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ASYMPTOTIC STABILITY OF FRACTIONAL IMPULSIVE
NEUTRAL STOCHASTIC PARTIAL INTEGRO-DIFFERENTIAL

EQUATIONS WITH STATE-DEPENDENT DELAY

ZUOMAO YAN, HONGWU ZHANG

Abstract. In this article, we study the asymptotical stability in p-th moment

of mild solutions to a class of fractional impulsive partial neutral stochas-

tic integro-differential equations with state-dependent delay in Hilbert spaces.
We assume that the linear part of this equation generates an α-resolvent op-

erator and transform it into an integral equation. Sufficient conditions for
the existence and asymptotic stability of solutions are derived by means of

the Krasnoselskii-Schaefer type fixed point theorem and properties of the α-

resolvent operator. An illustrative example is also provided.

1. Introduction

Partial stochastic differential equations have attracted the considerable attention
of researchers and many qualitative theories for the solutions of this kind have been
derived; see [7, 8] and the references therein. In particular, the stability theory
of stochastic differential equations has been popularly applied in variety fields of
science and technology. Several authors have established the stability results of
mild solutions for these equations by using various techniques; see, for example,
Govindan [13] considered the existence and stability for mild solution of stochas-
tic partial differential equations by applying the comparison theorem. Caraballo
and Liu [5] proved the exponential stability for mild solution to stochastic partial
differential equations with delays by utilizing the well-known Gronwall inequality.
The exponential stability of the mild solutions to the semilinear stochastic delay
evolution equations have been discussed by using Lyapunov functionals in Liu [16].
The author [17] considered the exponential stability for stochastic partial func-
tional differential equations by means of the Razuminkhin-type theorem. Liu and
Truman [18] investigated the almost sure exponential stability of mild solution for
stochastic partial functional differential equation by using the analytic technique.
Taniguchi [32] discussed the exponential stability for stochastic delay differential
equations by the energy inequality. Using fixed point approach, Luo [20] studied
the asymptotic stability of mild solutions of stochastic partial differential equations
with finite delays. Further, Sakthivel et al. [22, 25, 26] established the asymptotic
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stability and exponential stability of second-order stochastic evolution equations in
Hilbert spaces.

Impulsive differential and integro-differential systems are occurring in the field
of physics where it has been very intensive research topic since the theory provides
a natural framework for mathematical modeling of many physical phenomena [3].
Moreover, various mathematical models in the study of population dynamics, bi-
ology, ecology and epidemic can be expressed as impulsive stochastic differential
equations. In recent years, the qualitative dynamics such as the existence and
uniqueness, stability for first-order impulsive partial stochastic differential equa-
tions have been extensively studied by many authors; for instance, Sakthivel and
Luo [23, 24] studied the existence and asymptotic stability in p-th moment of mild
solutions to impulsive stochastic partial differential equations through fixed point
theory. Anguraj and Vinodkumar [1] investigated the existence, uniqueness and
stability of mild solutions of impulsive stochastic semilinear neutral functional dif-
ferential equations without a Lipschitz condition and with a Lipschitz condition.
Chen [6], Long et al. [19] discussed the exponential p-stability of impulsive stochas-
tic partial functional differential equations. He and Xu [14] studied the existence,
uniqueness and exponential p-stability of a mild solution of the impulsive stochas-
tic neutral partial functional differential equations by using Banach fixed point
theorem.

On the other hand, fractional differential equations play an important role in
describing some real world problems. This is caused both by the intensive de-
velopment of the theory of fractional calculus itself and by applications of such
constructions in various domains of science, such as physics, mechanics, chemistry,
engineering, etc. For details, see [21] and references therein. The existence of
solutions of fractional semilinear differential and integrodifferential equations are
one of the theoretical fields that investigated by many authors [11, 30, 33, 34].
Recently, much attention has been paid to the differential systems involving the
fractional derivative and impulses. This is due to the fact that most problems in a
real life situation to which mathematical models are applicable are basically frac-
tional order differential equations rather than integer order differential equations.
Consequently, there are many contributions relative to the solutions of various im-
pulsive semilinear fractional differential and integrodifferential systems in Banach
spaces; see [2, 9, 31]. The qualitative properties of fractional stochastic differential
equations have been considered only in few publications [7, 12, 27, 28, 35]. More
recently, Sakthivel et al. [29] studied the existence and asymptotic stability in p-th
moment of a mild solution to a class of nonlinear fractional neutral stochastic dif-
ferential equations with infinite delays in Hilbert spaces. However, up to now the
existence and asymptotic stability of mild solutions for fractional impulsive neutral
partial stochastic integro-differential equations with state-dependent delay have not
been considered in the literature. In order to fill this gap, this paper studies the
existence and asymptotic stability of the following nonlinear impulsive fractional
stochastic integro-differential equation of the form

cDαN(xt) = AN(xt) +
∫ t

0

R(t− s)N(xs)ds+ h(t, x(t− ρ2(t)))dt

+ f(t, x(t− ρ3(t)))
dw(t)
dt

, t ≥ 0, t 6= tk,

(1.1)

x0(·) = ϕ ∈ BF0([m̃(0), 0], H), x′(0) = 0, (1.2)
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∆x(tk) = Ik(x(t−k )), t = tk, k = 1, . . . ,m, (1.3)

where the state x(·) takes values in a separable real Hilbert space H with inner
product 〈·, ·〉H and norm ‖ · ‖H , cDα is the Caputo fractional derivative of order
α ∈ (1, 2), A, (R(t))t≥0 are closed linear operators defined on a common domain
which is dense in (H, ‖ · ‖H), and Dα

t σ(t) represents the Caputo derivative of order
α > 0 defined by

Dα
t σ(t) =

∫ t

0

ηn−α(t− s) d
n

dsn
σ(s)ds,

where n is the smallest integer greater than or equal to α and ηβ(t) := tβ−1/Γ(β),
t > 0, β ≥ 0. Let K be another separable Hilbert space with inner product 〈·, ·〉K
and norm ‖ · ‖K . Suppose {w(t) : t ≥ 0} is a given K-valued Wiener process
with a covariance operator Q > 0 defined on a complete probability space (Ω,F , P )
equipped with a normal filtration {Ft}t≥0, which is generated by the Wiener process
w; and N(xt) = x(0) + g(t, x(t − ρ1(t))), x ∈ H, and g, h : [0,∞) × H → H, f :
[0,∞) ×H → L(K,H), are all Borel measurable; Ik : H → H(k = 1, . . . ,m), are
given functions. Moreover, the fixed moments of time tk satisfies 0 < t1 < · · · <
tm < limk→∞ tk = ∞, x(t+k ) and x(t−k ) represent the right and left limits of x(t)
at t = tk, respectively; ∆x(tk) = x(t+k ) − x(t−k ), represents the jump in the state
x at time tk with Ik determining the size of the jump; let ρi(t) ∈ C(R+,R+)(i =
1, 2, 3) satisfy t − ρi(t) → ∞ as t → ∞, and m̃(0) = max{infs≥0(s − ρi(s)), i =
1, 2, 3}. Here BF0([m̃(0), 0], H) denote the family of all almost surely bounded,
F0- measurable, continuous random variables ϕ(t) : [m̃(0), 0] → H with norm
‖ϕ‖B = supm̃(0)≤t≤0E‖ϕ(t)‖H .

To the best of our knowledge, most of the previous research on the existence and
stability investigation for impulsive stochastic systems was based upon a Lipschitz
condition. This condition turns out to be restrictive. In this paper, we establish suf-
ficient conditions for the existence and asymptotic stability in p-th moment of mild
for problem (1.1)–(1.3) by using Krasnoselskii-Schaefer type fixed point theorem [4]
with the α-resolvent operator. The obtained result can be seen as a contribution
to this emerging field.

This article is organized as follows. In Section 2, we give some preliminaries.
Section 3 aims to prove the main results. An example is presented in the last
section.

2. Preliminaries

Let K and H be two real separable Hilbert spaces with inner product 〈·, ·〉K and
〈·, ·〉H , their inner products and by ‖ · ‖K , ‖ · ‖H their vector norms, respectively.

Let (Ω,F , P ; F)(F = {F}t≥0) be a complete probability space satisfying that F0

contains all P -null sets. Let {ei}∞i=1 be a complete orthonormal basis of K. Suppose
that {w(t) : t ≥ 0} is a cylindrical K-valued Brownian motion with a trace class
operator Q, denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei.

So, actually, w(t) =
∑∞
i=1

√
λiwi(t)ei, where {wi(t)}∞i=1 are mutually independent

one-dimensional standard Brownian motions. Then, the above K-valued stochastic
process w(t) is called a Q-Wiener process. Let L(K,H) denote the space of all
bounded linear operators from K into H equipped with the usual operator norm
‖ ·‖L(K,H) and we abbreviate this notation to L(H) when H = K. For ς ∈ L(K,H)



4 Z. YAN, H. ZHANG EJDE-2013/206

we define

‖ς‖2L0
2

= Tr(ςQς∗) =
∞∑
n=1

‖
√
λnςen‖2.

If ‖ς‖2
L0

2
< ∞, then ς is called a Q-Hilbert-Schmidt operator, and let L0

2(K,H)
denote the space of all Q-Hilbert-Schmidt operators ς : K → H. For a basic
reference, the reader is referred to [8].

Let Y be the space of all F0-adapted process ψ(t, w̃) : [m̃(0),∞)×Ω→ R which
is almost certainly continuous in t for fixed w̃ ∈ Ω. Moreover ψ(s, w̃) = ϕ(s) for
s ∈ [m̃(0), 0] and E‖ψ(t, w̃)‖pH → 0 as t→∞. Also Y is a Banach space when it is
equipped with a norm defined by

‖ψ‖Y = sup
t≥0

E‖ψ(t)‖pH .

Now, we give knowledge on the α-resolvent operator which appeared in [30].

