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THE (n—1)-RADIAL SYMMETRIC POSITIVE CLASSICAL
SOLUTION FOR ELLIPTIC EQUATIONS WITH GRADIENT

YONG ZHANG, QIANG XU, PEIHAO ZHAO

ABSTRACT. In this article, we study the existence of the (n — 1)-radial sym-
metric positive classical solution for elliptic equations with gradient. By some
special techniques in two variables, we show a priori estimates, and then show
the existence of a solution using a fixed point theorem.

1. INTRODUCTION

In this article, we consider the following boundary-value problem of a second-

order elliptic equation,
—Au= f(z,u,Vu) in Q,
u(z) =0, on 99,

where € is a bounded domain in R™, n > 3.

This type of equations have been studied by several authors. As the nonlinearity
f depends on the gradient of the solution, solving is not variational and the
well developed critical point theory can not be applied directly. But if f has a
special form, by changing variables, can be transformed into a boundary-
value problem which is independent of Vu. For example, When f(z,u, Vu) =
g(u) + A|[Vul? + 7, Ghergu and Ridulescu [8] used the above method to show the
existence of positive classical solution under the assumption that g is decreasing
and unbounded at the origin. A similar method appears in [I], where f(x,u, Vu)
has critical growth with respect to Vu; see also [9], 20]. In addition, Chen and Yang
[5] considered the existence of positive solutions for on a smooth compact
Riemannian manifold. As far as we know, the methods used to solve are mainly
sub and super-solution, fixed point theorems, Galerkin method, and topological
degree, see, for instance, [2} [3] [7, 13| 17 18] 19].

It is worth mentioning that de Figueiredo, Girardi and Matzeu [6] developed
a quite different method of variational type. Firstly, for each w € H}(Q), they
considered the boundary problem

—Au = f(z,u,Vw) in Q,
u(z) =0, on IN.

(1.1)

(1.2)
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which is a variational problem. Under the assumptions that f has a superlinear
subcritical growth at zero and at infinity with respect to the second variable, and
f is locally Lipschitz continuous with the third variable, they proved that a weak
solution u,, of exists by mountain-pass theorem. Then they have constructed
a sequence {uy} C Hg(2) as solutions of

—Auy, = f(z,un, Vuy—1) in Q,

1.
un(x) =0, on 09, (13)

and verified that {ux} converges to a solution of (1.1). However, this solution is
just in H}(Q).

Additionally, the existence of classical solutions for (1.1) has been obtained by
mountain-pass lemma and a suitable truncation method in [T1], but the conditions
imposed on f are very strong:

(1) f is locally Lipschitz continuous on Q x R x R”,
(2) M converges to zero uniformly with respect to x € Q, £ € R" as t tends
to zero,
(3) there exist a; >0, p € (1,2£2) and r € (0,1) such that
[f@, Ol S ar(L+ [tP)(A+[E]7), Ve eQ, teR, £€RT,
(4) there exist ¥ > 2 and as, as, to > 0 such that
F(x,t,8) > as|t]” — as,

where F(x,t,&) = fo (w,5,€)ds.

As far as we know, a few authors have paid attention to the radial solutions of
; see for example [ [7]. So we will limit us to the radially symmetric case and
try to focus on some new methods to study . We consider the boundary-value
problem and assume the following:

(D1) © is a so-called (n — 1)-symmetric domain in R"(n > 3), that is, Q is

symmetric with respect to x1,z2, - , 2,1 and 0 ¢ Q;
(F1) f(x,u,n) is a nonnegative function satisfying f(z,u,n) = f(r,z,,u, |n|),

— Jp2 4 g2 2 .
Whererf\/xl—i—xQ—i-u'—i—xn 1

(F2) there exist ¢ > 1, M >0,p>1,7€ (0 such that

)
= Min|™ < f(z,u,n) < couP + Mn|™, V(z,u,n) € A xR xR,
(F3) f(x,u,n) € CP(Q,R,R") for some 3 € (0,1).

We remark that in [I4], the constants p and 7 belong to (1, 2(" 1)) and (1, pz%)
respectively. Obviously, the conditions in (F2) are weaker than those in [T4].

If the solution u(x) is (n — 1)-radial symmetric, that is u(z) = u(r, z,), then by
(F1) Equation can be transformed into the following elliptic equation in two
variables:

—(Upr + Uy, 2, ) = H(r, Tppy Uy Uy Uy, ),  in €,
u(z) =0, on 09,

where H(r, Tn, U, Uy, Uy,) = f(r,zn,u, |Vu|) + "T*Qu,.. Motivated by the priori
estimates mentioned in [I4] and special technique for the equation in two variables
developed in [I0], we develop an approach which is distinct from the previous

(1.4)
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works, and shows the existence of the (n — 1)-radial symmetric positive classical
C?P-solutions of (L.I). Note that solution in [I4] is just in C1*(Q).

