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MULTIPLE SOLUTIONS FOR SEMILINEAR ELLIPTIC
EQUATIONS WITH SIGN-CHANGING POTENTIAL AND

NONLINEARITY

DONGDONG QIN, XIANHUA TANG, JIANG ZHANG

Abstract. In this article, we study the multiplicity of solutions for the semi-
linear elliptic equation

−∆u + a(x)u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN (N ≥ 3), the potential a(x) satisfies suitable integrability

conditions, and the primitive of the nonlinearity f is of super-quadratic growth
near infinity and is allowed to change sign. Our super-quadratic conditions are

weaker the usual super-quadratic conditions.

1. Introduction

Consider the semilinear elliptic equation

−∆u+ a(x)u = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, f ∈
C(Ω̄× R,R) and a(x) ∈ LN/2(Ω).

Semilinear elliptic equations have found a great deal of interest last years. With
the aid of variational methods, the existence and multiplicity of nontrivial solutions
for problem (1.1) have been extensively investigated in the literature over the past
several decades. See (e.g., [2]-[6], [8]-[11], [21] and the references quoted in them).

In most of the above references, the following condition due to Ambrosetti-
Rabinowitz [1] is assumed:

(AR) There exists µ > 2 such that

0 < µF (x, u) ≤ uf(x, u), u 6= 0;

here and in the sequel, F (x, u) =
∫ u

0
f(x, s)ds.

The role of (AR) is to ensure the boundedness of the Palais-Smale sequences
of the energy functional. This is very crucial in applying the critical point theory.
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However, there are many functions which are superlinear at infinity, but do not
satisfy the condition (AR) for any µ > 2, for example the superlinear function

f(x, u) = u ln(1 + |u|) (1.2)

does not satisfy (AR). In fact, (AR) implies that F (x, u) ≥ C|u|µ for some C > 0.
In references [8]-[10] and [15], some new super-quadratic conditions are estab-

lished instead of (AR), Among them, a few are weaker than (AR), but most com-
plement with it, for example, the monotonicity condition on f(x, u)/u. In [8], the
authors obtained the infinitely many solutions of (1.1) under some weak super-
quadratic conditions, but the conditions there actually imply that F (x, u) is of
µ-order (µ > 2) growth near infinity with respect to u.

In a recent paper [21], the authors studied the existence of infinitely many non-
trivial solutions of (1.1) under the following assumptions:

(S1) f ∈ C(Ω×R,R), and there exist constants c1 > 0 and p ∈ (2, 2∗) such that

|f(x, u)| ≤ c1(1 + |u|p−1), ∀(x, u) ∈ Ω× R; (1.3)

where 2∗ := 2N/(N − 2), N ≥ 3.
(S2) F (x, u) ≥ 0 for all (x, u) ∈ Ω×R, lim|u|→∞

F (x,u)
|u|2 =∞, uniformly in x ∈ Ω;

(S3) There exists constant % > max{2N/(N + 2), N(p − 2)/2} and d > 0 such
that

lim inf
|u|→∞

uf(x, u)− 2F (x, u)
|u|%

≥ d

uniformly for x ∈ Ω;
(S4) f(x,−u) = −f(x, u) for all (x, u) ∈ Ω× R.

Specifically, the authors established the following theorem in [21].

Theorem 1.1 ([21]). Assume that f satisfy (S1)–(S4). Then problem (1.1) pos-
sesses infinitely many nontrivial solutions.

Condition (S3) is just the same as the condition (F2)µ in [4], which plays an
important role in proving boundedness of the Palais-Smale sequences.

In the present paper, we will further study multiplicity of solutions for problem
(1.1) under the assumptions (S1) and (S4), instead of (S2) and (S3), we give the
following more general super-quadratic conditions near infinity.

