on suspension bridges. We expect to receive
criticisms and suggestions on how to improve it.

Let Ω = (0, L)× (−`, `) ⊂ R2, where L is the length of the bridge and 2` is the
width of the roadway, and consider the initial-boundary value problem

utt + ∆2u+ δut + f(u) = ϕ(x, t) x = (x1, x2) ∈ Ω, t > 0,

u(x1, x2, t) = ux1x1(x1, x2, t) = 0 x ∈ {0, L} × (−`, `), t > 0,

ux2x2(x1, x2, t) = 0 x ∈ (0, L)× {−`, `}, t > 0,

ux2(x1,−`, t) = ux2(x1, `, t) x1 ∈ (0, L), t > 0,

ut(x1,−`, t) + u(x1,−`, t) = E(t) [ut(x1, `, t) + u(x1, `, t)] x1 ∈ (0, L), t > 0,

u(x, 0) = u0(x) x ∈ Ω,

ut(x, 0) = u1(x) x ∈ Ω.
(5.15)

Here, u = u(x, t) represents the vertical displacement of the plate, u0(x) is its
initial position while u1(x) is its initial vertical velocity. Before discussing the
other terms and conditions, let us remark that smooth solutions may exist only if
the following compatibility conditions for initial data are satisfied:

u0(x) = (u0)x1x1(x) = 0 x ∈ {0, L} × (−`, `),
(u0)x2x2(x) = 0 x ∈ (0, L)× {−`, `},

(u0)x2(x1,−`) = (u0)x2(x1, `) x1 ∈ (0, L),

u1(x1,−`) + u0(x1,−`) = E(0) [u1(x1, `) + u0(x1, `)] x1 ∈ (0, L) .

(5.16)
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The function ϕ represents an external source, such as the wind, which inserts an
energy E(t) into the structure: we define

E(t) =
∫

Ω

ϕ(x, t)2 dx . (5.17)

The function E in (5.15)5 is then defined by

E(t) =

{
1 if E(t) ≤ Eδ
−1 if E(t) > Eδ

(5.18)

where Eδ > 0 is given and represents the critical energy threshold described in
Section 5.2. It depends increasingly on the damping parameter δ: for instance,
Eδ = E0 + cδ for some c > 0 and E0 > 0 being the threshold of the undamped
problem. When E(t) ≤ Eδ the motion tends to become of pure vertical-type, that
is, with ux2

∼= 0: to see this, note that in this case (5.15)5 may be written as

d

dt

{
[u(x1, `, t)− u(x1,−`, t)]et

}
= 0 ∀x1 ∈ (0, L) .

Whence, as long as E(t) ≤ Eδ, the map t 7→ |u(x1, `, t) − u(x1,−`, t)| decreases
so that the opposite endpoints of any cross section tend to have the same vertical
displacement and to move synchronously as in a pure vertical oscillation. When
E(t) > Eδ condition (5.15)5 may be written as

d

dt

{
[u(x1, `, t) + u(x1,−`, t)]et

}
= 0 ∀x1 ∈ (0, L) .

Whence, as long as E(t) > Eδ, the map t 7→ |u(x1, `, t) + u(x1,−`, t)| decreases
so that the opposite endpoints of any cross section tend to have zero average and
to move asynchronously as in a pure torsional oscillation; that is, u(x1, 0, t) ∼=
1
2 [u(x1, `, t) + u(x1,−`, t)] ∼= 0. In (5.15) the jump of E(t) from/to ±1 occurs
simultaneously and instantaneously along all the points located on the free sides of
the plate, in agreement with what has been observed at the Tacoma Bridge, see [4]
and also [86, pp.50-51].

The differential operator in (5.15) is derived according to the linear Kirchhoff-
Love model for a thin plate and, as already mentioned in Section 3.1, we follow here
a compromise and consider a semilinear problem. The function f should vanish at
0 and should be superlinear. For instance, f(u) = u + εu3 with ε > 0 small could
be a possible choice; alternatively, one could take f(u) = a(ebu − 1) as in [67] for
some a, b > 0. In the first case the hangers are sought as ideal springs and gravity
is somehow neglected, in the second case more relevance is given to gravity and to
the possibility of slackening hangers.

Conditions (5.15)3 and (5.15)4 describe the tendency of a cross section of the
bridge to remain straight: since ` � L, this appears a quite natural assumption.
Finally, δut is a damping term representing the positive structural damping of the
structure, including internal frictions; its role is to higher the threshold Eδ and to
weaken the effect of the nonlinear term f(u), see Problem 5.6.