The rest of this work is organized as follows. Motivated by [14] we give a priori
estimates in section 2. In section 3 we show the existence of (n—1)-radial symmetric
positive classical solutions with the help of [10].

2. A PRIORI ESTIMATES
Compared with the reference [14], we should deal with the second term “=2u,
of H(r,xp,u,u,,u,, ) in (1.4) additionally, it is necessary to give a brief proof of
the a priori estimates although the process is similar to that in [14].
Theorem 2.1. Assume that (D1) and (F2) hold, and that A < Ao for some Ao
fized. Then, for any C'-solution u of the equation
_(UTT + uwnxn) = H(’I“, Tny Uy Uy, uzn) + )‘7 m Q) 91
u(z) =0, on 09, 21)

there exists a positive constant C' such that supgu < C.
To prove this theorem, we need the following lemmas.

Lemma 2.2. Let (D1) hold and u(r,z,) be a positive weak C'-solution of the
inequality

-2
= (Upr + Ugpz,) > uP — M|Vul" +

Up, (2.2)

where 1 < p and 0 < 7 < 2p/(p+1). Take v € (0,p) and p € (0, pzfl) Denote

by Bogr a ball of radius 2R contained in ), where R < Ry and Ry is a positive
constant. Then there exists a positive constant C' = C(p,~, 1, Ro) such that

/ uw? < CR*>2/(p=1) (2.3)
Br

/B |Vl < C R2—(p+1)p/(p—1) (2.4)
R

Pmof. We can assume that Bp is centered at xy € ) and first focus on proving
. Let & be a C?-cut-off function on By satisfying:

(1) () = &(lz — wol), 0 < |z — wo| < 2.
(2) &(z) =1 for |z — x| < 1.
(3) & has compact support in By and 0 < ¢ < 1.
(4) V¢ <2
Let d =p—~ > 0and ¢ = [£(2722)]Fu~? as a test function for (k to be fixed
later). We obtain

— / (Upp + umn’xn)gkufd > /(up — M|Vu|” +
Q Q

Integrating by parts and using that |V&F| = keF—1|Ve| < ¢h 28 ¢ We obtain

d/ fku"’_p_1|Vu|2—ﬁ-/é“ku"Y
Q Q

< / w4 V| VER] + M / Vul € / n 2 gy
Q Q o T

-2
ur)ﬁku*d.
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< —d k2 ky—d 4 n-—- / ky—d
_/Q Vuleh 22 +M/ Va5 7{1 o [ vl

Applying the Young mequahty to the first right term, we have
2k
/ ‘dIVuIS’“ RE S 4/5’“ 7P~ wy? + CR™ /g’ﬂ 2yt
Q

§d/gkuV—P—1\Vu|2+/g’w

<CR™ /gk 2y P+1+M/ |Vu|"¢Fu= + /|Vu|§k —d,
( aQ
2y

Next we focus on the case of v > p — 1. Take k =
inequality again, we have

CR—Q/g’“‘Qu”‘p“ < i/guerRz—zv/(p—l)
Q Q

o1 By using the Young

and
M/ |Vau|"¢bu=4 < é/ fku'y_p_1|Vu|2+C/ et
Q 4 Q Q

d 1
< 1/gkuV’p’1|Vu|2+Z/fku7+C’R*2,
Q Q

the second inequality holds becasue t = (—d — 77_’2’_1)L < 7, and

n — _
rt 550 /|Vu|§k d< = /gk P 1|vu|2+c/§’w P+l
< 7/ §ku7_p_1|Vu|2+f/fku’y—i—CR_Q.
4 Jo 4 Jo

So

d 1

Z/nguW—P—l\VuF + Z/Qg’%ﬂ < CR* /=), (2.5)
which gives (12.3)).

If v =p—1, (2.3) is obvious by the above arguments. For the case of v < p—1,
the following Hoder inequality

/ u’Y<CR2(1—’Y)/(p—1)(/ up_l)V/(pfl)
Br o .

and the above argument yields to (2.3).
To prove ([2.4]), we use Hoder inequality:
"

/BR IVl < (/BR u7p1vu2)u/2(/BR us)l—f,

where s = (p+1 —7)/(2 — ). We can choose v close enough to p — 1 such that
s < p, and then obtain (2.4]) by combining (2.3)) and (2.5). Thus we complete the
proof. O

Lemma 2.3. Let u(r, x,) be a nonnegative weak solution of the following inequality,
i a domain €,

Uy + Uz, | < ()| Vu| + d(x)u + f(z),
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where c(x) € LY (Q), d, f € LY(Q), ¢ > 2 and q € (1,2). Then for every R such
2
that Bar C Q, there exists a constant C = C’(q,q’,Rl_?HcHqu, R27§||d||Lq) such
that
supu < C(infu + R* 4 || f||q).
Br Br
Note that this lemma is of Harnack type; see [I5] for more information on this
type of inequalities. The next theorem is similar to [I4] Theorem 2.3].

