Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 200, pp. 1-15.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE OF GLOBAL SOLUTIONS TO FREE BOUNDARY
VALUE PROBLEMS FOR BIPOLAR NAVIER-STOKES-POSSION
SYSTEMS

JIAN LIU, RUXU LIAN

ABSTRACT. In this article, we consider the free boundary value problem for
one-dimensional compressible bipolar Navier-Stokes-Possion (BNSP) equations
with density-dependent viscosities. For general initial data with finite energy
and the density connecting with vacuum continuously, we prove the global ex-
istence of the weak solution. This extends the previous results for compressible
NS [27] to NSP.

1. INTRODUCTION

Bipolar Navier-Stokes-Possion (BNSP) has been used to simulate the transport
of charged particles under the influence of electrostatic force governed by the self-
consistent Possion equation. In this article, we consider the free boundary value
problem for one-dimensional isentropic compressible BNSP with density-dependent
viscosities:

+ (pu)e =
(pu)r + (pu )5 +p(p)f = P‘I)ﬁ + (u(p)ue)e,
ny + (nv)e =0, (1.1)
(n)r + (nv?)e + p(n)e = —n®e + (u(n)ve)e,
e =p—n,

where the unknown functions are the charges densities p(&,7) > 0, n(¢,7) > 0,
the velocities u, v and the electrostatic potential ®. Here, p(p) = p?(y > 1) and
p(n) = nY(y > 1) are the pressure functions, and p(p), u(n) are the viscosity
coefficients.

There are many progress made recently concerned with the existence of solution
to the free boundary value problem for the compressible Navier-Stokes equations
with density-dependent viscosities. When the fluid density connects to vacuum with
discontinuity, Liu-Xin-Yang [2I] proved the existence and uniqueness of the local
weak solution. Under certain assumptions imposed on the viscosities, Yang-Yao-
Zhu [29] established the global existence and uniqueness of weak solution. As for
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related results, the reader can refer to [14] [26] and references therein. When the fluid
density connects with vacuum continuously, under some conditions imposed on the
viscosities, Yang-Zhao [30] proved the existence of the local solution. Yang-Zhu [31]
established the global existence of weak solution when viscosities satisfied certain
condition. For more results about fluid density connects with vacuum continuously,
the reader can refer to [19] [27] and references therein.

There also have been extensive studies on the global existence and asymptotic
behavior of weak solution to the unipolar Navier-Stokes-Possion system (NSP).
The global existence of weak solution to NSP with general initial data was proved
in [B, B3]. The quasi-neutral and some related asymptotic limits were studied in
[, 6l 12, 28]. In the case when the Possion equation describes the self-gravitonal
force for stellar gases, the global existence of weak solution and asymptotic behavior
were also investigated together with the stability analysis, refer to [7, [I5] and the
references therein. In addition, the global well-posedness of NSP was proved in the
Besov space in [9]. The global existence and the optimal time convergence rates of
the classical solution were obtained recently in [I8§].

For bipolar Navier-Stokes-Possion system (BNSP), there are also abundant re-
sults concerned with the existence and asymptotic behavior of the global weak
solution. Li-Yang-Zou [I7] proved optimal L? time convergence rate for the global
classical solution for a small initial perturbation of the constant equilibrium state.
The optimal time decay rate of global strong solution is established in [22],[32]. Liu-
Lian-Qian [20] established global existence of solution to Bipolar Navier-Stokes-
Possion system. Lin-Hao-Li [24] studied the global existence and uniqueness of the
strong solution in hybrid Besov spaces with the initial data close to an equilibrium
state. As a continuation of the study in this direction, in this paper, we will study
the free boundary value problem for BNSP.

The rest of this article is as follows. In Section 2, we state the main results of
this paper. The global existence of the weak solution is proven in Section 3.