As far as we are aware, there is no standard theory for problems like (5.15). It
is a nonlocal problem since it links behaviors on different parts of the boundary
and involves the function E(t) in (5.18). It also has dynamic boundary conditions
which are usually delicate to handle. We hope it to be the starting point for future
fruitful discussions.



EJDE-2013/211 NONLINEARITY IN OSCILLATING BRIDGES 39

Problem 5.4. Prove that if ϕ(x, t) ≡ 0 then (5.15) only admits the trivial solution
u ≡ 0. The usual trick of multiplying the equation in (5.15) by u or ut and
integrating over Ω does not allow to get rid of all the boundary terms. Note that,
in this case, E(t) ≡ 1. As a first attempt, one could try the linear case f(u) = u.

Problem 5.5. Study existence and uniqueness results for (5.15); prove continuous
dependence results with respect to the data ϕ, u0, u1. Of course, the delicate
conditions to deal with are (5.15)4 and (5.15)5. If problem (5.15) were ill-posed,
how can we modify these conditions in order to have a well-posed problem?

In this respect, let us emphasize that the equation modeling suspension bridges
suggested in [68] is ill-posed, displaying multiple solutions both of small amplitude
(close to equilibrium) and large. Uniqueness was subsequently obtained by adding
suitable damping terms, see [10].

Problem 5.6. Study (5.15) with no damping, that is, δ = 0: does the solution
u display oscillations such as (4.2) when t tends to some finite blow up instant?
Then study the competition between the damping term δut and the self-exciting
term f(u): for a given f is it true that if δ is sufficiently large then the solution u
is global in time? We believe that the answer is negative and that the only effect
of the damping term is to delay the blow up time.

Problem 5.7. Determine the regularity of the solutions u to (5.15) and study both
the roles of the discontinuity of E(t) and of the compatibility conditions (5.16).

Problem 5.8. Consider the case “with memory” where (5.17) is replaced by

E(t) =
∫ t

t−σ

∫
Ω

ϕ(x, τ)2 dx dτ for some σ > 0 ,

which would model a situation where if the wind blows for too long then at some
critical time, instantaneously, a torsional motion appears. Note that the problem
with (5.17) is much simpler because it is local in time.

In (5.15) we have neglected the stretching elastic energy which is small in plates
where parts of the boundary are not fixed. If one wishes to make some corrections,
one should add a further nonlinear term g(∇u,D2u) and the equation would become
quasilinear.

Problem 5.9. Insert into the equation (5.15) the stretching energy, something like

g(∇u,D2u) = −
( ux1√

1 + u2
x1

)
x1

− γ
( ux1√

1 + u2
x1

)
x2

with γ > 0 small. Then prove existence, uniqueness and continuous dependence
results.

An important tool to study (5.15) would be the eigenvalues and eigenfunctions of
the corresponding stationary problem. In view of the dynamic boundary conditions
(5.15)5, a slightly simpler model could be considered, see (5.4) and subsequent
discussion in Section 5.3.

6. Conclusions and future perspectives

In this article we observed phenomena displayed by real structures, we discussed
models, and we recalled some theoretical results. We have emphasized the necessity
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of models fulfilling the requirements of (GP) since, otherwise, the solution will not
display the phenomena visible in actual bridges. We also suggested to analyze
oscillations in suspension bridges in terms of the energies involved; in particular,
we suggested that torsional oscillations may appear whenever the internal energy
becomes larger that a certain critical threshold. In this section we take advantage
from all this work and we reach several conclusions.

6.1. A possible explanation of the Tacoma collapse. Here, we put together
all our beliefs and we afford an explanation of the Tacoma collapse.