(S2’) lim|u|→∞
|F (x,u)|
|u|2 =∞, a.e. x ∈ Ω, and there exists r0 ≥ 0 such that

F (x, u) ≥ 0, ∀(x, u) ∈ Ω× R, |u| ≥ r0;

(S5) F(x, u) := 1
2uf(x, u) − F (x, u) ≥ 0, and there exists c0 > 0 and κ > N/2

such that

|F (x, u)|κ ≤ c0|u|2κF(x, u), ∀(x, u) ∈ Ω× R, |u| ≥ r0;

(S6) There exist µ > 2 and λ > 0 such that

µF (x, u) ≤ uf(x, u) + λu2, ∀(x, u) ∈ Ω× R.
Now, we are ready to state the main results of this article.

Theorem 1.2. Assume that f satisfy (S1), (S2’), (S4), (S5). Then problem (1.1)
possesses infinitely many nontrivial solutions.

Theorem 1.3. Assume that f satisfy (S1), (S2’), (S4), (S6). Then problem (1.1)
possesses infinitely many nontrivial solutions.
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Remark 1.4. In our theorems, F (x, u) is allowed change sign. There exists func-
tions, with F sign-changing and satisfying (S5), but not satisfying (S3); for example

f(x, u) = u ln(
1
2

+ |u|).

Observe that, if we take p ∈ (2+ 4
N , 2

∗), condition (S1) is satisfied, and N(p−2)/2 ≥
2, % > 2 (given in (S3)), but there is no positive d such that

lim inf
|u|→∞

uf(x, u)− 2F (x, u)
|u|%

≥ d;

then condition (S3) can not be satisfied. However, f satisfies (S5). Thus, the
assumptions (S2’) and (S5) or (S6) are weaker than the super-quadratic conditions
obtained in the aforementioned references. It is easy to check that the following
nonlinearities f satisfy (S2’) and (S5) or (S6):

f(x, u) = a(x)u ln
(1

2
+ |u|

)
, (1.4)

f(x, u) = a(x)[4u4 + 2u2 sinu− 4u cosu], (1.5)

f(x, u) = a(x)
m∑
i=1

bi|u|βiu, (1.6)

where b1 > 0, bi ∈ R, i = 2, 3, . . . ,m, β1 > β2 > . . . > βm ≥ 0, a(x) ∈ C(Ω,R), and
0 < infΩ a(x) ≤ supΩ a(x) <∞.

2. Variational setting and proofs of the main results

Denote by Λ := −∆+a the associated self-adjoint operator in L2(Ω) with domain
D(Λ). By [7, Theorem VI.1.4] or see [19, paragraph 2.4], we know thatD(Λ) is dense
as a subset of H1

0 (Ω), and the spectrum of it consists of only eigenvalues numbered
in −∞ < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 0 < µn+1 ≤ · · · → +∞ (counting multiplicity)
with a corresponding system of eigenfunctions {en} forming an orthogonal basis in
L2(Ω).

In the following, let |Λ| be the absolute value of Λ, and |Λ|1/2 be the square root
of |Λ| with domain D(|Λ|1/2), we know that E := D(|Λ|1/2) = H1

0 (Ω). Let θ be
a positive constant with µ1 > −θ, where µ1 is the smallest eigenvalue of Λ, then
Λ + θI > 0. We introduce a new inner product on E by

(u, v) = ((Λ + θI)1/2u, (Λ + θI)1/2v)2 =
∫

Ω

[∇u · ∇v + (a(x) + θ)uv]dx (2.1)

for u, v ∈ E, and the associated norm

‖u‖ = (u, u)1/2 =
(∫

Ω

[|∇u|2 + (a(x) + θ)|u|2]dx
)1/2

, u ∈ E, (2.2)

where (·, ·)2 denote the inner product of L2(Ω). Then ‖ ·‖ is equivalent to the usual
Soblev norm ‖ · ‖1,2.

Let V (x) = a(x) + θ and g(x, u) = f(x, u) + θu. It is easy to check that the
hypotheses (S1), (S2’), (S5) and (S6) still hold for g(x, u) provided that those hold
for f(x, u). Hence we have the following lemma.
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Lemma 2.1. Problem (1.1) is equivalent to the problem
−∆u+ V (x)u = g(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.3)

Since ‖·‖ is equivalent to the usual Sobloev norm ‖·‖1,2, we obtain the following
lemma.

