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STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY
CONDITIONS IN AN EXTERIOR DOMAIN

CHERIF AMROUCHE, MOHAMED MESLAMENI

ABSTRACT. In this article, we solve the Stokes problem in an exterior domain
of R3, with non-standard boundary conditions. Our approach uses weighted
Sobolev spaces to prove the existence, uniqueness of weak and strong solutions.
This work is based on the vector potentials studied in [7] for exterior domains,
and in [I] for bounded domains. This problem is well known in the classical
Sobolev spaces W™2(Q) when Q is bounded; see [3} [4].

1. INTRODUCTION AND FUNCTIONAL SETTING

Let Q' denotes a bounded open in R? of class C!, simply-connected and with
a connected boundary 9 = T, representing an obstacle and € is its complement;
ie. 2 =R3\ . Then a unit exterior normal vector to the boundary can be defined
almost everywhere on I'; it is denoted by n. The purpose of this paper is to solve
the Stokes equation in €2, with two types of non standard boundary conditions on
I
—Au+Vr=f and divu=yx inQ,

u'n=g and curluxn=hxn onl,

(1.1)

and
—Au+Vr=f and divu=yx inQ,

(1.2)
T=m9, uxn=gxn on [' and u-ndo = 0.
r

Since this problem is posed in an exterior domain, our approach is to use weighted
Sobolev spaces. Let us begin by introducing these spaces. A point in  will be
denoted by x = (21, 29, 73) and its distance to the origin by r = |x| = (22 + 23 +
x3)'/2. We will use the weights

p=pr) =1+
For all m in N and all k in Z, we define the weighted space
W2(Q) = {u e D'(Q) : YA € N°: 0 < |A| < m, p(r)F ™M DXy e L2(Q)},
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which is a Hilbert space with the norm

m o 1/2
lllwyziy = (30 19 MDM)20))

[A|=0
where || - || 12(q) denotes the standard norm of L*(€2). We shall sometimes use the
seminorm
kA, (12 1/2
iy = (D0 16 D ul3aey) -
[A|l=m

In addition, it is established by Hanouzet in [II], for domains with a Lipschitz-
continuous boundary, that D(f2) is dense in W,TQ(Q) We set W,TQ(Q) as the
adherence of D(Q?) for the norm || - HW;nQ(Q). Then, the dual space of W;”2(Q),

denoting by W~ ’2(9)7 is a space of distributions. Furthermore, as in bounded
domain, we have for m =1 or m = 2,
ka(Q) ={veW, (), v=0 onT},
v

W22(Q) = {v e W2(Q), v = 0 onT},

where g—ﬁ is the normal derivative of v. As a consequence of Hardy’s inequality, the
following Poincaré inequality holds: for m = 0 or m = 1 and for all k in Z there
exists a constant C' such that

Vo € W(Q), [ollym2q) < Clolym2q); (1.3)
i.e., the seminorm | - |W:L,2(Q) is a norm on W;?(Q) equivalent to the norm || -
”W;"’Q(Q)'

In the sequel, we shall use the following properties. For all integers m and k in

Z, we have

VneZ with n<m—k—2, P, CW Q) (1.4)
where P,, denotes the space of all polynomials (of three variables) of degree at most
n, with the convention that the space is reduced to zero when n is negative. Thus
the difference m — k is an important parameter of the space W," 2(Q) We denote
by P2 the subspace of all harmonic polynomials of P,,.

Using the derivation in the distribution sense, we can define the operators curl
and div on L2(€2). Indeed, let (-,-) denote the duality pairing between D(£2) and
its dual space D'(Q). For any function v = (v1,v2,v3) € L%(Q), we have for any
¢ = (1,92, p3) € D(Q),

(curlv, ) = / v - curl p dx
Q

_ Ops _ Op2 Op1 O3 2 9p1
- /Q (Ul(%sg 8l‘3 ) + UQ(@J)?, 81‘1 ) + vg(axl 8332 )) dX’

and for any ¢ € D(),

i __ (022,02, 00
(divv,p) = /QV grad o dx = /Q<v18m1 +v28x2 —|—v38x3>dx.