Theorem 2.4. Let (D) hold and R < Ry such that Bar C Q. Suppose u(r,xy,) is
a positive weak solution of the inequality

-2 -2
B Py € —(try + Uaa,) < cou? + M|Vl +

uP — M|Vu|™ + Up + A,

wherep >1,0< 1< %, A > 0. Then there exists a constant C = C(p, 7, Rg, M)
such that

supu < C(inf u + AR?).
Br Br

Proof. From (2.4)), we obtain
-2
[ty + U, 2, | < couP + M|Vu|" + L|Vu| + A
r

Take f =\, ¢ = M|Vu|"~ + "772 and d = couP~!. To prove this theorem, we only
need to verify that

c(x) € LY (Be), d€ LY(Bag).
Note that "7_2 obviously belongs to LY (B2r), so we only need to prove M|Vu|""1 €
L9 (Byg). By lemma 2.1, we have

1Tl = ([

B2r)

1/q' 2-(p+ /(=1
Vul) " < ORI
where 1 = ¢/(7 — 1) should satisfy ¢'(7 — 1) < % for some ¢’ > 2. Since 7 < %
and ¢’ > 2 can be close enough to 2, so we just need to verify

2 2
2(7}7 _ 1) < 7}9
p+1 p+1
The above inequality is obvious, that is to say, c(z) € LY (B2R).
For d = couP~*, by lemma 2.1 we have

1/q
1 Lo(Bap) = 00(/ uv) < CRC-20/1,
B(2r)
where v = (p — 1)g¢ should satisfy (p — 1)g < p. By choosing ¢ > 1 close enough to
1, we can get (p — 1)q < p, that is, d € L9(Bsr). The proof is complete. O

For completeness, we sketch the proof of Theorem [2.I] which is similar as the
proof of [14] Proposition 3.3].

Proof of Theorem[2.1 Suppose, by contradiction, that there exist A, < Ag, un, >0
such that u,, is solution of with A substituted by \,, and maxgq u,, — 0o. Let
2z, be a point in Q such that u,(z,) = maxqu, = S,. Denote d,, = dist(z,, ).
In order to prove there exists a yg € Q such that u,(yo) — oo, we proceed in three
steps:
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Step 1: There exists ¢ > 0 such that ¢ < 6,57 /2. Define w(z) = S, u,(y),
where y = M,z + z,, M, = St=p/2, By easy computation and condition (F2), we
obtain

—Awy,(x) = S, M2(H(Mpx + 2, Spwn (), Sp M, "V, (2)) + A\y)
n—2

p+1
< cowP + MS,PS, 7 |Vw,|™ + —— e
= Cotn + " Vel + dist (0, 0Q)

V| + AnSP.

pt1
Notice that M S, P S, % and An S, P tend to zero respectively as n tends to infinity,
SO
n—2

—Awn(@) < cown + [Vl + G550
w. (Z‘) _Cown+|vw | + dlSt(O,aQ)

|Vw,|+ 1.

By the regularity result in [12], there exists a constant C' independent of n such
that supg w, < C. Let y,, € 0Q such that d(zn,yn) = 0,; then, by the mean value
theorem, we have

1 = wp(0) = wp(0) — wp (M, (yn — 2n)) < supw, M, 16, < CM, *5,.
Q

Thus, the first step is complete.
Step 2: There exists v > 0 such that

/ [up]? — 0.
B(zn,0n/2)

By Theorem we obtain

2

S, = max u, < C( min  u, +)\n—").
B(2n,61/2) B(2n,0n/2) 4

Since A, and d,, are bounded, we obtain that ming., s, /2) un > ¢S, for some ¢ > 0.
So

/ [un|? > eSY62 > ¢S)SEP.
B(zrm(sn/z)

We can choose a v > p — 1 such that ¢SYS}=? — +o00. The proof of step 2 is
complete.

Step 3: There exists a yo € € such that u,(yo) — oo. Notice that 99 is C? and
compact boundary , so we can find € > 0 independent of n and y, € €2 such that:

e d(yn,d0) = 2¢, for all n € N.
o B(zp, %") C B(yn,2¢), for all n € N.