2. MAIN RESULTS

For simplicity, the viscosity terms are assumed to satisfy u(p) = p®, u(n) =

n® « > 0. In this situation, (|1.1)) becomes

pr + (pu)e =0,
(pu)r + (pu?)e + (p7)e = p@e + (p™ue)e,
ny + (nv)e =0, (2.1)
(nv)7 + (m0?)¢ + (n7)e = —n®e + (n%ve)e,
e =p—n,
for (§,7) € Qr, with
Q, ={(&7) s a(r) <E<b(r), T >0} (2.2)

The boundary condition is

(pv n)(a(T)a T) = (p7 n) (b(T)a T) =0, & (a(7)7 T) = (I)f(b(T)7 T) =0, (23)
where a(7) and b(7) are free boundary defined by
d d

1) = ula(r),7) = v(a(r),7),  -b(r) = u(b(7),7) = v(b(r),7), T>0,
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and
a(0) = ag, b(0) =bo, ao < bo. (2.5)
The initial data is

(p,u,n,v,@g)(f,O) = (po(f)ﬂlo(f),no(f),'Uo(f),q)go(g)), 5 S Q0 = [ao,bo}. (26)

Throughout the present paper, the initial data is assumed to satisfy:

(A1) 0 < po(€) < C((€ — ao)(bo — €)) ™7, 0 < no(€) < C((€ — ag)(bo — €))7
with 0 < o < 1,

_ 1 _1
®eo € L7 (D), (pg *)e € L* (), (ng *)e € L*(Q)

where C' is a positive constant;
(A2) for sufficiently large positive integer m,

((6 = ao)(bo — ) T [(p8)e]*™ ph2™ € L1 (Qp),
((6 = ao)(bo — €) 77 [(ng)e]2mnd 2™ € L1 (Q);
(A3) uo(€) € L®(), vo(€) € L=(D), py '/ (p§uoe)e € L*(2) and
ng M (ngvoe)e € L2(Q);
(Ad) 0<a<1/3,v>1.

Without the loss of generality, the total initial mass is renormalized to be one
throughout the present paper; i.e.,

/,oods:l, /nodle.
Qo Qo

We define the global weak solution to the FBVP for the compressible BNSP (2.1))
as follows.

Definition 2.1. For any T > 0, (p, n, u, v, ®¢) is said to be a weak solution to free
boundary value problem (2.1))—(2.6) on Q, x [0, T], provided that there holds

p€C%Q, x[0,T]), ueC’Q, x[0,T)),
ug € LY(Q, x [0,T)), p*ue € L>(Q, x [0,T]),
ne€C%Q, x[0,T]), vel’Q, x[0,T)), (2.7)
ve € LY(Q, x [0,T]), n%ve € L>®(Q, x [0,T]),
O € L=([0, T): H(2,)),

and ([2.1) are satisfied in the sense of distributions. Namely, it holds for all ¢ €
Cﬁ((a(r),b(r)) X [O,T)) that

T
/po@(€70)d£+/ / (por + pupe)dédr =0, (2.8)
Qo 0 Qr

T
[ napte0g+ [ [ nor+ mugeragar o (2.9)
Q0 o Ja,

/OT /QT e Pedédr + /OT /QT o(p—n)dédr =0, (2.10)
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and for all ¢ € C§°((a(7),b(7)) x [0,T)) that

T
[ pouove0de+ [ [ (puve+ pes+ (ou? + 57 = poue)ie) dedr =0,
. o (2.11)

T
/Qo novot(€,0)d§ + /0 /QT (nm/JT —n®ep + (nv? +nY — navg)wg)dng T 0. |
2.12

Then, we have the following results for global weak solution.

Theorem 2.2. Assume that (Al)-(A4) hold. Then for any T' > 0, there exists a
global weak solution (p,n,u, v, ®¢) to the FBVP for the compressible BNSP (2.1))
with initial data and boundary condition in Q, x (0,7) in the sense of
Definition In addition, there hold

0 < p(& ) <C(T)((€ —alr)b(r) - €))7, (2.13)

0 < n(§7) < CT)((E —alm)(b(r) &)™~ (2.14)
In particular,

p&,7) >0, n(71)>0, €€ (a(r),b(r)), (2.15)

where Cr is a positive constant dependent of the time and initial data.