We note that the vector-valued Laplace operator of a vector field v = (v, v, v3)
is equivalently defined by

Av = grad(divv) — curlcurlv. (1.5)
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This leads to the following definitions:

Definition 1.1. For all integers k € Z, we define the space
H; (curl, Q) = {v e W*(Q);curlv € W)'? ()},

with the norm

1/2
IVl eur. ey = (IVIPwo oy + leurd vz o))

Also we define the space
H? (div, Q) = {v € W?(Q);divv € W2 (Q)},

with the norm

/2
_ 2 : 2
[V [l£22 (aiv, ) = (”VHW%?(Q) + || div V||W]gf1(g)) .

Finally, we set
X2(Q) = Hi (curl, Q) N Hi(div, Q).
with the norm

/2
2 _ 2 : 2 2
XHQ) = (V30 ) + I div vl o) + leurlvldoe o)
These definitions will also be used with € replaced by R3.

The argument used by Hanouzet [I1] to prove the denseness of D(Q) in W,*(Q2)
can be easily adapted to establish that D(Q) is dense in the space Hj (div, Q) and
in the space H? (curl,2) and so in X3 (). Therefore, denoting by n the exterior
unit normal to the boundary I', the normal trace v - n and the tangential trace
v x n can be defined respectively in H~/2(T') for the functions of H7(div, Q) and
in H~Y/2(T") for functions of H?(curl, ), where H~'/2(T") denotes the dual space
of H'/2(I"). They satisfy the trace theorems; i.e, there exists a constant C' such
that

vv € Hi(div,Q), v nlg-zm) < Clviazavo). (1.6)
Vv € Hi(curl,Q), [vxn|g-12r) < OVl curLo) (1.7)

and the following Green’s formulas holds: For any v € HZ(div, 2) and ¢ € Wi,f Q)

<V~n,g0)p:/V'Vgodx—l—/godivvdx, (1.8)
Q Q

where (,)r denotes the duality pairing between H~'/2(I") and H'/?(T"). For any
v € H} (curl,Q) and p € W"2(Q)

(vxn,cp>p:/v-curlcpdx—/curlv-(pdx, (1.9)
Q Q

where (,)r denotes the duality pairing between H~/2(T") and HY/?(T").

Remark 1.2. If v belongs to H3(div, ) for some integer k > 1, then divv is in
L'(Q) and Green’s formula (1.8)) yields

(v-n, 1)p:/divvdx (1.10)
Q

But when k£ < 0, then divv is not necessarily in L*(Q) and (1.10) is generally not
valid. Note also that when k£ < 0, WS’,?_I(Q) does not contain the constants.
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The closures of D(2) in H3 (div, ) and in Hj (curl, ) are denoted respectively
by H3 (curl, Q) and H3(div, ) and can be characterized respectively by

H?(curl, Q) = {v € H}(curl,Q) : vxn =0 on I'},
H? (div, Q) = {v € H3(div,Q) : v-n=0on I'}.
Their dual spaces are characterized by the following propositions:

Proposition 1.3. A distribution f belongs to [Hi (div, Q)] if and only if there exist
(RS ng(Q) and x € WE’,?_l(Q), such that £ = 1 + grad x. Moreover

||f||[ﬁ§(div,9)]' = maX{H"/)”w‘j?(Q)v ||X||WE’I€271(Q)}' (1.11)

k

Proof. Let p € W>2(Q) and x € W%2_, (), we have

¥ eD(Q), (Y +gradyx,v)p (a)xp@) = /(1/; -v — x divv)dx.
Q

Therefore, the linear mapping £ : v +— [, (¢ - v — x divv)dx defined on D(1Q)
is continuous for the norm of Iili(diV,Q). Since D(f?) is dense in IjIz(div, Q), £
can be extended by continuity to a mapping still called £ € [Iili(div7 Q))'. Thus
1 + grad x is an element of [H2(div, Q)]'.

Conversely, Let F = W2’2(Q) X W,Sfl (©2) equipped by the following norm

¥l = (¥l + 1 divviaz )2

The mapping T : v € Iili(div, Q) — (v,divv) € E is an isometry from Iili(div, Q)
in E. Suppose G = T(Hi(div,Q)) with the E-topology. Let S = T7!: G —
Hj3 (div, Q). Thus, we can define the following mapping:

veG— (f,Sv) for f € [H (div, Q)]

[H2 (div,0)]’ x H2 (div,$)

which is a linear continuous form on G. Thanks to Hahn-Banach’s Theorem, such
form can be extended to a linear continuous form on FE, denoted by YT such that

From the Riesz’s Representation Lemma, there exist functions ¢ € ng (©) and
x € WP2_(Q), such that for any v = (vi,vs) € E,