Definition 2.1. A one-parameter family of bounded linear operators (Rα(t))t≥0

on H is called an α-resolvent operator for

cDαx(t) = Ax(t) +
∫ t

0

R(t− s)x(s)ds, (2.1)

x(0) = x0 ∈ H, x′(0) = 0, (2.2)

if the following conditions are satisfied
(a) The functionRα(·) : [0,∞)→ L(H) is strongly continuous andRα(0)x = x

for all x ∈ H and α ∈ (1, 2);
(b) For x ∈ D(A), we have Rα(·)x ∈ C([0,∞), [D(A)]) ∩ C1((0,∞), H),

Dα
t Rα(t)x = ARα(t)x+

∫ t

0

R(t− s)Rα(s)x ds,

Dα
t Rα(t)x = Rα(t)Ax+

∫ t

0

Rα(t− s)R(s)x ds

for every t ≥ 0.

In this work we use the following assumptions:
(P1) The operator A : D(A) ⊆ H → H is a closed linear operator with [D(A)]

dense in H. Let α ∈ (1, 2). For some φ0 ∈ (0, π2 ], for each φ < φ0 there is
a positive constant C0 = C0(φ) such that λ ∈ ρ(A) for each

λ ∈ Σ0,αϑ = {λ ∈ C, λ 6= 0, | arg(λ)| < αϑ},
where ϑ = φ+ π

2 and ‖R(λ,A)‖ ≤ C0
|λ| for all λ ∈ Σ0,αϑ.

(P2) For all t ≥ 0, R(t) : D(R(t)) ⊆ H → H is a closed linear operator,
D(A) ⊆ D(R(t)) and R(·)x is strongly measurable on (0,∞) for each
x ∈ D(A). There exists b(·) ∈ L1

loc(R+) such that b̂(λ) exists for Re(λ) > 0
and ‖R(t)x‖H ≤ b(t)‖x‖1 for all t > 0 and x ∈ D(A). Moreover, the opera-
tor valued function R̂ : Σ0,π/2 → L([D(A)], H) has an analytical extension
(still denoted by R̂) to Σ0,ϑ such that ‖R̂(λ)x‖H ≤ ‖R̂(λ)‖H‖x‖1 for all
x ∈ D(A), and ‖R̂(λ)‖H = O(1/|λ|), as |λ| → ∞.

(P1) There exists a subspace D ⊆ D(A) dense in [D(A)] and a positive constant
C̃ such that A(D) ⊆ D(A), R̂(λ)(D) ⊆ D(A), and ‖AR̂(λ)x‖H ≤ C̃‖x‖H
for every x ∈ D and all λ ∈ Σ0,ϑ.
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In the sequel, for r > 0 and θ ∈ (π2 , ϑ),

Σr,θ = {λ ∈ C, |λ| > r, | arg(λ)| < θ},
for Γr,θ,Γir,θ, i = 1, 2, 3, are the paths

Γ1
r,θ = {teiθ : t ≥ r}, Γ2

r,θ = {teiξ : |ξ| ≤ θ}, Γ3
r,θ = {te−iθ : t ≥ r},

and Γr,θ = ∪3
i=1Γir,θ oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) = {λ ∈ C : Gα(λ) := λα−1(λαI −A− R̂(λ))−1 ∈ L(X)}.
We now define the operator family (Rα(t))t≥0 by

Rα(t) :=

{
1

2πi

∫
Γr,θ

eλtGα(λ)dλ, t > 0,

I, t = 0.

Lemma 2.2 ([30]). Assume that conditions (P1)–(P3) are fulfilled. Then there
exists a unique α-resolvent operator for problem (2.1)-(2.2).

Lemma 2.3 ([30]). The function Rα : [0,∞) → L(H) is strongly continuous and
Rα : (0,∞)→ L(H) is uniformly continuous.

Definition 2.4 ([30]). Let α ∈ (1, 2), we define the family (Sα(t))t≥0 by

Sα(t)x :=
∫ t

0

gα−1(t− s)Rα(s)ds

for each t ≥ 0.

Lemma 2.5 ([30]). If the function Rα(·) is exponentially bounded in L(H), then
Sα(·) is exponentially bounded in L(H).

Lemma 2.6 ([30]). If the function Rα(·) is exponentially bounded in L([D(A)]),
then Sα(·) is exponentially bounded in L([D(A)]).

Lemma 2.7 ([30]). If R(λα0 , A) is compact for some λα0 ∈ ρ(A), then Rα(t) and
Sα(t) are compact for all t > 0.

Definition 2.8. A stochastic process {x(t), t ∈ [0, T ]}(0 ≤ T <∞) is called a mild
solution of (1.1)-(1.3) if

(i) x(t) is adapted to Ft, t ≥ 0.
(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, T ] a.s and for each t ∈ [0, T ], x(t)

satisfies the integral equation

x(t) =



Rα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))] + g(t, x(t− ρ1(t)))
+
∫ t

0
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t

0
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ [0, t1],

Rα(t− t1)[x(t−1 ) + I1(x(t−1 ))− g(t1, x(t+1 − ρ1(t+1 )))]
+g(t, x(t− ρ1(t))) +

∫ t
t1
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
t1
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (t1, t2],

. . .

Rα(t− tm)[x(t−m) + Im(x(t−m))− g(tm, x(t+m − ρ1(t+m)))]
+g(t, x(t− ρ1(t))) +

∫ t
tm
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
tm
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (tm, T ].

(2.3)
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Definition 2.9. Let p ≥ 2 be an integer. Equation (2.3) is said to be stable in the
p-th moment, if for any ε > 0, there exists a δ̃ > 0 such that ‖ϕ‖B < δ̃ guarantees
that

E
[

sup
t≥0
‖x(t)‖pH

]
< ε.

Definition 2.10. Let p ≥ 2 be an integer. Equation (2.3) is said to be asymp-
totically stable in p-th moment if it stable in the p-th moment and for any ϕ ∈
BF0([m̃(0), 0], H),

lim
T→+∞

E
[

sup
t≥T
‖x(t)‖pH

]
= 0.

Lemma 2.11 ([8]). For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable

process φ(·) such that

sup
s∈[0,t]

E
∥∥∫ s

0

φ(v)dw(v)
∥∥2p

H
≤ Cp

(∫ t

0

(E‖φ(s)‖2p
L0

2
)1/pds

)p
, t ∈ [0,∞),

where Cp = (p(2p − 1))p. Next, we state a Krasnoselskii-Schaefer type fixed point
theorem.

Lemma 2.12 ([4]). Let Φ1,Φ2 be two operators such that:
(a) Φ1 is a contraction, and
(b) Φ2 is completely continuous.

Then either
(i) the operator equation Φ1x+ Φ2x has a solution, or

(ii) the set Υ = {x ∈ H : λΦ1(xλ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1).

3. Main results

In this section we present our result on asymptotic stability in the p-th moment
of mild solutions of system (1.1)-(1.3). for this, we state the following hypotheses:

(H1) The operator families Rα(t) and Sα(t) are compact for all t > 0, and
there exist constants M > 0, δ > 0 such that ‖Rα(t)‖L(H) ≤ Me−δt and
‖Sα(t)‖L(H) ≤Me−δt for every t ≥ 0.

(H2) The function g : [0,∞) × H → H is continuous and there exists Lg > 0
such that

E‖g(t, ψ1)− g(t, ω2)‖pH ≤ Lg‖ψ1 − ψ2‖pH , t ≥ 0, ω1, ψ2 ∈ H;

E‖g(t, ψ)‖pH ≤ Lg‖ψ‖
p
H , t ≥ 0, ψ ∈ H.

(H3) The function h : [0,∞)×H → H satisfies the following conditions:
(i) The function h : [0,∞)×H → H is continuous.
(ii) There exist a continuous function mh : [0,∞) → [0,∞) and a contin-

uous nondecreasing function Θh : [0,∞)→ (0,∞) such that

E‖h(t, ψ)‖pH ≤ mh(t)Θh(E‖ψ‖pH), t ≥ 0, ψ ∈ H.
(H4) The function f : [0,∞)×H → L(K,H) satisfies the following conditions:

(i) The function f : [0,∞)×H → L(K,H) is continuous.
(ii) There exist a continuous function mf : [0,∞) → [0,∞) and a contin-

uous nondecreasing function Θf : [0,∞)→ (0,∞) such that

E‖f(t, ψ)‖pH ≤ mf (t)Θf (E‖ψ‖pH), t ≥ 0, ψ ∈ H,
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with ∫ ∞
1

1
Θh(s) + Θf (s)

ds =∞. (3.1)

(H5) The functions Ik : H → H are completely continuous and that there are
constants djk, k = 1, 2, . . .m, j = 1, 2, such that E‖Ik(x)‖pH ≤ d1

kE‖x‖
p
H +

d2
k, for every x ∈ H.

In the proof of the existence theorem, we need the following lemmas.

Lemma 3.1. Assume that conditions (H1), (H3) hold. Let Φ1 be the operator
defined by: for each x ∈ Y,

(Φ1x)(t) =



∫ t
0
Sα(t− s)h(s, x(s− ρ2(s)))ds, t ∈ [0, t1],∫ t

t1
Sα(t− s)h(s, x(s− ρ2(s)))ds, t ∈ (t1, t2],

. . .∫ t
tm
Sα(t− s)h(s, x(s− ρ2(s)))ds, t ∈ (tm, tm+1],

. . .

(3.2)

Then Φ1 is continuous and maps Y into Y.