On November 7, 1940, for some time before 10:00 AM, the bridge was oscillating
as it did many other times before. The wind was apparently more violent than
usual and, moreover, it continued for a long time. The oscillations of the bridge
were similar to those displayed in the interval (0, 80) of the plot in Figure 9. Since
the energy involved was quite large, also the vertical oscillations were quite large.
The roadway was far from its equilibrium position and, consequently, the restoring
force due to the sustaining cables and to the hangers did not obey LHL. The
oscillations were governed by a fairly complicated differential equation of the kind
of (5.15). As the wind was keeping on blowing stronger than the internal damping
effect, the total energy E in the bridge was increasing; after some time, it became
larger than the critical energy threshold E of the bridge. The Tacoma Bridge had
11 different intermediate energy thresholds and therefore E = E11. As soon as
E > E, the function E(t) in (5.18) switched from +1 to −1, a torsional elastic
energy appeared and gave rise, almost instantaneously, to a torsional motion. As
described in (5.14), the energy switched to the first torsional mode b1 rather than to
a further vertical mode a11; so, an impulse forced u to lower the number of modes
for which am 6∼= 0 and the motion, which a moment before had involved nine or
ten waves, shifted to two. At that moment, the graph of the function w = w(t),
describing the bridge according to (3.15), reached time t = 95 in the plot in Figure
9. Oscillations immediately went out of control and after some more oscillations
the bridge collapsed.

This explanation is consistent with all the material developed in the present
paper. One should compare this description with the original one from the Report
[4], see also [32, pp.26-29] and [86, Chapter 4].

6.2. What about future bridges? Equation (4.1) is a simple prototype equation
for the description of self-excited oscillations. None of the previously existing math-
ematical models ever displayed this phenomenon which is also visible in oscillating
bridges. The reason is not that the behavior of the bridge is too complicated to be
described by a differential equation but mainly because they fail to satisfy (GP).
In order to avoid bad surprises as in the past, many projects nowadays include
stiffening trusses or strong dampers. This has the great advantage to maintain the
bridge much closer to its equilibrium position and to justify LHL. But this also
has disadvantages, see [53]. First of all, they create an artificial stiffness which can
give rise to the appearances of cracks in the more elastic structure of the bridge.
Second, damping effects and stiffening trusses significantly increase the weight and
the cost of the whole structure. Moreover, in extreme conditions, they may become
useless: under huge external solicitations the bridge would again be too far from
its equilibrium position and would again violate LHL. So, hopefully, one should
find alternative solutions, see again [53].
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One can act both on the structure and on the model. In order to increase the
flutter speed, some suggestions on how to modify the design were made by Rocard
[82, pp.169-173]: he suggests how to modify the components of the bridge in order
to raise the right hand side of (5.2). More recently, some attempts to improve
bridges performances can be found in [48] where, in particular, a careful analysis of
the role played by the hangers is made. But much work has still to be done; from
[48, p.1624], we quote

Research on the robustness of suspension bridges is at the very
beginning.

From a theoretical point of view, one should first determine a suitable equation
satisfying (GP). Our own suggestion is to consider (5.15) or some variants of it,
where one should choose a reliable nonlinearity f and add coefficients to the other
terms, according to the expected structural features of the bridge: its length, its
width, its weight, the materials used for the construction, the expected external so-
licitations, the structural damping . . . Since we believe that the solution to this kind
of equation may display blow up, which means a strong instability, a crucial role is
played by all the constants which appear in the equation: a careful measurement of
these parameters is necessary. Moreover, a sensitivity analysis for the continuous
dependence of the solution on the parameters should be performed. One should
try to estimate, at least numerically, the critical energy threshold and the possible
blow up time.

In a “perfect model” for a suspension bridge, one should also take into account
the role of the sustaining cables and of the towers. Each cable links all the hangers
on the same side of the bridge, its shape is a catenary of given length and the
hangers cannot all elongate at the same time. The towers link the two cables and,
in turn, all the hangers on both sides of the roadway. In this paper we have not
introduced these components but, in the next future, we will do so.

An analysis of the more flexible parts of the roadway should also be performed;
basically, this consists in measuring the “instantaneous local energy” defined by

E(u(t), ω) =
∫
ω

[( |∆u(t)|2

2
+(σ−1) det(D2u(t))

)
+
ut(t)2

2
+F (u(t))

]
dx1 dx2 (6.1)

for solutions u = u(t) to (5.15), for any t ∈ (0, T ), and for any subregion ω ⊂ Ω
of given area. In (6.1) we recognize the first term to be as in the Kirchhoff-Love
model, see (3.2); moreover, F (s) =

∫ s
0
f(σ)dσ.

Problem 6.1. Let Ω = (0, L) × (−`, `), consider problem (5.15) and let u = u(t)
denote its solution provided it exists and is unique, see Problem 5.5. For given
lengths a < L and b < 2` consider the set < of rectangles entirely contained in Ω
and whose sides have lengths a (horizontal) and b (vertical). Let E be as in (6.1)
and consider the maximisation problem

max
ω∈<

E(u(t), ω) .