3. EXISTENCE OF WEAK GLOBAL SOLUTIONS

The proof of Theorem [2.2] consists of the construction of approximate solution,
the basic a priori estimates, and compactness arguments. We establish the a priori
estimates for any solution (p,n,u,v, ®¢) to FBVP (2.1)—(2.6) in this section.

3.1. Some a priori estimates.

Lemma 3.1. Assume conditions in Theorem and that (p,n,u,v, ®¢) is any

weak solution to the FBVP (2.1)-([2.6) for 7 € [0,T]. Then
/Q (pu? + nv? + @2 + p” +n7)dE + /OT /Q (p*ug +n®vg)déds < CE(0), (3.1)
wher; C > 0 is a constant independent of T, c:nd
E(0) = /Q (poug + novg + ®F + pg + ng)d¢.
0

Proof. Multiplying (2.1)2 by u and integrating it with respect to £ over . and
using (2.1))1, we have

d 1 5 I / 9 /
— - ——p7)d Fugdé = - PdE, 3.2
dT/QT(qu +7_1p)£+ QTpUEé“ N £ (32)
using a similar method, we have
d 1, 1 )
T o, (inv —i—ﬁn"’)dg—&—/g nvgd§ = —/ n,ddE.

T T
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‘We have also

d 1 2 2 1 ~ Y / o, 2 o, 2
deQT(Z(mL-+nv)-F7__1U>—Fn))d£+ [ (i ez
:/ (p—n)TCDdf:/ D OAE (3.3)
Q. Q.
d 1
=— | PP dé=—— [ -B2
/QT T €d§ dT/QTQ Edfv
integrating it over [0, 7], we obtain (3.1)). O

Lemma 3.2. Under the same assumptions as in Lemma[3.1} there holds
p(§,7) <C(T), n(&7)<C(T), (§7)€Q x[0,T],

where C(T) > 0 is a constant dependent of time.

Proof. Define characteristic line %(TT) = u(&(7),7), then (2.1) becomes

p+ pug =0,
e (3.4)
pic+ (p7)e = pPe + (p™ue)e,
where
. df(E(r), T dé(r
fetrym = LEDT _p  ED e p g,
dr dr
Then we have
&) &)
P ue =/( : pudy+p”—/( : p®,dy,
with the help of (3.4]), we have
&(7)
1 dp® dfa(T) pudy ., &(r)
-_————= — ded 3.5
o o tr /a(T)Péy7 (3:5)

Integrating (3.5) over [0, 7] to obtain

T &() £(0) T &)
p°‘+a/ plds :pg—a/ pudy+a/ pouody+a/ / p®,dyds, (3.6)
0 a(T) ao 0 Ja(r)

which implies

§(7) £(0) T ()
p% < pf — a/ pudy + oz/ pouody + a/ / p®,dyds < C(T). (3.7)
a 0 Ja(r)

a(T) 0

Using the same idea, we obtain

n* < C(T). (3.8)
The combination of and gives rise to Lemma [
Lemma 3.3. Under the same assumptions as in Lemma[3.]], there holds

/ pu*™dE + m(2m — 1)/ / po‘uQm_ngdf <C(T), meNT, (3.9
Q. 0 Ja,

/ nv?™deé + m(2m — 1)/ / n%zm*%gdg <C(T), meNT. (3.10)
Q. o Ja,



6 J. LIU, R. LIAN EJDE-2013/200

Proof. To show (3.9)), we multiplying (2.1))2 with 2mu?™~! and integrating over
the . respect to £, using (2.1)); and (2.3), we obtain

d
s /QT pu™dE + 2m(2m — 1)/Q pau2m*2ugd§

-

::2WK2W14—U”/ ;ﬂu%”’%%d§4%2ﬂ1/£ pu? ™ P ede (3.11)
<m(2m—1) /Q po‘u2m72ugd£ +C(T) /Q pu*™dé 4+ C(T),
with the help of Gronwal;s inequality, we obtain T
‘LpfmﬁgC@) (3.12)
Similarly, we have T
/s n?™md¢ < C(T). (3.13)
The combination of and , yiels Lemma O

To obtain the lower bound of density conveniently, we solve the FBVP (2.1 in
Lagrangian coordinates, we just deal with (2.1);—(2.1)2, with the same idea, we

also can deal with (2.1))5—(2.1)4.