Proof. We first prove that Φ1 is continuous in the p-th moment on [0,∞). Let
x ∈ Y, t̃ ≥ 0 and |ξ| be sufficiently small. Then for t̃ ∈ [0, t1], by using Hölder’s
inequality, we have

E‖(Φ1x)(t̃+ ξ)− (Φ1x)(t̃)‖pH

≤ 2p−1E
∥∥∫ t̃

0

[Sα(t̃+ ξ − s)− Sα(t̃− s)]h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 2p−1E
∥∥ ∫ t̃+ξ

t̃

Sα(t̃+ ξ − s)h(s, x(s− ρ2(s)))ds
∥∥p
H

≤ 2p−1E
[ ∫ t̃

0

‖[Sα(t̃+ ξ − s)− Sα(t̃− s)]h(s, x(s− ρ2(s)))‖Hds
]p

+ 2p−1MpE
[ ∫ t̃+ξ

t̃

e−δ(t̃+ξ−s)‖h(s, x(s− ρ2(s)))‖Hds
]p

≤ 2p−1
[ ∫ t̃

0

‖Sα(t̃+ ξ − s)− Sα(t̃− s)‖(p/p−1)
L(H) ds

]p−1

×
∫ t̃

0

E‖h(s, x(s− ρ2(s)))‖pHds

+ 2p−1Mp
[ ∫ t̃+ξ

t̃

e−(pδ/p−1)(t̃+ξ−s)ds
]p−1

×
∫ t̃+ξ

t̃

E‖h(s, x(s− ρ2(s)))‖pHds→ 0 as ξ →∞.

Similarly, for any t̃ ∈ (tk, tk+1], k = 1, 2, . . ., we have

E‖(Φ1x)(t̃+ ξ)− (Φ1x)(t̃)‖pH

≤ 2p−1
[ ∫ t̃

tk

‖Sα(t̃+ ξ − s)− Sα(t̃− s)‖−(p/p−1)
L(H) ds

]p−1
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×
∫ t̃

tk

E‖h(s, x(s− ρ2(s)))‖pHds

+ 2p−1Mp
[ ∫ t̃+ξ

t̃

e−(pδ/p−1)(t̃+ξ−s)ds
]p−1

×
∫ t̃+ξ

t̃

E‖h(s, x(s− ρ2(s)))‖pHds→ 0 as ξ →∞.

Then, for all x(t̃) ∈ Y, t̃ ≥ 0, we have

E‖(Φ1x)(t̃+ ξ)− (Φ1x)(t̃)‖pH → 0 as ξ →∞.

Thus Φ1 is continuous in the p-th moment on [0,∞).
Next we show that Φ1(Y) ⊂ Y. By using (H1), (H3) and Hölder’s inequality, we

have for t ∈ [0, t1]

E‖(Φ1x)(t)‖pH ≤ E
∥∥ ∫ t

0

Sα(t− s)h(s, x(s− ρ2(s)))ds
∥∥p
H

≤ E
[ ∫ t

0

‖Sα(t− s)h(s, x(s− ρ2(s)))‖Hds
]p

≤MpE
[ ∫ t

0

e−δ(t−s)‖h(s, x(s− ρ2(s)))‖Hds
]p

= MpE
[ ∫ t

0

e−(δ(p−1)/p)(t−s)e−(δ/p)(t−s)‖h(s, x(s− ρ2(s)))‖Hds
]p

≤Mp
[ ∫ t

0

e−δ(t−s)ds
]p−1

∫ t

0

e−δ(t−s)E‖h(s, x(s− ρ2(s)))‖pHds

≤Mpδ1−p
∫ t

0

e−δ(t−s)mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, 2, . . ., we have

E‖(Φ1x)(t)‖pH ≤ E
∥∥∫ t

tk

Sα(t− s)h(s, x(s− ρ2(s)))ds
∥∥p
H

≤Mpδ1−p
∫ t

tk

e−δ(t−s)mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds.

Then, for all x(t) ∈ Y, t ∈ [m̃(0),∞), we have

E‖(Φ1x)(t)‖pH ≤M
pδp−1

∫ t

0

e−δ(t−s)mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds. (3.3)

However, for any any ε > 0, there exists a τ̃1 > 0 such that E‖x(s− ρ2(s))‖pH < ε
for t ≥ τ̃1. Thus, we obtain

E‖(Φ1x)(t)‖pH

≤Mpδ1−pe−δt
∫ t

0

eδsmh(s)Θh(E‖x(s− ρ2(s))‖pH)ds

≤Mpδ1−pe−δt
∫ τ̃1

0

eδsmh(s)Θh(E‖x(s− ρ2(s))‖pH)ds+Mpδ1−pLhΘh(ε),
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where Lh = supt≥0

∫ t
τ̃1
e−δ(t−s)mh(s)ds. As e−δt → 0 as t → ∞ and, there exists

τ̃2 ≥ τ̃1 such that for any t ≥ τ̃2 we have

Mpδp−1e−δt
∫ τ̃1

0

eδsmh(s)Θh(E‖x(s− ρ2(s))‖pH)ds < ε−Mpδp−1LhΘh(ε).

From the above inequality, for any t ≥ τ̃2, we obtain E‖(Φ1x)(t)‖pH < ε. That is to
say E‖(Φ1x)(t)‖pH → 0 as t→∞. So we conclude that Φ1(Y) ⊂ Y. �

Lemma 3.2. Assume that conditions (H1), (H4) hold. Let Φ2 be the operator
defined by: for each x ∈ Y,

(Φ2x)(t) =



∫ t
0
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ [0, t1],∫ t

t1
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (t1, t2],

. . .∫ t
tm
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (tm, tm+1],

. . .

Then Φ2 is continuous on [0,∞) in the p-th mean and maps Y into itself.

Proof. We first prove that Φ2 is continuous in the p-th moment on [0,∞). Let
x ∈ Y, θ̃ ≥ 0 and |ξ| be sufficiently small. Then for θ̃ ∈ [0, t1], by using Hölder’s
inequality and Lemma 2.11, we have

E‖(Φ2x)(θ̃ + ξ)− (Φ2x)(θ̃)‖pH

≤ 2p−1E
∥∥∫ θ̃

0

[Sα(θ̃ + ξ − s)− Sα(θ̃ − s)]f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

+ 2p−1E
∥∥∫ θ̃+ξ

θ̃

Sα(θ̃ + ξ − s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

≤ 2p−1Cp

[ ∫ θ̃

0

(E‖[Sα(θ̃ + ξ − s)− Sα(θ̃ − s)]f(s, x(s− ρ3(s)))‖pH)2/pds
]p/2

+ 2p−1Cp

[ ∫ t̃+ξ

θ̃

(E‖Sα(θ̃ + ξ − s)f(s, x(s− ρ3(s)))‖pH)2/pds
]p/2

→ 0

as ξ →∞. Similarly, for any θ̃ ∈ (tk, tk+1], k = 1, 2, . . ., we have

E‖(Φ2x)(θ̃ + ξ)− (Φ2x)(θ̃)‖pH

≤ 2p−1Cp

[ ∫ θ̃

tk

(E‖[Sα(θ̃ + ξ − s)− Sα(θ̃ − s)]f(s, x(s− ρ3(s)))‖pH)2/pds
]p/2

+ 2p−1Cp

[ ∫ t̃+ξ

θ̃

(E‖Sα(θ̃ + ξ − s)f(s, x(s− ρ3(s)))‖pH)2/pds
]p/2

→ 0

as ξ →∞. Then, for all x(θ̃) ∈ Y, θ̃ ≥ 0, we have

E‖(Φ2x)(θ̃ + ξ)− (Φ2x)(θ̃)‖pH → 0 as ξ →∞.
Thus Φ2 is continuous in the p-th moment on [0,∞).

Next we show that Φ2(Y) ⊂ Y. By using (H1), (H4) and Hölder’s inequality, for
t ∈ [0, t1], we have

E‖(Φ2x)(t)‖pH
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≤ E
∥∥∫ t

0

Sα(t− s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

≤ Cp
[ ∫ t

0

(E‖Sα(t− s)f(s, x(s− ρ3(s)))‖pH)(2/p)ds
]p/2

≤ CpMp
[ ∫ t

0

[e−pδ(t−s)(E‖f(s, x(s− ρ3(s)))‖pH)]2/pds
]p/2

≤ CpMp
[ ∫ t

0

[e−pδ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds
]p/2

= CpM
p
[ ∫ t

0

[e−(p−1)δ(t−s)e−δ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds
]p/2

≤ CpMp
[ ∫ t

0

e−[
2(p−1)
p−2 ]δ(t−s)ds

]p/2−1

×
∫ t

0

e−δ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)ds

≤ CpMp
[2δ(p− 1)

p− 2

]1−p/2 ∫ t

0

e−δ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, 2, . . ., we have

E‖(Φ2x)(t)‖pH

≤ E
∥∥∫ t

tk

Sα(t− s)f(s, x(s− ρ3(s))dw(s)
∥∥p
H

≤ CpMp
[2δ(p− 1)

p− 2

]1−p/2 ∫ t

tk

e−δ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)ds.

Then, for all x(t) ∈ Y, t ∈ [m̃(0),∞), we have

E‖(Φ2x)(t)‖pH

≤ CpMp
[2δ(p− 1)

p− 2

]1−p/2 ∫ t

0

e−δ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)ds.
(3.4)

However, for any any ε > 0, there exists a θ̃1 > 0 such that E‖x(s− ρ3(s))‖pH < ε

for t ≥ θ̃1. Thus from (3.4) we obtain

E‖(Φ2x)(t)‖pH

≤ CpMp
[2δ(p− 1)

p− 2

]1−p/2
e−δt

∫ t

0

eδsmf (s)Θf (E‖x(s− ρ3(s))‖pH)ds

≤ CpMp
[2δ(p− 1)

p− 2

]1−p/2
e−δt

∫ t̃1

0

eδsmf (s)Θf (E‖x(s− ρ3(s))‖pH)ds

+ CpM
p
[2δ(p− 1)

p− 2

]1−p/2
LfΘf (ε),

where Lf = supt≥0

∫ t
t̃1
e−δ(t−s)mf (s)ds. As e−δt → 0 as t → ∞ and, there exists

θ̃2 ≥ θ̃1 such that for any t ≥ θ̃2 we have

CpM
p[

2δ(p− 1)
p− 2

]1−p/2
∫ t̃1

0

e−δ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)ds
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< ε− CpMp[
2δ(p− 1)
p− 2

]1−p/2LfΘf (ε).