(Y, v)exE =/

Vi -1/Jd:1:+/ vox dx,
Q

Q
with [Tz = max{||¥|lwo2q), [Xllyo2 (o)} Inparticular, if v =T¢ € G, where
—k —k—1
@ € D(2), we have
(£, ) 522 (aiv, ) xtaz (aiv, @) = (¥ = VX0 LD pi2 (aiv, o)) <522 (v, 0):

and (1.11)) follows imeddiatly from ([1.12]). O

We skip the proof of the following result as it is similar to that of Proposition
Lol
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Proposition 1.4. A distribution f belongs to [Iili(curl,Q)]’ if and only if there
ezist functions ¥ € ng(Q) and € € W(l’i_l(Q), such that £ = 1 + curlé.
Moreover

Hf”[I:Ii(curl,Q)]’ = maX{”wHW[ii(Q)a ||£||W3£71(Q)}

Definition 1.5. Let Xz,N(Q), Xﬁ)T(Q) and Xi(Q) be the following subspaces of
X2(9):

Xin(Q) ={veXi(Q);vxn=0onT},
X%,T(Q) ={veXi(Q);v-n=0onT},
X3 (9) = X} () N X} ().

2. PRELIMINARY RESULTS

Now, we give some results related to the Dirichlet problem and Neumann problem
which are essential to ensure the existence and the uniqueness of some vectors
potentials and one usually forces either the normal component to vanish or the
tangential components to vanish. We start by giving the definition of the kernel of
the Laplace operator for any integer k € Z:

Af_lz{eri}f(Q):AX:OinQandX:OOH r'}.

In contrast to a bounded domain, the Dirichlet problem for the Laplace operator
with zero data can have nontrivial solutions in an exterior domain; it depends upon
the exponent of the weight. The result that we state below is established by Giroire
in [I0].

Proposition 2.1. For any integer k > 1, the space AkA_l is a subspace of all
functions in Wi,f(Q) of the form v(p) — p, where p runs over all polynomials of
P2, and v(p) is the unique solution in Wy () of the Dirichlet problem

Av(p)=0 in Q and v(p)=p onl. (2.1)

The space A,ﬁl is a finite-dimentional space of the same dimension as 77,?71 and

A2 | = {0} when k <0.

Our second proposition is established also by Giroire in [I0], it characterizes the

kernel of the Laplace operator with Neumann boundary condition. For any integer
keZ,

NkA_lz{eri’,f(Q):AX:OinQandg—X:()onF}.

n

Proposition 2.2. For any integer k > 1, NkA_l the subspace of all functions in
Wikz(ﬂ) of the form w(p) — p, where p runs over all polynomials of P, and w(p)
is the unique solution in WOI’Q(Q) of the Neumann problem

ow(p) _ Ip
on On

Here also, we set ./\/'kA_1 = {0} when k < 0; NkA_l is a finite-dimentional space of
the same dimension as P,CA_l and in particular, ./\/'0A =R.

Aw(p)=0 inQ and nT. (2.2)
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Next, the uniqueness of the solutions of Problem and Problem will
follow from the characterization of the kernel. For all integers k in Z, we define
Y,%’N(Q) ={we X%k’N(Q) :divw =0 and curlw =0 in Q}
Y,Z%T(Q) ={we XQ_,C,T(Q) :divw =0 and curlw =0 in }.
The proof of the following propositions can be easily deduced from [7].

Proposition 2.3. Let k € Z and suppose that €' is of class CYt, simply-connected
and with a Lipshitz-continuous and connected boundary .

o Ifk <1, then Y} () = {0}.
o Ifk>1, then Y x(Q) = {V(v(p)—p), p € PL |}, where v(p) is the unique
solution in Wy > (Q) of the Dirichlet problem ([2.1)).

Proof. Let k € Z and let w € X2_k7N(Q) such that divw = 0 and curlw = 0 in

Q. Then since ' is simply-connected, there exists y € Wi,f (), unique up to an
additive constant, such that w = Vyx. But w x n = 0, hence, x is constant on
I' (T is a connected boundary) and we choose the additive constant in y so that
x = 0 on I'. Thus y belongs to AL (€2) . Due to Proposition we deduce
that if £ < 1, x is equal to zero and if k > 1, x = v(p) — p, where p runs over all
polynomials of P | and v(p) is the unique solution in Wy>() of problem
and thus w = V(v(p) —p). Now, to finish the proof we shall prove that V(v(p) —p)
belongs to Y; ~ () and this is a simple consequence of the definition of p and

v(p). O
We skip the proof of the following result as it is entirely similar to that of
Proposition [2.3]
Proposition 2.4. Let the assumptions of Proposition[2.]] hold.
o Ifk <1, then Y%T(Q) = {0}.
o If k > 1, then Yin(Q) = {V(w(p) — p), p € P2}, where w(p) is the
unique solution in W(}’Q(Q) of the Neumann problem ([2.2))

The imbedding results that we state below are established by Girault in [7]. The
first imbedding result is given by the following theorem.