Let us introduce the Lagrangian coordinates transform

3
x = / plz,7)dz, t=r.
a(t)
Then the free boundaries £ = a(7) and & = b(7) become z = 0 and = = 1 by the
conservation of mass.
Hence, in the Lagrangian coordinates, the free boundary problem (2.1]) becomes

¢+ P ug =0,
ur + (p7)e = pPy +p(p1+p“uz)$, O<z<1, t>0, (3.14)
with the boundary conditions
p(0,t) = p(1,t) = 0, (3.15)
and initial data
(pu)(2,0) = (po(2), uo(x)), 0<w <1 (3.16)

Note that in Lagrange coordinates the condition (A1)—(A4) of pg,ug is equivalent
to
(B1) 0 < po(z) < C(z(1 —))? with C > 0 and (pd()), € L*([0,1]);
(B2) for sufficiently large positive integer m, we have (z(1 — x))*ps'(z) €
LY([0,1]), where k1 > 7 and (z(1 — 2))?*™((p§ (2))s)*™ € L*([0,1]);
(B3) uo(x) € L>([0,1]), (™ (x)uos)w € L*([0,1);
B4) 0<a<i, y>1
First, making use of similar arguments as in [27] with modifications, we can establish
the following Lemmas.
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Lemma 3.4. Assume (B1)—(B4) hold. Let (p,u,®,) be any weak solution to the
free boundary problem (3.14)-(3.16)) for t € [0,T], then

1 1 t 1
1 1
/0 Fuide +/O o [P e +/O /O p' T uidads < C(T), (3.17)
P, = / updy + p” —/ p®,dy, (3.18)
0 0
t t T t T
P+ a/ plds = p§ — a/ / usdyds + a/ / p®,dyds, (3.19)
0 o Jo 0o Jo
1 t 1

/ u?™dx +m(2m — 1)/ / w2 =Y plrey2deds < O(T). (3.20)

0 0o Jo

The proof of Lemma [3.4] is similar to that of Lemmas we omit them
here.

Lemma 3.5. Under the same assumptions as Lemma it holds

pla;t) < C(T)(x(1—x))°,

2m—1
? 2am

Proof. From (3.19)), we have

where o0¢p = min{o

T T t T
p*(z,t) < pg(x) — a/ u(z, t)dy + a/ uody + a/ / p®,dyds
0 0 0o Jo

2m

1 m »
< pi(z) + C’(/O uzm(x,t)dz>1/(2 )(x(l —z)) 7 +C(T)z(1 —z)

2m—1

< O(T)(x(1 =) + C(T)(x(1 —x)) 2,

which implies
2m—1

pla,t) < C(T)((1 — )7 + C(T)(z(1 — 2)) 5
Then Lemma [3.5] follows. U

Lemma 3.6. Under the same assumptions as Lemma for any integer m > 0,
it holds

1
| @=a)pm (i < o). (3.21)
Proof. From 1, we have

(6°): = —ap**"u,

which by using (3.14)s implies
(pa)xt = _a(ut + (pv)x - p(I)x) (322)