From the above inequality, for any t ≥ θ̃2, we obtain E‖(Φ2x)(t)‖pH < ε. That is
to say E‖(Φ2x)(t)‖pH → 0 as t→∞. So we conclude that Φ2(Y) ⊂ Y. �

Now, we are ready to present our main result.

Theorem 3.3. Assume the conditions (H1)-(H5) hold. Let p ≥ 2 be an integer.
Then the fractional impulsive stochastic differential equations (1.1)–(1.3) is asymp-
totically stable in the p-th moment, provided that

max
1≤k≤m

{12p−1Mp(1 + d1
k + 2p−1Lg) + 8p−1Lg} < 1. (3.5)

Proof. We define the nonlinear operator Ψ : Y → Y as (Ψx)(t) = ϕ(t) for t ∈
[m̃(0), 0] and for t ≥ 0,

(Ψx)(t) =



Rα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))] + g(t, x(t− ρ1(t)))
+
∫ t

0
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t

0
Sα(t− s)f(s, x(s− ρ3(s)))dw(s),

t ∈ [0, t1],

Rα(t− t1)[x(t−1 ) + I1(x(t−1 ))− g(t1, x(t+1 − ρ1(t+1 )))]
+g(t, x(t− ρ1(t))) +

∫ t
t1
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
t1
Sα(t− s)f(s, x(s− ρ3(s)))dw(s),

t ∈ (t1, t2],
. . .

Rα(t− tm)[x(t−m) + Im(x(t−m))− g(tm, x(t+m − ρ1(t+m)))]
+g(t, x(t− ρ1(t))) +

∫ t
tm
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
tm
Sα(t− s)f(s, x(s− ρ3(s)))dw(s),

t ∈ (tm, tm+1],
. . .

(3.6)

Using (H2)–(H5), and the proofs of Lemmas 3.1 and 3.2, it is clear that the nonlinear
operator Ψ is well defined and continuous in p-th moment on [0,∞). Moreover, for
all t ∈ [0, t1] we have

E‖(Ψx)(t)‖pH
≤ 4p−1E‖Rα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))]‖pH + 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1E
∥∥∫ t

0

Sα(t− s)h(s, x(s− ρ2(s)))dw(s)
∥∥p
H

+ 4p−1E
∥∥∫ t

0

Sα(t− s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H
.

Similarly, for any t ∈ (tk, tk+1], k = 1, 2, . . ., we have

E‖(Ψx)(t)‖pH ≤ 4p−1E‖Rα(t− tk)[x(t−k ) + Ik(x(t−k ))− g(tk, x(t+k − ρ1(t+k )))]‖pH
+ 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1E
∥∥∫ t

tk

Sα(t− s)h(s, x(s− ρ2(s)))ds
∥∥p
H
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+ 4p−1E
∥∥∫ t

tk

Sα(t− s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H
.

Then, for all t ≥ 0, we have

E‖(Ψx)(t)‖pH ≤ 4p−1E‖Rα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))]‖pH
+ 4p−1E‖Rα(t− tk)[x(t−k ) + Ik(x(t−k ))− g(tk, x(t+k − ρ1(t+k )))]‖pH
+ 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1E
∥∥∫ t

0

Sα(t− s)h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 4p−1E
∥∥∫ t

0

Sα(t− s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H
.

By (H1)–(H5), Lemmas 3.1 and 3.2 again, we obtain

4p−1E‖Rα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))]‖pH
≤ 8p−1Mpe−pδt[E‖ϕ(0)‖pH + LgE‖ϕ(−ρ1(0))‖pH ]→ 0 as t→∞,

4p−1E‖Rα(t− tk)[x(t−k ) + Ik(x(t−k ))− g(tk, x(t+k − ρ1(t+k )))]‖pH
≤ 12p−1Mpe−pδt[E‖x(t−k )‖pH + E‖Ik(x(t−k ))‖pH

+ LgE‖x(t+k − ρ1(t+k )))‖pH ]→ 0 as t→∞,
4p−1E‖g(t, x(t− ρ1(t)))‖pH ≤ 4p−1LgE‖x(t− ρ1(t)))‖pH → 0 as t→∞,

4p−1E
∥∥∫ t

0

Sα(t− s)h(s, x(t− ρ2(t)))ds
∥∥p
H
→ 0 as t→∞,

4p−1E
∥∥∫ t

0

Sα(t− s)f(s, x(t− ρ3(t)))dw(s)
∥∥p
H
→ 0 as t→∞.

That is to say E‖(Ψx)(t)‖pH → 0 as t→∞. So Ψ maps Y into itself.
Next we prove that the operator Ψ has a fixed point, which is a mild solution

of the problem (1.1)-(1.3). To see this, we decompose Ψ as Ψ1 + Ψ2 for t ∈ [0, T ],
where

(Ψ1x)(t) =


−Rα(t)g(0, ϕ(−ρ1(0))) + g(t, x(t− ρ1(t))), t ∈ [0, t1],

−Rα(t− t1)g(t1, x(t+1 − ρ1(t+1 ))) + g(t, x(t− ρ1(t))), t ∈ (t1, t2],
. . .

−Rα(t− tm)g(tm, x(t+m − ρ1(t+m))) + g(t, x(t− ρ1(t))), t ∈ (tm, T ],
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and

(Ψ2x)(t) =



Rα(t)ϕ(0) +
∫ t

0
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t

0
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ [0, t1],

Rα(t− t1)[x(t−1 ) + I1(x(t−1 ))]
+
∫ t
t1
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
t1
Sα(t− s)f(s, x(t− ρ3(t)))dw(s), t ∈ (t1, t2],

. . .

Rα(t− tm)[x(t−m) + Im(x(t−m))]
+
∫ t
tm
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
tm
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (tm, T ].

To use Lemma 2.12, we will verify that Ψ1 is a contraction while Ψ2 is a completely
continuous operator. For better readability, we break the proof into a sequence of
steps.

Step1. Ψ1 is a contraction on Y. Let t ∈ [0, t1] and x, y ∈ Y. From (H2), we have

E‖(Ψ1x)(t)− (Ψ1y)(t)‖pH ≤ E‖g(t, x(t− ρ1(t)))− g(t, y(t− ρ1(t)))‖pH
≤ LgE‖x(t− ρ1(t))− y(t− ρ1(t))‖pH
≤ Lg‖x− y‖Y.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

E‖(Ψ1x)(t)− (Ψ1y)(t)‖pH
≤ 2p−1E‖Rα(t− tk)[−g(tk, x(t+k − ρ1(t+k ))) + g(tk, y(t+k − ρ1(t+k )))]‖pH

+ 2p−1E‖g(t, x(t− ρ1(t)))− g(t, y(t− ρ1(t)))‖pH
≤ 2p−1MpLgE‖x(t+k − ρ1(t+k ))− y(t+k − ρ1(t+k ))‖pH

+ 2p−1LgE‖x(t− ρ1(t))− y(t− ρ1(t))‖pH
≤ 2p−1Lg(Mp + 1)‖x− y‖Y.

Thus, for all t ∈ [0, T ],

E‖(Ψ1x)(t)− (Ψ1y)(t)‖pH ≤ 2p−1Lg(Mp + 1)‖x− y‖Y.

Taking supremum over t,

‖Ψ1x−Ψ1y‖Y ≤ L0‖x− y‖Y,

where L0 = 2p−1Lg(Mp + 1) < 1. By (3.5), we see that L0 < 1. Hence, Ψ1 is a
contraction on Y.

Step 2. Ψ2 maps bounded sets into bounded sets in Y. Indeed, it is sufficient
to show that there exists a positive constant L such that for each x ∈ Br = {x :
‖x‖Y ≤ r} one has ‖Ψ2x‖Y ≤ L. Now, for t ∈ [0, t1] we have

(Ψ2x)(t) = Rα(t)ϕ(0) +
∫ t

0

Sα(t− s)h(s, x(t− ρ2(t)))ds

+
∫ t

0

Sα(t− s)f(s, x(t− ρ3(t)))dw(s).
(3.7)



14 Z. YAN, H. ZHANG EJDE-2013/206

If x ∈ Br, from the definition of Y, it follows that

E‖x(s− ρi(s))‖pH ≤ 2p−1‖ϕ‖pB + 2p−1 sup
s∈[0,T ]

E‖x(s)‖pH

≤ 2p−1‖ϕ‖pB + 2p−1r := r∗, i = 1, 2, 3.

By (H1)-(H4), from (3.7) and Hölder’s inequality, for t ∈ [0, t1], we have

E‖(Ψ2x)(t)‖pH

≤ 3p−1E‖Rα(t)ϕ(0)‖pH + 3p−1E
∥∥∫ t

0

Sα(t− s)h(s, x(t− ρ2(t)))ds
∥∥p
H

+ 3p−1E
∥∥∫ t

0

Sα(t− s)f(s, x(t− ρ3(t)))dw(s)
∥∥p
H

≤ 3p−1MpE‖ϕ(0)‖pH + 3p−1MpE
[ ∫ t

0

e−δ(t−s)‖h(s, x(t− ρ2(t)))‖Hds
]p

+ 3p−1CpM
p
[ ∫ t

0

[e−pδ(t−s)(E‖f(s, x(t− ρ3(t)))‖pH)]2/pds
]p/2

≤ 3p−1MpE‖ϕ(0)‖pH + 3p−1Mp
[ ∫ t

0

e−δ(t−s)ds
]p−1

×
∫ t

0

e−δ(t−s)E‖h(s, x(t− ρ2(t)))‖pHds

+ 3p−1CpM
p
[ ∫ t

0

[e−pδ(t−s)mf (s)Θf (E‖x(s))‖pH)]2/pds
]p/2

≤ 3p−1MpE‖ϕ(0)‖pH + 3p−1Mpδ1−p

×
∫ t

0

e−δ(t−s)mh(s)Θh(E‖x(t− ρ2(t))‖pH)ds+ 3p−1CpM
p

×
[2δ(p− 1)

p− 2

]1−p/2 ∫ t

0

e−δ(t−s)mf (s)Θf (E‖x(t− ρ3(t))‖pH)ds

≤ 3p−1MpE‖ϕ(0)‖pH + 3p−1Mpδ1−pΘh(r∗)
∫ t1

0

e−δ(t−s)mh(s)ds

+ 3p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ t1

0

e−δ(t−s)mf (s)ds := L0.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

(Ψ2x)(t)

= Rα(t− tk)[x(t−k ) + Ik(x(tk))] +
∫ t

tk

Sα(t− s)h(s, x(t− ρ2(t)))ds

+
∫ t

tk

Sα(t− s)f(s, x(t− ρ3(t)))dw(s).