Lemma 2.2. The space E is compactly embedded in Ls(Ω) for 1 ≤ s < 2∗, and
continuously embedded in L2∗(Ω), hence there exists γs > 0 such that

‖u‖s ≤ γs‖u‖, ∀u ∈ E, (2.4)

where ‖u‖s denotes the usual norm in Ls(Ω) for all 1 ≤ s ≤ 2∗.

Now, we define a function Φ on E by

Φ(u) =
1
2

∫
Ω

(|∇u|2 + V (x)u2)dx−Ψ(u), (2.5)

where Ψ(u) =
∫

Ω
G(x, u)dx , by (S1) we have

|G(x, u)| ≤ c1|u|+
c1
p
|u|p ∀(x, u) ∈ Ω× R; (2.6)

here and in the sequel, G(x, u) =
∫ u

0
g(x, s)ds. In view of (2.6) and Lemma 2.2, Φ

and Ψ are well defined, furthermore, we have the following statement.

Proposition 2.3. Suppose (S1) is satisfied. Then Ψ ∈ C1(E,R) and Ψ′ : E → E∗

is compact and hence the functional Φ is of class C1(E,R). Moreover,

Φ(u) =
1
2
‖u‖2 −

∫
Ω

G(x, u)dx, ∀u ∈ E, (2.7)

〈Φ′(u), v〉 = (u, v)−
∫

Ω

g(x, u)vdx, ∀u, v ∈ E. (2.8)

By Lemma 2.2, the proof of the above proposition is standard; we refer the reader
to to [16, 19].

Lemma 2.4 ([16]). Let X be an infinite dimensional Banach space, X = Y ⊕ Z,
where Y is finite dimensional. If I ∈ C1(X,R) satisfies (C) c-condition for all
c > 0, and

(I1) I(0) = 0, I(−u) = I(u) for all u ∈ X;
(I2) there exist constants ρ, α > 0 such that Φ|∂Bρ∩Z ≥ α;
(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such

that I(u) ≤ 0 on X̃ \BR;
then I possesses an unbounded sequence of critical values.

Lemma 2.5. Under assumptions (S1), (S2’), (S5), any sequence {un} ⊂ E satis-
fying

Φ(un)→ c > 0, 〈Φ′(un), un〉 → 0 (2.9)
is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖. Then ‖vn‖ = 1 and ‖vn‖s ≤ γs‖vn‖ = γs for
1 ≤ s ≤ 2∗. Observe that for n large

c+ 1 ≥ Φ(un)− 1
2
〈Φ′(un), un〉 =

∫
Ω

G(x, un)dx. (2.10)
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Here and in the sequel G = 1
2ug(x, u)−G(x, u). It follows from (2.7) and (2.9) that

1
2
≤ lim sup

n→∞

∫
Ω

|G(x, un)|
‖un‖2

dx. (2.11)

For 0 ≤ a < b, let

Ωn(a, b) = {x ∈ Ω : a ≤ |un(x)| < b}. (2.12)

Passing to a subsequence, we may assume that vn ⇀ v in E, then by Lemma 2.2,
vn → v in Ls(Ω), 1 ≤ s < 2∗, and vn → v a.e. on Ω.