Integrating (3.22)) in ¢ over [0, t], we have

t t
() = () —alu=w) ~a [ (Phds+a [ poads (329
0 0
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Multiplying (3.23)) by (z(1 —2))?™ ((p*),)?>™ ! and integrating it in = over [0,1],

we have

1
A (21 — )" (o)) da
=A<a1—mfm*«w»fm*w@ﬂm
—«3A<ma—ﬂwfm;%@“hfm N — o)z (3.24)
—aA<d1—@w”w@%am*Z}m»@m

t

1
+ a/ (x(1 - x))z’”_l((po‘)ac)gm_l/ pP dsda.
0 0
Using Young’s inequality, we have

A (2(1 - 2))2™ " (o),)2md

f;%ﬂ;cml_x»””*«p%zFMdm+cié (21 = 2)™" 7 (p5)2) "o

+c/01 (x(1_z))2m—1u2mdx+c/ (x(1—z))zm—l(/ot(pv)xds)%dx

0

+ 0/01 (x(1— )" lugmdz + 0/01 (z(1 - a;))%—l(/ot p¢$ds)2mdx.

(3.25)

1

By using Lemma we have

1
A(ﬂlf@fm*«w»f%m
Sﬂﬂé(ﬂbﬂw ‘Auwmm®M+cw>

t 1
< (@) [ max(r P [ (a1 =) (), Prdads + (D),
0 ’ 0
Gronwall inequality implies Lemma [3.6] O

Lemma 3.7. Under the same assumptions as Lemma for any ki > ﬁ, 1t
holds

P -t
/0 S drsc) (3.26)
Proof. From (3.14), we have
(l‘(l - 'T))kl _ 1
(W)t = (@(1 =) ug(,1). (3.27)

Integrating (3.27)) over [O, 1] x [O,t] and using Young’s inequality, we have
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1 _
S/ (z(1 ~ 2) d +C// NF L uldzds
o polz, t
<C+C// 2mdxds+0// (1-x) 272521:11)d1'd5.

By using Lemma and noticing when k; > 5L i.e., % > —1, we have

/1 @@=z <C(T), (3.28)
0 t)

p(z,
which proves Lemma O

If we choose ky = 51— (> 5-) in Lemma 3.7| then we have the following result
which is used to get the lower bound estimate of the density function p(z,t).

Corollary 3.8. The following estimate holds:

(e
/O T <o) (3.29)

The next Lemma gives an estimate on the lower bound for the density function

p(,t).

Lemma 3.9. Under the same assumptions as Lemma for any 0 < a < 1,
2 2ma+1

there exists a positive integer m such that o < =5—=. Let ky > 5=5%5— then

the following estimate holds:

plz,t) > C(T)(z(1 — z)) Hre, (3.30)

Proof. Now by using Sobolev’s embedding theorem W11[0,1] — L*[0,1] and
Holder’s inequality, we have by Corollary and Lemma

(z(1 — x))tthe U (z(1 — z))tth L (@1 — z)) i+
Pty - /0 p(x,t) a +/0 ’(W)z

< pn(al1 - e [T,

[0,1] p(x,t)
1 1—2 1+k2 t

. / (( CRIPN
0 14

*(x,1)
! X — X Tl—l
+ (14 J) max(a(1 = @) 7= /0 %dx
1 (@1 = @) (0 (x, 1))
/

a P (1)

dz

dx

<C(T)+

<o+~ ( / 1 x))zm*[(pmwmdm)” &)

(07

1
% (/ (z(1 _x))(kz+ﬁ)qp—(1+a)qu)
0

< C(T) + C(T)(/Ol de)l/q

(x(1 = ) *=t 7)1 T \ 1
( p(1+a)q—1 )

1/q

X max
[0,1]
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(z(1 — )tk
p(z,1)

where q= 2»,2,:7_741 and k?) = k'2 - (1 + kQ)(Oé + ﬁ)

When ks > % and m sufficiently large, we have

1+a—q
< C(T) + C(T) max ( ) (z(1 —z))*, (3.31)

[0,1]