(3.8)

By (H1)–(H5), from (3.8) and Hölder’s inequality, we have for t ∈ (tk, tk+1], k =
1, . . . ,m,

E‖(Ψ2x)(t)‖pH
≤ 3p−1E‖Rα(t− tk)[x(t−k ) + Ik(x(t−k ))]‖pH
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+ 3p−1E
∥∥∫ t

tk

Sα(t− s)h(s, x(t− ρ2(t)))ds
∥∥p
H

+ 3p−1E
∥∥∫ t

tk

Sα(t− s)f(s, x(t− ρ3(t)))dw(s)
∥∥p
H

≤ 6p−1Mp[E‖x(t−k )‖pH + E‖Ik(x(t−k ))‖pH ]

+ 3p−1MpE
[ ∫ t

tk

e−δ(t−s)‖h(s, x(t− ρ2(t)))‖Hds
]p

+ 3p−1CpM
p
[ ∫ t

tk

[e−pδ(t−s)(E‖f(s, x(t− ρ3(t)))‖pH)]2/pds
]p/2

≤ 6p−1Mp(r + d1
kE‖x(t−k )‖pH + d2

k) + 3p−1Mp
[ ∫ t

tk

e−δ(t−s)ds
]p−1

×
∫ t

tk

e−δ(t−s)E‖h(s, x(t− ρ2(t)))‖pHds

+ 3p−1CpM
p
[ ∫ t

tk

[e−pδ(t−s)mf (s)Θf (E‖x(t− ρ3(t))‖pH)]2/pds
]p/2

≤ 6p−1Mp(r + d1
kr + d2

k) + 3p−1Mpδp−1

×
∫ t

tk

e−δ(t−s)mh(s)Θh(E‖x(t− ρ2(t))‖pH)ds

+ 3p−1CpM
p
[2δ(p− 1)

p− 2

]1−p/2 ∫ t

tk

e−δ(t−s)mf (s)Θf (E‖x(t− ρ3(t))‖pH)ds

≤ 6p−1Mp(r + dk) + 3p−1Mpδ1−pΘh(r∗)
∫ tk+1

tk

e−δ(t−s)mh(s)ds

+ 3p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ tk+1

tk

e−δ(t−s)mf (s)ds := Lk.

Take L = max0≤k≤m Lk, for all t ∈ [0, T ], we have E‖(Ψ2x)(t)‖pH ≤ L. Then for
each x ∈ Br, we have ‖Ψ2x‖Y ≤ L.

Step 3. Ψ2 : Y → Y is continuous. Let {xn(t)}∞n=0 ⊆ Y with xn → x(n → ∞)
in Y. Then there is a number r > 0 such that E‖xn(t)‖pH ≤ r for all n and a.e.
t ∈ [0, T ], so xn ∈ Br and x ∈ Br. By the assumption (H3) and Ik, k = 1, 2, . . . ,m,
are completely continuous, we have

E‖h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))‖pH → 0 as n→∞,
E‖f(s, xn(s− ρ3(s)))− f(s, x(s− ρ3(s)))‖pH → 0 as n→∞

for each s ∈ [0, t], and since

E‖h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))‖pH ≤ 2mh(t)Θh(r∗),

E‖f(s, xn(s− ρ3(s)))− f(s, x(s− ρ3(s)))‖pH ≤ 2mf (t)Θf (r∗).

Then by the dominated convergence theorem, for t ∈ [0, t1], we have

E‖(Ψ2xn)(t)− (Ψ2x)(t)‖pH

≤ 2p−1E
∥∥∫ t

0

Sα(t− s)[h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))]ds
∥∥p
H
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+ 2p−1E
∥∥∫ t

0

Sα(t− s)[f(s, xn(s− ρ3(s)))− f(s, x(s− ρ3(s)))]dw(s)
∥∥p
H

≤ 2p−1MpE
[ ∫ t

0

e−δ(t−s)‖h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))‖Hds
]p

+ 2p−1CpM
p
[ ∫ t

0

(E‖Sα(t− s)[f(s, xn(s− ρ3(s)))

− f(s, x(s− ρ3(s)))]‖pH)2/pds
]p/2

≤ 2p−1Mpδ1−p
∫ t

0

e−δ(t−s)E‖h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))‖pHds

+ 2p−1CpM
p
[ ∫ t

0

e−2δ(t−s)(E‖f(s, xn(s− ρ3(s)))

− f(s, x(s− ρ3(s)))‖pH)2/pds
]p/2

→ 0 as n→∞.

Similarly, for any t ∈ (tk, tk+1], k = 1, 2, . . . ,m, we have

E‖(Ψ2xn)(t)− (Ψ2x)(t)‖pH
≤ 3p−1E‖Rα(t− tk)[xn(t−k )− x(t−k ) + Ik(xn(t−k ))− Ik(x(t−k ))]‖pH

+ 3p−1E
∥∥ ∫ t

tk

Sα(t− s)[h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))]ds
∥∥p
H

+ 3p−1E
∥∥ ∫ t

tk

Sα(t− s)[f(s, xn(s− ρ3(s)))− f(s, x(s− ρ3(s)))]dw(s)
∥∥p
H

≤ 6p−1Mp[E‖xn(t−k )− x(t−k )‖pH + E‖Ik(xn(t−k ))− Ik(x(t−k ))‖pH ]

+ 3p−1Mpδ1−p
∫ t

0

e−δ(t−s)E‖h(s, xn(s− ρ2(s)))− h(s, x(s− ρ2(s)))‖pHds

+ 3p−1CpM
p
[ ∫ t

tk

e−2δ(t−s)(E‖f(s, xn(s− ρ3(s)))

− f(s, x(s− ρ3(s)))‖pH)2/pds
]p/2

→ 0 as n→∞.

Then, for all t ∈ [0, T ] we have

‖Ψ2xn −Ψ2x‖Y → 0 as n→∞.

Therefore, Ψ2 is continuous on Br.

Step 4. Ψ2 maps bounded sets into equicontinuous sets of Y.
Let 0 < τ1 < τ2 ≤ t1. Then, by using Hölder’s inequality and Lemma 2.11, for

each x ∈ Br, we have

E‖(Ψ2x)(τ2)− (Ψ2x)(τ1)‖pH
≤ 7p−1E‖[Rα(τ2)−Rα(τ1)]ϕ(0)‖pH

+ 7p−1E
∥∥∫ τ1−ε

0

[Sα(τ2 − s)− Sα(τ1 − s)]h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 7p−1E
∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]h(s, x(s− ρ2(s)))ds

∥∥p
H
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+ 7p−1E
∥∥∫ τ2

τ1

Sα(τ2 − s)h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 7p−1E
∥∥∫ τ1−ε

0

[Sα(τ2 − s)− Sα(τ1 − s)]f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

+ 7p−1E
∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s, x(s− ρ3(s)))dw(s)

∥∥p
H

+ 7p−1E
∥∥∫ τ2

τ1

Sα(τ2 − s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

≤ 7p−1E‖[Rα(τ2)−Rα(τ1)]ϕ(0)‖pH

+ 7p−1E
[ ∫ τ1−ε

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖L(H)‖h(s, x(s− ρ1(s)))‖Hds
]p

+ 7p−1E
[ ∫ τ1

τ1−ε
‖Sα(τ2 − s)− Sα(τ1 − s)‖L(H)‖h(s, x(s− ρ1(s)))‖Hds

]p
+ 7p−1E

[ ∫ τ2

τ1

‖Sα(τ2 − s)‖L(H)‖h(s, x(s− ρ1(s)))‖Hds
]p

+ 7p−1Cp

[ ∫ τ1−ε

0

[‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)

×
(
E‖f(s, x(s− ρ3(s)))‖pH

)
]2/pds

]p/2
+ 7p−1Cp

[ ∫ τ1

τ1−ε
[‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)

×
(
E‖f(s, x(s− ρ3(s)))‖pH

)
]2/pds

]p/2
+ 7p−1Cp

[ ∫ τ2

τ1

[‖Sα(τ2 − s)‖pL(H)(E‖f(s, x(s− ρ3(s)))‖pH)]2/pds
]p/2

≤ 7p−1E‖[Rα(τ2)−Rα(τ1)]ϕ(0)‖pH

+ 7p−1T p
∫ τ1−ε

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)mh(s)Θh(E‖x(s− ρ1(s)))‖pH)ds

+ 14p−1Mp
[ ∫ τ1

τ1−ε
e−δ(τ1−s)ds

]p−1
∫ τ1

τ1−ε
e−δ(τ1−s)mh(s)

×Θh(E‖x(s− ρ1(s)))‖pH)ds

+ 7p−1Mp
[ ∫ τ2

τ1

e−δ(τ2−s)ds
]p−1

∫ τ2

τ1

e−δ(τ2−s)mh(s)Θh(E‖x(s− ρ2(s)))‖pH)ds

+ 4p−1Cp

[ ∫ τ1−ε

0

[‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)

×mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds
]p/2

+ 14p−1CpM
p
[ ∫ τ1

τ1−ε
[e−pδ(τ1−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds

]p/2
+ 7p−1CpM

p
[ ∫ τ2

τ1

[e−pδ(τ2−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds
]p/2
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≤ 7p−1E‖[Rα(τ2)−Rα(τ1)]ϕ(0)‖pH

+ 7p−1T pΘh(r∗)
∫ τ1−ε

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)mh(s)ds

+ 14p−1MpΘh(r∗)δ1−p
∫ τ1

τ1−ε
e−δ(τ1−s)mh(s)ds

+ 7p−1MpΘh(r∗)δ1−p
∫ τ2

τ1

e−δ(τ2−s)mh(s)ds

+ 7p−1CpΘf (r∗)
[ ∫ τ1−ε

0

[‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)mf (s)]2/pds
]p/2

+ 14p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ τ1

τ1−ε
e−δ(τ1−s)mf (s)ds

+ 4p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ τ2

τ1

e−δ(τ2−s)mf (s)ds.