Using standard tools from calculus of variations, prove that there exists an optimal
rectangle and study its dependence on t ∈ (0, T ); the natural conjecture is that, at
least as t→ T , it is the “middle rectangle” (L−a2 , L+a

2 )× (− b
2 ,

b
2 ). Then one should

find out if there exists some optimal ratio a/b. Finally, it would be extremely useful
to find the dependence of the energy E(u(t), ω) on the measure ab of the rectangle
ω; this would allow to minimize costs for reinforcing the plate. We do not expect
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analytical tools to be able to locate optimal rectangles nor to give exact answers to
the above problems so that a good numerical procedure could be of great help.

In [87, Chapter IV] an attempt to estimate the impact of stiffening trusses is
made, although only one kind of truss design is considered. In order to determine
the best way to display the truss, one should solve the following simplified problems
from calculus of variations. A first step is to consider the linear model.

Problem 6.2. Assume that the rectangular plate Ω = (0, L) × (−`, `) is simply
supported on all its sides and that it is submitted to a constant load f ≡ 1. In the
linear theory by Kirchhoff-Love model, see (5.3), its elastic energy is given by

E0(Ω) = − min
u∈H2∩H1

0 (Ω)

∫
Ω

(1
2

(∆u)2 + (σ − 1) det(D2u)− u
)
dx1 dx2 .

Here, H2 ∩ H1
0 (Ω) denotes the usual Hilbertian Sobolev space which, since we

are in the plane, is embedded into C0,α(Ω). The unique minimiser u solves the
corresponding Euler-Lagrange equation which reads

∆2u = 1 in Ω , u = ∆u = 0 on ∂Ω

and which may be reduced to a system involving the torsional rigidity of Ω:

−∆u = v , −∆v = 1 in Ω , u = v = 0 on ∂Ω .

Let λ > 0 and denote by Γλ the set of connected curves γ contained in Ω, such that
γ ∩ ∂Ω 6= ∅, and whose length is λ: the curves γ represent the stiffening truss to be
put below the roadway. For any γ ∈ Γλ the elastic energy of the reinforced plate
Ω \ γ is given by

Eγ(Ω) = − min
u∈H2∩H1

0 (Ω\γ)

∫
Ω

(1
2

(∆u)2 + (σ − 1) det(D2u)− u
)
dx1 dx2 ,

and this energy should be minimized among all possible γ ∈ Γλ:

min
γ∈Γλ

Eγ(Ω) .

Is there an optimal γλ for any λ > 0? In fact, for a realistic model, one should
further require that all the endpoints of γλ lie on the boundary ∂Ω. Finally, since
the stiffening truss has a cost C > 0 per unit length, one should also solve the
minimisation problem

min
λ≥0

{
Cλ+ min

γ∈Γλ
Eγ(Ω)

}
;

if C is sufficiently small, we believe that the minimum exists.

Problem 6.2 is just a simplified version of the “true problem” which . . . should
be completed!

Problem 6.3. Let Ω = (0, L)× (−`, `) and fix some λ > 0. Denote by Γλ the set
of connected curves contained in Ω whose length is λ and whose endpoints belong
to ∂Ω. Study the minimization problem

min
γ∈Γλ

∣∣∣ min
u∈H(Ω\γ)

∫
Ω

(1
2

(∆u)2 + (σ − 1) det(D2u)− u
)
dx1 dx2

∣∣∣ ,
where

H(Ω \ γ) = {u ∈ H2(Ω \ γ); (5.4)2 holds, + something on x2 = ±` and on γ} .
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First of all, instead of “something”, one should find the correct conditions on x2 =
±` and on γ. This could also suggest to modify the energy function to be minimized
with an additional boundary integral. The questions are similar. Is there an optimal
γλ for any λ > 0? Is there an optimal λ > 0 if one also takes into account the cost?

Then one should try to solve the same problems with variable loads.

Problem 6.4. Solve Problems 6.2 and 6.3 with nonconstant loads f ∈ L2(Ω), so
that the minimum problem becomes

min
γ∈Γλ

∣∣∣ min
u∈H(Ω\γ)

∫
Ω

(1
2

(∆u)2 + (σ − 1) det(D2u)− fu
)
dx1 dx2

∣∣∣ .
What happens if f 6∈ L2(Ω)? For instance, if f is a delta Dirac mass concentrated
at some point x0 ∈ Ω.
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