1
ks = ko — (1+k2)(0[+%) > 0.
This and (3.31) show that

1— 1+k2 1— Itkz | a+t 4L
max @ —z) ™ <C(T)+ C(T)(max M) o (3.32)
o1 pla,t) o1 p(x,t)
For 0 < a < 1, there exists a positive integer m, such that o < 2’;;1; ie, 0 <
o+ ﬁ < 1. Therefore, (3.32) implies
1 _ 1+ko
max EE )T C(T). (3.33)
1 p(x,t)
This proves (3.30) and the proof of Lemma is complete. |

Lemma 3.10. Under the same assumptions as Lemma for0<a< %, ko <

QL — 1, we have
«

1 t 1
/ uidx —|—/ / pt T2 deds < O(T). (3.34)
0 o Jo

Proof. Differentiating (3.14]) with respect to time ¢ and then integrating it after
multiplying by 2u; with respect to z and t over [0, 1] x [0, ¢], we deduce

1 t el
/ ufdx + 2/ / Pt dads
0 o Jo

t 1 t 1
=2(1+a) / / P* T ugugdods — 2y / / P T ugugsdads (3.35)
0 JO 0 JO

t 1 1
+2/ / (p@z)susdxder/ ud da.
0 Jo 0

From assumptions (B1) and (B2), we have

1
/ uddr < C. (3.36)
0

From Cauchy-Schwarz inequality, we have

t 1
2(1+ ) / P2 g dads
o Jo

1t ! t el
<= / / pt T2 deds 4 2(1 + a)? / / PP outdads,
2Jo Jo o Jo

t 1
— 27/ / P ugugdads
0o Jo

1 [t ot t ol
< f/ / p T2 dads + 2’y2/ / PPy 2dads,
2Jo Jo o Jo

(3.37)

and

(3.38)
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// (p®,)susdrds < C(T // u?dzxds. (3.39)
1 t

/ ufdx—k// o2 dzds

0 0 0

t
gC(T)+2(1+a)2/ / Sraytdads

and

Therefore,

. (3.40)

+ 272/ / =2 deds +/ / u?dzds

o Jo
=C(T)+2(1+ a)®J1 + 2922 + / / udxds.
0o Jo
Now we estimate J; and Js as follows: By Holder’s inequality, we have
J1 = / / Stayddeds < r[%zﬁ(( p*uz)V(s)ds, (3.41)
0

where

1
V(s) = / pl Tt d.
0
On the other hand, from (3.18)), Lemma and Lemma we have

p2u2 =p 2a(p1+ozux)2

x x 2
= p_m(/ ugdy + p” —/ p<1>ydy)
0 0
1 x
< Cp2e (:c(l — ) / wldz + p¥ + z(1 — ) / (p<I>y)2dy> (3.42)
0 0

1
< C(T)(@(1 — z))1-20(1+k) / w2da
0

O 1 (T (1 — ) =200,
When 0 < a < § and ks < 5= — 1, for sufficiently large m, we have
1—2a(1+ ks) > 0,
which implies
I[réal>]<p2u2 <c(r )/01 uidx + C(T).
Therefore,

Jy < C(T) /0 V(s) /O uldzds + C(T) /0 V(s)ds. (3.43)

Similarly, we have

t t 1 t
Ja :/ / e 2dads < C(T )/ V(s)/ uidxd5+C(T)/ V(s)ds.
0 Jo 0 0 0

(3.44)

From (3.40), (3.43) and (3.44) and Lemma [3.4] we have

/olu?dm+/ot/o o2 dzds < O(T )(1+/0t (1+V(s)) /01 uidxds). (3.45)
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Gronwall’s inequality and Lemma [3.4] give
1 t
/ upde < O(T) exp (O(T) / (V(s) + 1)ds) < C(T). (3.46)
0 0

Combining (3.45)) with (3.46), we can get (3.34) immediately. This completes the
proof of Lemma, [3.10 O

Lemma 3.11. Under the same assumptions as Lemma we have

1
[ Ipataitiias < e, (3.47)
0
10" *ug (2, )| L (0,1 x0,77) < C(T), (3.48)
1
/ (0" ug) o (2, t)|dz < C(T). (3.49)
0