If v = 0, then vn → 0 in Ls(Ω), 1 ≤ s < 2∗, vn → 0 a.e. on Ω. Hence, it follows
from (2.6) that

∫
Ωn(0,r0)

|G(x, un)|
|un|2

|vn|2dx ≤
(
c1 +

c1
p
rp−1
0

) ∫
Ωn(0,r0)

|vn|
‖un‖

dx

≤
(
c1 +

c1
p
rp−1
0

) ∫
Ω

|vn|
‖un‖

dx→ 0.
(2.13)

Set κ′ = κ/(κ − 1). Since κ > N/2, one sees that 2κ′ ∈ (2, 2∗). Hence, from (S5)
and (2.10), one has

∫
Ωn(r0,∞)

|G(x, un)|
|un|2

|vn|2dx

≤
[ ∫

Ωn(r0,∞)

( |G(x, un)|
|un|2

)κ
dx
]1/κ[ ∫

Ωn(r0,∞)

|vn|2κ
′
dx
]1/κ′

≤ c1/κ0

[ ∫
Ωn(r0,∞)

G(x, un)dx
]1/κ(∫

Ω

|vn|2κ
′
dx
)1/κ′

≤ [c0(c+ 1)]1/κ
(∫

Ω

|vn|2κ
′
dx
)1/κ′

→ 0.

(2.14)

Combining (2.13) with (2.14), we have

∫
Ω

|G(x, un)|
‖un‖2

dx =
∫

Ωn(0,r0)

|G(x, un)|
|un|2

|vn|2dx+
∫

Ωn(r0,∞)

|G(x, un)|
|un|2

|vn|2dx→ 0,

which contradicts (2.11).
Set A := {x ∈ Ω : v(x) 6= 0}. If v 6= 0, then meas(A) > 0. For a.e. x ∈ A, we

have limn→∞ |un(x)| = ∞. Hence A ⊂ Ωn(r0,∞) for large n ∈ N, it follows from
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(2.6), (2.7), (S2’), Lemma 2.2 and Fadou’s Lemma that

0 = lim
n→∞

c+ o(1)
‖un‖2

= lim
n→∞

Φ(un)
‖un‖2

= lim
n→∞

[1
2
−
∫

Ω

G(x, un)
|un|2

|vn|2dx
]

= lim
n→∞

[1
2
−
∫

Ωn(0,r0)

G(x, un)
|un|2

|vn|2dx−
∫

Ωn(r0,∞)

G(x, un)
|un|2

|vn|2dx
]

≤ lim sup
n→∞

[1
2

+
(
c1 +

c1
p
rp−1
0

) ∫
Ω

|vn|
‖un‖

dx−
∫

Ωn(r0,∞)

G(x, un)
|un|2

|vn|2dx
]

≤ 1
2

+ (c1 +
c1
p
rp−1
0 ) lim sup

n→∞

‖vn‖1
‖un‖

− lim inf
n→∞

∫
Ω

|G(x, un)|
u2
n

[χΩn(r0,∞)(x)]v2
ndx

≤ 1
2

+ (c1 +
c1
p
rp−1
0 ) lim sup

n→∞

γ1

‖un‖
−
∫

Ω

lim inf
n→∞

G(x, un)
|un|2

[χΩn(r0,∞)(x)]|vn|2dx

= −∞,
(2.15)

which is a contradiction. Thus {un} is bounded in E. �

Lemma 2.6. Under assumptions (S1), (S2’), (S5), any sequence {un} ⊂ E satis-
fying (2.9) has a convergent subsequence in E.

Proof. Lemma 2.5 implies that {un} is bounded in E. Going if necessary to a
subsequence, we can assume that un ⇀ u in E. By Lemma 2.2, un → u in Ls(Ω)
for 1 ≤ s < 2∗ and un → u a.e. on Ω. By (S1), Hölder inequality and Lemma 2.2
again, one can easily gets that∫

Ω

[g(x, un)− g(x, u)](un − u)dx→ 0. (2.16)

Observe that

‖un − u‖2 = 〈Φ′(un)− Φ′(u), un − u〉+
∫

Ω

[g(x, un)− g(x, u)](un − u)dx, (2.17)

it is clear that
〈Φ′(un)− Φ′(u), un − u〉 → 0, n→∞. (2.18)

By (2.16)–(2.18), we have ‖un − u‖ → 0 as n→∞. �

Lemma 2.7. Under assumptions (S1), (S2’), (S6), any sequence {un} ⊂ E satis-
fying (2.9) has a convergent subsequence in E.