Theorem 2.5. Let k < 2 and assume that ' is of class CY'. Then the space
X3 _1.7(9) is continuously imbedded in W, 2(Q). In addition there exists a constant

C such that for any ¢ € Xi_LT(Q),
lellwizoy < C(Illwoz @ + 1div @llwoz gy + llcurl @llwozi ). (2:3)

If in addition, Q) is simply-connected, there exists a constant C such that for all
¢ € X3, p(Q) we have

”‘P”W}f(g) <C(| le‘P”wQQ(Q) + Curlﬁonwgv?(m
N(—k

)
S |/so~w<qj>do|>,
j=2 ‘T
N(—k)

j=o  denotes a basis of {q € P2, q(0) = 0}, N(—k) denotes the
dimension of P2, and w(q;) is the corresponding function of N, Thus, the

(2.4)

where {q;}
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seminorm in the right-hand side of ([2.4)) is a norm on Xj_, 7(Q) equivalent to the

norm ||(‘0||Wllc,2(ﬂ),
The second imbedding result is given by the following theorem.

Theorem 2.6. Let k < 2 and assume that ' is of class CY'. Then the space
X3 _1.n(9) is continuously imbedded in W, 2(Q). In addition there exists a constant
C such that for any ¢ € Xj_ | y(Q),

lellwizoy < C(Illwoz, @ + 1div @llwozgy + llcurl @llozi ). (25)

If in addition, £ is simply-connected and its boundary I is connected, there exists
a constant C' such that for all ¢ € Xi_LN(Q) we have

lellwe2 ) < CUldivellwoz ) + [ curlellyo g

N 2.6
ol femils 1 [ mgaen, 7

where the term | [.(¢ - n)do| can be dropped if k # 1 and where {qj}jv:(fk) denotes
a basis of Pf‘k. In other words, the seminorm in the right-hand side of (2.6) is a
norm on Xj_; n(Q) equivalent to the norm HQDHW}C,Q(Q).

Finally, let us recall the abstract setting of Babuska-Brezzi’s Theorem (see
Babuska [5], Brezzi [6] and Amrouche-Selloula [4]).

Theorem 2.7. Let X and M be two reflexive Banach spaces and X' and M’
their dual spaces. Let a be the continuous bilinear form defined on X x M, let
AeL(X; M) and A" € L(M; X') be the operators defined by

Yo e X, YweM, a(v,w)=(Av,w)= (v, A'w)
and V =ker A. The following statements are equivalent:
(i) There exist B > 0 such that

¢ a(v,w)

in up  ——
weM, w#0 vEX, v#£0 ||U||XHU)||M

> . (2.7)

(ii) The operator A : X/V — M’ is an isomophism and 1/3 is the continuity
constant of A™1,

(iii) The operator A" : M — X'1V is an isomophism and 1/0 is the continuity
constant of (A’)~!.

Remark 2.8. As consequence, if the inf-sup condition (2.7)) is satisfied, then we
have the following properties:

(i) If V = {0}, then for any f € X', there exists a unique w € M such that
1
Vo e X, a(v,w) = (f,v) and [lwla < S| fllx- (2.8)

(ii) If V' # {0}, then for any f € X', satisfying the compatibility condition:
Vv €V, (f,v) =0, there exists a unique w € M such that .

(iii) For any g € M’, there exists v € X, unique up an additive element of V',
such that:

1
Vw e M, a(v,w) = {(g,w) and |v]x/v < Zllgllar-
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3. INEQUALITIES AND INF-SUP CONDITIONS

In this sequel, we prove some imbedding results. More precisely, we show that
the results of Theorem [2.5] and the result of Theorem 2.6l can be extended to the
case where the boundary conditions v-n = 0 or v xn = 0 on I' are replaced
by inhomogeneous one. Next, we study some problems posed in an exterior do-
main which are essentials to prove the regularity of solutions for Problem and

Problem (1.2).