Proof. Since

T T
pl-'r(xum — / utdy + p'y _ / p(Pydya
0 0

14+

(3.50)

(p Ug)z = U + (7)o — pPs,

Inequalities (3.48) and (3.49) follows from Lemma and Lemma,
On the other hand, by using Young’s inequality, from Lemma[3.5|and Lemma[3.6]
we have

1
| 1oas
0

1 1 2m—1 _2m=1 q_,
B E/o (@1 =)= (p)al(z(1 - 2))" 727 p'~dz
1 _ 1 2m(l—o
< % (@1~ ) e (7 P R Qmm : (@ - )" ET da

2m(l—a)

1
<) + c/ (2(1 — 2)) " EE 0 dg < (D),
0

(3.51)
which implies (3.47)), and completes the proof. |

Lemma 3.12. Under the same assumptions as Lemma for0 < a< % and

kQSi—l—m, we have
1

/ |ug (z,t)|dz < C(T), (3.52)
0

llu(z, t) || Lo ([0,1]x[0,17) < C(T). (3.53)

Proof. From ([3.18)), we have

T T
Uy (z,t) = p_l_o‘/ ug(y, t)dy + p?7 77t — p_l_a/ p®,dy. (3.54)
0 0
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By Lemma [3.10] and using Holder’s inequality, we have

1
/ 1 (2, )|z
0
1 1 x
i
0 0 0

1 x
— / pfl*a/ p®,dydz
0 0

1 1 1
< [ otwodes [ e o) e | atda)?
0 0 0

+ o ) (1 — ) / (o))

1 1
ey t)de g ) (z(1 — z))Y?de.
g/o oz 1) +C(T)/O = @, 1) (2(1 - x))V/2d

The next we will prove (3.52).
Case 1: If y — o — 1 < 0, then by Lemma [3.9 we have

1 1
/ P’ Nz, t)dx < C(T) / (z(1 — z)) e D0Fk2) gy
0 0

Since
1 1
k2§£_1_(2m71)a’
for v > 1 we have
y—a—-1 y—-—a-1

(y—a—=1)(1+k) > o +(2m71)a > —1.

Therefore,

/1 P’ Nz, t)dx < O(T).
0

Case 2: If y —a —1 >0, then 13.52: follows from Lemma
On the other hand, by Corollary [3.8 and Lemma we have

/1 p e ) (@(l - 2)) 2 de
0

< ma{(a(1 =) 7070} [ (@ — )7

< () max{(o(1 - 2) 77 o~ (2,1)}

<C(T) r[réaﬁc{(x(l _g))Emmr ety

When ks < i—l—m,we have

1 1

2 2m-1
Inequalities (3.55)—(3.57)) show that

/0 a2, 1) der < C(T),

—a(l+ky) > 0.
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(3.55)

(3.56)

(3.57)

(3.58)
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On the other hand, by Sobolev’s embedding theorem W11([0,1]) < L*>([0,1]) and
Young’s inequality, we have from (3.58) and Lemma lu(z,t)] < C(T). This
completes the proof of Lemma [3.12 (]

By coordinates transform, from Lemma [3.11}-Lemma we obtain
we € LM ([alt), b()]  [0,T]) and p®u, € L= ([a(t), b(t)] x [0,T]),
and then from Lemma [3.10}- Lemma and Aubin’s Lemma, we have
p.u € CO(la(t), b(t)] x [0,T)).
By similar arguments, we have
vy € LY([a(t),b(t)] x [0,T]), n%v, € L>=([a(t),b(t)] x [0,T]),
n,v € C%([a(t), b(t)] x [0,T]).
From 5 and above regularities of p and n, we have
@, € L([0,T], H'[a(t), b())).
3.2. Proof of Theorem [2.2] With the estimates obtained in Sections 3.1, we

can apply the method in [8] and references therein, to prove the existence of weak
solutions to the FBVP ({2.1)), we omit its proof here.
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