Similarly, for any τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, . . . ,m, we have

(Ψ2x)(t)

= Rα(t− tk)[x̄(t−k ) + Ik(x(tk))] +
∫ t

tk

Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t

tk

Sα(t− s)f(s, x(s− ρ3(s)))dw(s).

(3.9)

Then

E‖(Ψ2x)(τ2)− (Ψ2x)(τ1)‖pH
≤ 7p−1E‖[Rα(τ2)−Rα(τ1)][x(t−k ) + Ik(x(t−k ))]‖pH

+ 7p−1E
∥∥∫ τ1−ε

tk

[Sα(τ2 − s)− Sα(τ1 − s)]h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 7p−1E
∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]h(s, x(s− ρ2(s)))ds

∥∥p
H

+ 7p−1E
∥∥∫ τ2

τ1

Sα(τ2 − s)h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 7p−1E
∥∥∫ τ1−ε

tk

[Sα(τ2 − s)− Sα(τ1 − s)]f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

+ 7p−1E
∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s, x(s− ρ3(s)))dw(s)

∥∥p
H

+ 7p−1E
∥∥∫ τ2

τ1

Sα(τ2 − s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

≤ 4p−1E‖[Rα(τ2)−Rα(τ1)][x(t−k ) + Ik(x(t−k ))]‖pH

+ 7p−1T pΘh(r∗)
∫ τ1−ε

tk

‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)mh(s)ds

+ 14p−1MpΘh(r∗)δ1−p
∫ τ1

τ1−ε
e−δ(τ1−s)mh(s)ds
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+ 7p−1MpΘh(r∗)δ1−p
∫ τ2

τ1

e−δ(τ2−s)mh(s)ds

+ 4p−1CpΘf (r∗)
[ ∫ τ1−ε

tk

[‖Sα(τ2 − s)− Sα(τ1 − s)‖pL(H)mf (s)]2/pds
]p/2

+ 8p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ τ1

τ1−ε
e−δ(t−s)mf (s)ds

+ 4p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ τ2

τ1

e−δsmf (s)ds.

The fact of Ik, k = 1, 2, . . . ,m, are completely continuous in H and the compactness
of Rα(t), Sα(t) for t > 0 imply the continuity in the uniform operator topology.
So, as τ2 − τ1 → 0, with ε is sufficiently small, the right-hand side of the above
inequality is independent of x ∈ Br and tends to zero. The equicontinuities for the
cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ T are very simple. Thus the set {Ψ2x : x ∈ Br}
is equicontinuous.

Step 5. The set W (t) = {(Ψ2x)(t) : x ∈ Br} is relatively compact in H. To this
end, we decompose Ψ2 by Ψ2 = Γ1 + Γ2, where

(Γ1x)(t) =



∫ t
0
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t

0
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ [0, t1],∫ t

t1
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
t1
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (t1, t2],

. . .∫ t
tm
Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t
tm
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (tm, T ],

and

(Γ2x)(t) =


Rα(t)ϕ(0), t ∈ [0, t1],
Rα(t− t1)[x(t−1 ) + I1(x(t−1 ))], t ∈ (t1, t2],
. . .

Rα(t− tm)[x(t−m) + Im(x(t−m))], t ∈ (tm, T ].

We now prove that Γ1(Br)(t) = {(Γ1x)(t) : x ∈ Br} is relatively compact for
every t ∈ [0, T ]. Let 0 < t ≤ s ≤ t1 be fixed and let ε be a real number satisfying
0 < ε < t. For x ∈ Br, we define

(Γε1x)(t)(t) =
∫ t−ε

0

Sα(t− s)h(s, x(s− ρ2(s)))ds

+
∫ t−ε

0

Sα(t− s)f(s, x(s− ρ3(s)))dw(s).

Using the compactness of Sα(t) for t > 0, we deduce that the set Uε(t) = {(Γε1x)(t) :
x ∈ Br} is relatively compact in H for every ε, 0 < ε < t. Moreover, by using
Hölder’s inequality, we have for every x ∈ Br

E‖(Γ1x)(t)(t)− (Γε1x)(t)(t)‖pH

≤ 2p−1E
∥∥∫ t

t−ε
Sα(t− s)h(s, x(s− ρ2(s)))ds

∥∥p
H



20 Z. YAN, H. ZHANG EJDE-2013/206

+ 2p−1E
∥∥ ∫ t

t−ε
Sα(t− s)f(s, x(s− ρ3(s)))dw(s)

∥∥p
H

≤ 2p−1MpE
[ ∫ t

t−ε
e−δ(t−s)‖h(s, x(s− ρ2(s)))‖Hds

]p
+ 2p−1CpM

p
[ ∫ t

t−ε
[e−pδ(t−s)E‖f(s, x(s− ρ3(s)))‖pH ]2/pds

]p/2
≤ 2p−1Mpδ1−p

∫ t

t−ε
e−δ(t−s)mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds

+ 2p−1CpM
p
[ ∫ t

t−ε
[e−pδ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds

]p/2
≤ 2p−1Mpδ1−pΘh(r∗)

∫ t

t−ε
e−δ(t−s)mh(s)ds

+ 2p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ t

t−ε
e−δ(t−s)mf (s)ds.

Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m. Let tk < t ≤ s ≤ tk+1 be fixed and
let ε be a real number satisfying 0 < ε < t. For x ∈ Br, we define

(Γε1x)(t) =
∫ t−ε

tk

Sα(t−s)h(s, x(s−ρ2(s)))ds+
∫ t−ε

tk

Sα(t−s)f(s, x(s−ρ3(s)))dw(s).

Using the compactness of Sα(t) for t > 0, we deduce that the set Uε(t) = {(Γε1x)(t) :
x ∈ Br} is relatively compact in H for every ε, 0 < ε < t. Moreover, for every
x ∈ Br we have

E‖(Γ1x)(t)(t)− (Γε1x)(t)(t)‖pH

≤ 2p−1E
∥∥∫ t

t−ε
Sα(t− s)h(s, x(s− ρ2(s)))ds

∥∥p
H

+ 2p−1E
∥∥∫ t

t−ε
Sα(t− s)f(s, x(s− ρ3(s)))dw(s)

∥∥p
H

≤ 2p−1Mpδ1−pΘh(r∗)
∫ t

t−ε
e−δ(t−s)mh(s)ds

+ 2p−1CpM
pΘf (r∗)

[2δ(p− 1)
p− 2

]1−p/2 ∫ t

t−ε
e−δ(t−s)mf (s)ds.

There are relatively compact sets arbitrarily close to the set W (t) = {(Γ1x)(t) :
x ∈ Br}, and W (t) is a relatively compact in H. It is easy to see that Γ1(Br)
is uniformly bounded. Since we have shown Φ1(Br) is equicontinuous collection,
by the Arzelá-Ascoli theorem it suffices to show that Γ1 maps Br into a relatively
compact set in H.

Next, we show that Γ2(Br)(t) = {(Γ2x)(t) : x ∈ Br} is relatively compact for
every t ∈ [0, T ]. For all t ∈ [0, t1], since (Γ2x)(t) = Rα(t)ϕ(0), by (H1), it follows
that {(Γ2x)(t) : t ∈ [0, t1], x ∈ Br} is a compact subset of H. On the other hand,
for t ∈ (tk, tk+1], k = 1, . . . ,m, and x ∈ Br, and that the interval [0, T ] is divided
into finite subintervals by tk, k = 1, 2, . . . ,m, so that we need to prove that

W = {Rα(t− tk)[x(t−k ) + Ik(x(t−k ))], t ∈ [tk, tk+1], x ∈ Br}
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is relatively compact in C([tk, tk+1], H). In fact, from (H1) and (H5), it follows that
the set {Rα(t− tk)[x(t−k ) + Ik(x(t−k ))], x ∈ Br} is relatively compact in H, for all
t ∈ [tk, tk+1], k = 1, . . . ,m. Also, we see that the functions in W are equicontinuous
due to the compactness of Ik and the strong continuity of the operator Rα(t), for all
t ∈ [0, T ]. Now an application of the Arzelá-Ascoli theorem justifies the relatively
compactness of W . Therefore, we conclude that operator Γ2 is also a compact map.

Step 6. We shall show the set Υ = {x ∈ Y : λΨ1(xλ ) + λΨ2(x) = x for some λ ∈
(0, 1)} is bounded on [0, T ]. To do this, we consider the nonlinear operator equation

x(t) = λΨx(t), 0 < λ < 1, (3.10)

where Ψ is already defined. Next we gives a priori estimate for the solution of the
above equation. Indeed, let x ∈ Y be a possible solution of x = λΨ(x) for some
0 < λ < 1. This implies by (3.10) that for each t ∈ [0, T ] we have

x(t) =



λRα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))] + λg(t, x(t− ρ1(t)))
+λ
∫ t

0
Sα(t− s)h(s, x(s− ρ2(s)))ds

+λ
∫ t

0
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ [0, t1],

λRα(t− t1)[x(t−1 ) + I1(x(t−1 ))− g(t1, x(t+1 − ρ1(t+1 )))]
+λg(t, x(t− ρ1(t))) + λ

∫ t
t1
Sα(t− s)h(s, x(s− ρ2(s)))ds

+λ
∫ t
t1
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (t1, t2],

. . .