By the weak Harnack inequality in [16] and step 2, we conclude that

. 1/~
min wu, > c(/ |un|7) — 400.
B(yn,e) B(yn,Qe)

Taking a subsequence {§,} C {y,} such that g, — yo € Q. For n large enough, we
have yo € B(Jn,e) and u,(yo) — oo, which contradicts with Theorem [2.4 Thus
we obtain a priori estimate of solutions. (I
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3. EXISTENCE OF POSITIVE CLASSICAL C%”-SOLUTIONS

Theorem 3.1. Assume (D1), (F1)—~(F3) hold. Then (1.1) admits an (n—1)-radial
symmetric positive classical solution u(r,z,) € C*5(Q) N CO(Q).
The following lemma mentioned in [I0] will be used in our proof.
Lemma 3.2 ([10, Theorem 12.4]). Let u be a bounded C?(Q) solution of
Lu = a(zv y)uzz + 26(:177 y)uzy + C(IE, y)uyy = f(xa y)a
where L is uniformly elliptic in a domain Q C R?, satisfying
NE> +17%) < a€® +2b€n + en” < AE +1%), V(&) € R,
A <
N = Y
for some constant v > 1. Then for some a = a(v) > 0, we have
D -D
[UH,Q = sup di—ga‘ U(ZQ) U(Zl)|

2meQ |22 — 21]*

where C = C(y), |47 = sup,cq d2|L], d. = dist(z,89) and dy 2 = min{d.,,d.,}.

!
< C(fulo +15167),

Since the conditions imposed on f in Theorem [3.1] are different from those in
[10, Theorem 12.5], it is necessary to give the proof, although similar to that of [10,
Theorem 12.5].

Proof of Theorem[3.1. We now proceed by truncation of H to reduce (1.4) to the
case of bounded H. Namely, let ¢ denote the function given by

t, it <N
t) =
¥n () {Nsignt7 [t| > N,
and define the truncation of H by
HN (7, @n, s Uy g, ) = H(r,2p, Y (w), Y (ur), Y (Uz,, )
From (F2), we have |[Hy| < ¢gN? + MN™ + W_%Q)N = (Cp. Consider now the
family of problems
—(Upp + Uy, z,)) = HN (7, Ty, Uy, 1y, ) in Q,
u(z) =0, on IN.
By Theorem any solution u of (3.1 is subject to the bound M, independent
of N,

(3.1)

sup |u| < M. (3.2)
)

Now we make the following observation. Let v be any bounded function with locally
Holder continuous first derivatives in Q and Hy = Hy(r, Zp, v, vy, vy, ). Then the
following linear problem

—(Urp + Ugpz,) = }fN in §,

u(z) =0, on 09, (3:3)

has a unique solution u € C?()NC°(Q2). We observe from classical priori estimates
that
lulo = Slgllp lu] < M.
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Furthermore, if supg |v| < My, from lemma 3.1, we have
[uli o < C(lulo + Co(diam(Q2))?) < C(My + Co(diam(Q))?) = K,

where C, o depend on My. So K depends on My, N and €.
Next, define the Banach space
Cr(Q) = {u € CH(Q)|Jul] o0 < +00}
and define a mapping 7" on the set
S={veCh*: i, <K, v|o < Mo}

So u = Tw is the unique solution of the linear Dirichlet problem (3.3)). It is easy
to show that S is convex and closed in the Banach space, and T is continuous in
Ci = {u € CY(Q)||ul}.q < 400 and TS is precompact. So we may conclude from
the Schauder fixed point theorem and Schauder estimates that T has a fixed point,
uy = Tun, uy € CH*(Q) N C2P(Q) N C°(Q). This will provide a solution of the
problem ({3.1).
Furthermore, from lemma 3.1 we infer the estimate
[un]i o < Cllulo + G anls”).
By (F2) and (3.2)), we obtain
[un]io < C(1+ [un]i),

where C' = C(M , M, co,p, 7,diam(Q2)). Furthermore, the interpolation inequality
yields the uniform bound which is independent of N,

[un]io < C=C(M,M,co,p, 7, diam(%)).

By similar arguments as in the proof of [I0, Theorem 12.5], it is easy to show
there is a subsequence {u,} of {ux} which converges to a solution u of (L.4)), and
u also satisfies the boundary condition v = 0 on 9. Since f is nonnegative, by
comparison principles, u is positive. This completes the proof. O

Remark 3.3. If Q = OQ; x Qy, C RF x R* %, Q; and Q, are symmetric and
0¢Q, flxz,u,|Vul) = f(ri,r2,u,|Vu|), where ri = /a3 +a2+ - +a2, ro =
\/xiﬂ + 27 5+ -+ 2. Under the conditions of (F2) and (F3), (1.I) admits an

(n — 1)-radial symmetric positive classical solution u(ry,m2) € C%8 () N C(Q).
The proof is left to readers.
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