Proof. First, we prove that {un} is bounded in E. To prove the boundedness of
{un}, arguing by contradiction, suppose that ‖un‖ → ∞. Let vn = un/‖un‖. Then
‖vn‖ = 1 and ‖vn‖s ≤ γs‖vn‖ = γs for 1 ≤ s < 2∗. By (2.7)–(2.9) and (S6), one
has

c+ 1 ≥ Φ(un)− 1
µ
〈Φ′(un), un〉

=
µ− 2

2µ
‖un‖2 +

∫
Ω

[ 1
µ
g(x, un)un −G(x, un)

]
dx

≥ µ− 2
2µ
‖un‖2 −

λ

µ
‖un‖22, for large n ∈ N,
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which implies

1 ≤ 2λ
µ− 2

lim sup
n→∞

‖vn‖22. (2.19)

Passing to a subsequence, we may assume that vn ⇀ v in E, then by Lemma 2.2,
vn → v in Ls(Ω), 1 ≤ s < 2∗, and vn → v a.e. on Ω. Hence, it follows from (2.19)
that v 6= 0. By a similar fashion as (2.15), we can conclude a contradiction. Thus,
{un} is bounded in E. The rest proof is the same as that in Lemma 2.6. �

Lemma 2.8. Under assumptions (S1), (S2’), for any finite dimensional subspace
Ẽ ⊂ E, there holds

Φ(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ. (2.20)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ →
∞, there is M > 0 such that Φ(un) ≥ −M for all n ∈ N. Set vn = un/‖un‖, then
‖vn‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v in E. Since Ẽ
is finite dimensional, then vn → v ∈ Ẽ ⊂ E, vn → v a.e. on Ω, and so ‖v‖ = 1.
Hence, we can conclude a contradiction by a similar fashion as (2.15). �

Corollary 2.9. Under assumptions (S1), (S2’), for any finite dimensional subspace
Ẽ ⊂ E, there is R = R(Ẽ) > 0 such that

Φ(u) ≤ 0, ∀u ∈ Ẽ, ‖u‖ ≥ R. (2.21)

Let {ej} be a total orthonormal basis of E and Xj = Rej ,

Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , k ∈ Z . (2.22)

Lemma 2.10. If 1 ≤ s < 2∗, then

βk(s) := sup
u∈Zk,‖u‖=1

‖u‖s → 0, k →∞.

Since the embedding from E into Ls(Ω) is compact, then the above can be proved
by a similar fashion as [19, Lemma 3.8].

By Lemma 2.10, we can choose an integer m big enough such that

‖u‖1 ≤
1

4c1
‖u‖2, ‖u‖pp ≤

p

4c1
‖u‖p, ∀u ∈ Zm. (2.23)

Lemma 2.11. Under assumption (S1), there exist constants ρ, α > 0 such that
Φ|∂Bρ∩Zm ≥ α.

Proof. By (2.6), (2.7) and (2.23), we have

Φ(u) =
1
2
‖u‖2 −

∫
Ω

G(x, u)dx

≥ 1
2
‖u‖2 − c1‖u‖1 −

c1
p
‖u‖pp

≥ 1
4

(‖u‖2 − ‖u‖p)

=
2p−2 − 1

2p+2
:= α, ∀u ∈ Zm, ‖u‖ =

1
2

:= ρ.

�
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Proof of Theorem 1.2. Let X = E, Y = Ym and Z = Zm. By Lemmas 2.5, 2.6,
2.11 and Corollary 2.9, all conditions of Lemma 2.4 are satisfied. Thus, problem
(2.3) possesses infinitely many nontrivial solutions. By Lemma 2.1, problem (1.1)
also possesses infinitely many nontrivial solutions. �

Proof of Theorem 1.3. Let X = E, Y = Ym and Z = Zm. The rest proof is the
same as that of Theorem 1.2, by using Lemma 2.7 instead of Lemmas 2.5 and
2.6. �
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