λRα(t− tm)[x(t−m) + Im(x(t−m))− g(tm, x(t+m − ρ1(t+m)))]
+λg(t, x(t− ρ1(t))) + λ

∫ t
tm
Sα(t− s)h(s, x(s− ρ2(s)))ds

+λ
∫ t
tm
Sα(t− s)f(s, x(s− ρ3(s)))dw(s), t ∈ (tm, T ].

(3.11)
By using Hölder’s inequality and Lemma 2.11, we have for t ∈ [0, t1]

E‖x(t)‖pH
≤ 4p−1E‖Rα(t)[ϕ(0)− g(0, ϕ(−ρ1(0)))]‖pH + 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1E
∥∥ ∫ t

0

Sα(t− s)h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 4p−1E
∥∥∫ t

0

Sα(t− s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

≤ 8p−1Mp[E‖ϕ(0)‖pH + E‖g(0, ϕ(−ρ1(0)))‖pH ] + 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1MpE
[ ∫ t

0

e−δ(t−s)‖h(s, x(s− ρ2(s)))‖Hds
]p

+ 4p−1
[ ∫ t

0

[e−pδ(t−s)(E‖f(s, x(s− ρ3(s)))‖pH)]2/pds
]p/2

≤ 8p−1Mp[E‖ϕ(0)‖pH + LgE‖ϕ(−ρ1(0))‖pH ] + 4p−1LgE‖x(t− ρ1(t)))‖pH

+ 4p−1Mp
[ ∫ t

0

e−(pδ/p−1)(t−s)ds
]p−1

∫ t

0

mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds

+ 4p−1CpM
p
[ ∫ t

0

[e−pδ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds
]p/2

.
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Similarly, for any t ∈ (tk, tk+1], k = 1, . . . ,m, we have

E‖x(t)‖pH
≤ 4p−1E‖Rα(t− tk)[x(t−k ) + Ik(x(t−k ))− g(tk, x(t+k − ρ1(t+k )))]‖pH

+ 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1E
∥∥∫ t

tk

Sα(t− s)h(s, x(s− ρ2(s)))ds
∥∥p
H

+ 4p−1E
∥∥∫ t

tk

Sα(t− s)f(s, x(s− ρ3(s)))dw(s)
∥∥p
H

≤ 12p−1Mp[E‖x(t−k )‖pH + E‖Ik(x(t−k )‖pH + E‖g(tk, x(t+k − ρ1(t+k )))‖pH ]

+ 4p−1E‖g(t, x(t− ρ1(t)))‖pH

+ 4p−1Mp
[ ∫ t

tk

e−δ(t−s)‖h(s, x(s− ρ2(s)))‖Hds
]p

+ 4p−1
[ ∫ t

tk

[e−pδ(t−s)(E‖f(s, x(s− ρ3(s)))‖pH)]2/pds
]p/2

≤ 12p−1Mp[E‖x(t−k )‖pH + d1
kE‖x(t−k )‖pH + d2

k + LgE‖x(t+k − ρ1(t+k ))‖pH ]

+ 4p−1LgE‖x(t− ρ1(t))‖pH

+ 4p−1Mp
[ ∫ t

tk

e−(pδ/p−1)(t−s)ds
]p−1

∫ t

tk

mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds

+ 4p−1CpM
p
[ ∫ t

tk

[e−pδ(t−s)mf (s)Θf (E‖x(s− ρ3(s)))‖pH)]2/pds
]p/2

.

Then, for all t ∈ [0, T ], we have

E‖x(t)‖pH
≤ M̃ + 12p−1Mp[E‖x(t−k )‖pH + d1

kE‖x(t−k )‖pH
+ LgE‖x(t+k − ρ1(t+k ))‖pH ] + 4p−1LgE‖x(s− ρ1(s))‖pH

+ 4p−1Mp
[ ∫ t

0

e−(pδ/p−1)(t−s)ds
]p−1

∫ t

0

mh(s)Θh(E‖x(s− ρ2(s))‖pH)ds

+ 4p−1CpM
p
[ ∫ t

0

[e−pδ(t−s)mf (s)Θf (E‖x(s− ρ3(s))‖pH)]2/pds
]p/2

,

where

M̃ = max{8p−1Mp[E‖ϕ(0)‖pH + LgE‖ϕ(−ρ1(0))‖pH ], 12p−1Mpd̃},

d̃ = max1≤k≤m d
2
k. By the definition of Y, it follows that

E‖x(s− ρi(s))‖pH ≤ 2p−1‖ϕ‖pB + 2p−1 sup
s∈[0,t]

‖x(s)‖pH , i = 1, 2, 3.

If µ(t) = 2p−1‖ϕ‖pB + 2p−1 sups∈[0,t]E‖x(s)‖pH , we obtain that

µ(t) ≤ 2p−1‖ϕ‖pB + 2p−1M̃ + 12p−1Mp[µ(t) + d1
kµ(t) + 2p−1Lgµ(t)] + 8p−1Lgµ(t)

+ 8p−1Mp
[ ∫ t

0

e−(pδ/p−1)(t−s)ds
]p−1

∫ t

0

mh(s)Θh(µ(s))ds
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+ 8p−1CpM
p
[ ∫ t

0

[e−pδ(t−s)mf (s)Θf (µ(s))]2/pds
]p/2

.

Note that [ ∫ t

0

[e−pδ(t−s)mf (s)Θf (µ(s))]2/pds
]p/2

≤
[ ∫ t

0

e−[ 2p
p−2 ]δ(t−s)ds

]p/2−1
∫ t

0

mf (s)Θf (µ(s))ds

≤ [
2δp
p− 2

]1−p/2
∫ t

0

mf (s)Θf (µ(s))ds.

So, we obtain

µ(t) ≤ 2p−1‖ϕ‖pB + 2p−1M̃ + 12p−1Mp[µ(t) + d1
kµ(t) + 2p−1Lgµ(t)]

+ 8p−1Lgµ(t) + 8p−1Mp[
pδ

p− 1
]1−p

∫ t

0

mh(s)Θh(µ(s))ds

+ 8p−1CpM
p[

2δp
p− 2

]1−p/2
∫ t

0

mf (s)Θf (µ(s))ds.

Since L̃ = max1≤k≤m{12p−1Mp(1 + d1
k + 2p−1Lg) + 8p−1Lg} < 1, we obtain

µ(t) ≤ 1

1− L̃

[
2p−1‖ϕ‖pB + 2p−1M̃ + 8p−1Mp[

pδ

p− 1
]1−p

∫ t

0

mh(s)Θh(µ(s))ds

+ 8p−1CpM
p[

2δp
p− 2

]1−p/2
∫ t

0

mf (s)Θf (µ(s))ds
]
.

Denoting by ζ(t) the right-hand side of the above inequality, we have

µ(t) ≤ ζ(t) for all t ∈ [0, T ],

ζ(0) =
1

1− L̃
[2p−1‖ϕ‖pB + 2p−1M̃ ],

ζ ′(t) =
1

1− L̃

[
8p−1Mp[

pδ

p− 1
]1−pmh(t)Θh(µ(t))

+ 8p−1CpM
p[

2δp
p− 2

]1−p/2mf (t)Θf (µ(t))
]

≤ 1

1− L̃

[
8p−1Mp[

pδ

p− 1
]1−pmh(t)Θh(ζ(t))

+ 8p−1CpM
p[

2δp
p− 2

]1−p/2mf (t)Θf (ζ(t))
]

≤ m∗(t)[Θh(ζ(t)) + Θf (ζ(t))],

where

m∗(t) = max
{ 1

1− L̃
8p−1Mp[

pδ

p− 1
]1−pmh(t),

1

1− L̃
8p−1CpM

p[
2δp
p− 2

]1−p/2mf (t)
}
.

This implies that ∫ ζ(t)

ζ(0)

du

Θh(u) + Θf (u)
≤
∫ T

0

m∗(s)ds <∞.
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This inequality shows that there is a constant K̃ such that ξ(t) ≤ K̃, t ∈ [0, T ], and
hence ‖x‖Y ≤ ζ(t) ≤ K̃, where K̃ depends only on M, δ, p, Cp and on the functions
mf (·),Θf (·). This indicates that Υ is bounded on [0, T ]. Consequently, by Lemma
2.12, we deduce that Ψ1 + Ψ2 has a fixed point x(·) ∈ Y, which is a mild solution of
the system (1.1)-(1.3) with x(s) = ϕ(s) on [m̃(0), 0] and E‖x(t)‖pH → 0 as t→∞.
This shows that the asymptotic stability of the mild solution of (1.1)-(1.3). In fact,
let ε > 0 be given and choose δ̃ > 0 such that δ̃ < ε and satisfies

[16p−1Mp + 8p−1Mp[δ1−pLh + Cp(
2δ(p− 1)
p− 2

)1−2/pLf ]]δ̃ + L̃ε < ε.

If x(t) = x(t, ϕ) is mild solution of (1.1)-(1.3), with ‖ϕ‖pB+LgE‖ϕ(−ρ1(0))‖pH < δ̃,
then (Ψx)(t) = x(t) and satisfies E‖x(t)‖pH < ε for every t ≥ 0. Notice that
E‖x(t)‖pH < ε on t ∈ [m̃(0), 0]. If there exists t̃ such that E‖x(t̃)‖pH = ε and
E‖x(s)‖pH < ε for s ∈ [m̃(0), t̃]. Then (3.4) show that

E‖x(t)‖pH

≤
[
16p−1Mpe−pδt̃ + 8p−1Mp

[
δ1−pLh + Cp

(2δ(p− 1)
p− 2

)1−2/p
Lf
]]
δ̃ + L̃ε < ε,

which contradicts the definition of t̃. Therefore, the mild solution of (1.1)-(1.3) is
asymptotically stable in p-th moment. The proof is complete. �

Remark 3.4. It is well known that the study on nonlocal problems are motivated
by physical problems. For example, it is used to determine the unknown physical
parameters in some inverse heat conduction problems [10]. Due to the importance
of nonlocal conditions in different fields, there has been an increasing interest in
study of the fractional impulsive stochastic differential equations involving nonlocal
conditions (see [27]). In this remark, we will try to make some simulations about
the above results and study the asymptotical stability in p-th moment of mild solu-
tions to a class of fractional impulsive partial neutral stochastic integro-differential
equations with nonlocal conditions in Hilbert spaces

cDαN(x(t)) = AN(x(t)) +
∫ t

0

R(t− s)N(x(s))ds+ h(t, x(t)) + f(t, x(t))
dw(t)
dt

,

t ≥ 0, t 6= tk,

(3.12)

x0 +G(x) = x0, x′(0) = 0, (3.13)

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, . . . ,m, (3.14)

where cDα, A,Q,w are defined as in (1.1)-(1.3). Here N(x) = x(0)+g(t, x), x ∈ H,
and g : [0,∞) × H → H, f : [0,∞) × H → L(K,H), are all Borel measurable;
Ik : H → H(k = 1, . . . ,m), G : Y→ H are given functions, where Y be the space of
all F0-adapted process ψ(t, w̃) : [0,∞)×Ω→ R which is almost certainly continuous
in t for fixed w̃ ∈ Ω. Moreover ψ(0, w̃) = x0 and E‖ψ(t, w̃)‖pH → 0 as t→∞. Also
Y is a Banach space when it is equipped with a norm defined by

‖ψ‖Y = sup
t≥0

E‖ψ(t)‖pH .

To prove the Asymptotic stability result, we assume that the following condition
holds.
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(H6) The functions G : Y → H are completely continuous and that there is a
constant c such that E‖G(x)‖pH ≤ c for every x ∈ Y.

Further, the mild solution of the Fractional impulsive stochastic system (3.12)-
(3.14) can be written as

x(t) =



Rα(t)[x0 −G(x)− g(0, x(0))] + g(t, x(t))
+
∫ t

0
Sα(t− s)h(s, x(s))ds

+
∫ t

0
Sα(t− s)f(s, x(s))dw(s), t ∈ [0, t1],

Rα(t− t1)[x(t−1 ) + I1(x(t−1 ))− g(t1, x(t+1 ))]
+g(t, x(t)) +

∫ t
t1
Sα(t− s)h(s, x(s))ds

+
∫ t
t1
Sα(t− s)f(s, x(s))dw(s), t ∈ (t1, t2],

. . .

Rα(t− tm)[x(t−m) + Im(x(t−m))− g(tm, x(t+m))]
+g(t, x(t)) +

∫ t
tm
Sα(t− s)h(s, x(s))ds

+
∫ t
tm
Sα(t− s)f(s, x(s))dw(s), t ∈ (tm, T ].

One can easily prove that by adopting and employing the method used in The-
orem 3.3, the fractional impulsive stochastic differential equations (3.12)-(3.14) is
asymptotically stable in p-th moment.

4. Example

Consider the fractional impulsive partial stochastic neutral integro-differential
equation

∂αN(zt)(x)
∂tα

=
∂2N(zt)(x)

∂x2
+
∫ t

0

(t− s)σe−µ(t−s) ∂
2N(zt)(x)
∂x2

ds

+ ς(t, x, z(t− ρ2(t), x)) +$(t, x, z(t− ρ3(t), x))
dw(t)
dt

,

t ≥ 0, 0 ≤ x ≤ π, t 6= tk,

(4.1)

z(t, 0) = z(t, π) = 0, t ≥ 0, (4.2)

zt(0, x) = 0, 0 ≤ x ≤ π, (4.3)

z(τ, x) = ϕ(τ, x), τ ≤ 0, 0 ≤ x ≤ π, (4.4)

4z(tk, x) = z(t+k , x)− z(t−k , x) =
∫ π

0

ηk(s, z(tk, x))ds, k = 1, 2, . . . ,m, (4.5)

where (tk)k ∈ N is a strictly increasing sequence of positive numbers, Dα
t = ∂α

∂tα

is a Caputo fractional partial derivative of order α ∈ (1, 2), σ, and µ are positive
numbers and w(t) denotes a standard cylindrical Wiener process in H defined on
a stochastic space (Ω,F , P ). In this system, ρi(t) ∈ C(R+,R+), i = 1, 2, 3, and

N(zt)(x) = z(t, x)− ϑ(t, x, z(t− ρ1(t), x)).

LetH = L2([0, π]) with the norm ‖·‖H and define the operators A : D(A) ⊆ H → H
by Aω = ω′′ with the domain

D(A) := {ω ∈ H : ω, ω′ are absolutely continuous, ω′′ ∈ H,ω(0) = ω(π) = 0}.
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Then

Aω =
∞∑
n=1

n2〈ω, ωn〉ωn, ω ∈ D(A),

where ωn(x) =
√

2
π sin(nx), n = 1, 2, . . . is the orthogonal set of eigenvectors of

A. It is well known that A generates a strongly continuous semigroup T (t), t ≥ 0
which is compact, analytic and self-adjoint in H and A is sectorial of type and
(P1) is satisfied. The operator R(t) : D(A) ⊆ H → H, t ≥ 0, R(t)x = tσe−ωtx′′ for
x ∈ D(A). Moreover, it is easy to see that conditions (P2) and (P3) in Section 2
are satisfied with b(t) = tσe−µt and D = C∞0 ([0, π]), where C∞0 ([0, π]) is the space
of infinitely differentiable functions that vanish at x = 0 and x = π.

Additionally, we will assume that

(i) The function ϑ : [0,∞) × [0, π] × R → R is continuous and there exists a
positive constant Lϑ such that

|ϑ(t, x, u)− ϑ(t, x, v)| ≤ Lϑ|u− v|, t ≥ 0, x ∈ [0, π], u, v ∈ R.

(ii) The function ς : [0,∞) × [0, π] × R → R is continuous and there exists a
positive continuous function mς(·) : R× [0, π]→ R such that

|ς(t, x, u)| ≤ mς(t, x)|u|, t ≥ 0, x ∈ [0, π], u ∈ R.

(iii) The function ϑ : [0,∞) × [0, π] × R → R is continuous and there exists a
positive continuous function m$(·) : R× [0, π]→ R such that

|$(t, x, u)| ≤ m$(t, x)|u|, t ≥ 0, x ∈ [0, π], u ∈ R.

(iv) The functions ηk : R2 → R, k ∈ N, are completely continuous and there
are positive continuous functions Lk : [0, π]→ R(k = 1, 2, . . . ,m) such that
|ηk(s, u)| ≤ Lk(s)|u|, s ∈ [0, π], u ∈ R.

We can define N : H → H, g, h : [0,∞) × H → H, f : [0,∞) × H → L(K,H)
and Ik : H → H respectively by

N(zt)(x) = ϕ(0, x) + g(t, z)(x),

g(t, z)(x) = ϑ(t, x, z(t− ρ1(t), x)),

h(t, z)(x) = ς(t, x, z(t− ρ2(t), x)),

f(t, z)(x) = $(t, x, z(t− ρ3(t), x)),

Ik(z)(x) =
∫ π

0

ηk(s, z(x))ds.

Then the problem (4.1)–(4.5) can be written as (1.1)–(1.3). Moreover, it is easy to
see that

E‖g(t, z1)− g(t, z2)‖pH ≤ Lg‖z1 − z2‖pH , z1, z2 ∈ H,
E‖h(t, z)‖pH ≤ mh(t)‖z‖pH , z ∈ H,
E‖f(t, z)‖pH ≤ mf (t)‖z‖pH , z ∈ H,

E‖Ik(z)‖pH ≤ dk‖z‖
p
H , z ∈ H, k = 1, 2, . . . ,m,

where Lg = Lpϑ,mh(t) = supx∈[0,π]m
p
τ (t, x), mf (t) = supx∈[0,π]m

p
$(t, x), dk =

[
∫ π

0
Lk(s)ds]p, k = 1, 2, . . . ,m. Further, we can impose some suitable conditions on
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the above-defined functions to verify the assumptions on Theorem 3.3, we can con-
clude that system (4.1)-(4.5) has at least one mild solution, then the mild solutions
is asymptotically stable in the p-th mean.

Conclusions. In this article, we are focused on the theory study on the asymptot-
ical stability in the p-th moment of mild solutions to a class of fractional impulsive
partial neutral stochastic integro-differential equations with state-dependent de-
lay. We derive some interesting sufficient conditions to guarantee the asymptotical
stability results for fractional impulsive stochastic evolution systems in infinite di-
mensional spaces. Our techniques rely on the fractional calculus, properties of the
α-resolvent operator, and Krasnoselskii-Schaefer type fixed point theorem. Our
methods not only present a new way to study such problems under the Lipschitz
condition not required in the paper, but also provide new theory results appeared
in paper previously are generalized to the fractional stochastic systems settings
and the case of state-dependent delay with impulsive conditions. An application is
provided to illustrate the applicability of the new result.

Our future work will try to make some the above results and study the expo-
nential stability in p-th moment of mild solutions to fractional impulsive partial
neutral stochastic integro-differential equations with state-dependent delay.

Acknowledgments. The authors would like to thank the editor and the anony-
mous reviewers for their constructive comments and suggestions to improve the the
original manuscript.
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