For any integer k in Z, we introduce the following spaces:
Z;T(Q) ={ve Xi(Q) and v-n € HI/Q(F)},
Z3 n(Q) = {v € X}(Q) and v x n € H/*(I')}
and
M3 7(Q) = {ve W2, (Q), divv € W25, (Q), curlv € W, 2,(Q)
and v-n € H¥*()}.

Proposition 3.1. Let k = —1 or k = 0, then the space Zin(Q) is continuously
imbedded in W}Cfl(Q) and we have the following estimate for any v in Zg 1(€):

vllw:2

L2 () S C(”V“WZ’Z(Q) + CUP1V||wgf1(Q) +l diVV”W,ffl(sz) +lvonlgem)-

(3.1)

Proof. Let k = —1 or k = 0 and let v any function of Z7 ,(€2). Let us study the
Neumann problem

Ax=divvin Q and J,x=v-nonl. (3.2)
It is shown in [7], Theorems 3.7 and 3.9], that Problem (3.2]) has a unique solution
X in W,ffl (Q)/Rif k = —1 and y is unique in Wffl (Q) if k = 0. With the estimate

VX2

k+1

(@ < C(lldiv Vliwez @) + v N g/2ry)- (33)

Let w = v — grad x, then w is a divergence-free function. Since W}gfl(Q) —

W%Q(Q), then w € X%,T(Q)' Applying Theorem we have w belongs to

Wifl(Q) and then v is in W,lﬁfl(Q) According to Inequality (2.3)), we obtain
||W||w}cfl(ﬂ) = C(HWHWZ’Q(Q) + 1l Cur1W||w2fl(Q))~

Then, inequality (3.1)) follows directly from ([3.3). (|

Similarly, we can prove the following imbedding result.

Proposition 3.2. Suppose that ' is of class C*'. Then the space MQ_LT(Q) is
continuously imbedded in W?’Q (Q) and we have the following estimate for any v in

M2—1T(Q)

||V||w§vz(g) < C(”V”wé-ﬂ(g) + | CUI'IVHW}Q(Q) + 1l diVVHWILQ(Q) + v nHH3/2(F))~
(3.4)

Proof. Proceeding as in Proposition Let v in M2_17T(Q). Since € is of
class C%!, then according to [7 Theorem 3.9], there exists a unique solution
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in W*(Q)/R of Problem (3.2). Setting w = v —grad y. Since W>?(Q) is imbed-
ded in W, *(Q), it follows from [7, Corollary 3.16], that w belongs to W3'*(2) and
moreover we have the estimate

[wllw22q) < C(HWHWé’Q(Q) + | cuerllw}vz(Q))
Then v = w + grad x belongs to W22(Q2) and we have the estimate (3.4). O

Although we are under the Hilbertian case but the Lax-Milgram lemma is not
always valid to ensure the existence of solutions. Thus, we shall establish two “inf-
sup” conditions in order to apply Theorem [2.7} First recall the following spaces for
all integers k € Z:

Vip(Q) = {z €X;p(Q):divz=0inQ and

/Fz V(w(q) —q)do =0, V(w(g) —q) € /\LAIH}
and
Vin(Q)={zeX; y(Q) :divz=0in Q and /F(z ‘n)gdo =0, Vg € P2,_,}.
The first “inf-sup” condition is given by the following lemma.

Lemma 3.3. The following inf-sup Condition holds: there exists a constant 8 > 0,
such that
curl - curl ¢ dx
inf sup Jo ke L > 0. (3.5)
PEVE 1 (Q), $#0 eV, 1 (Q), 90 H¢||X2727T(Q)”‘PHX[Q)YT(Q)

Proof. Let g € ng(Q) and let us introduce the Dirichlet problem
—Ax=divg inQ, x=0 onl.

It is shown in [7 Theorem 3.5], that this problem has a solution y € W1Z(Q)
unique up to an element of A@ and we can choose y such that

19x oy < Cllgllwos o
Set z = g — V. Then we have z € W22(Q), divz = 0 and we have
Izllwo2 ) < Cllgllwozq)- (3.6)

Let ¢ any function of V37T(Q), by Theorem [2.5(we have ¢ € X&T(Q) — W?(Q).
Then due to (2.4) we can write

| |, curlp - g dx|

Ilixz o < Cllcurl gz =C  sup (3.7)
o0,7() W) CEWO2(0), g0 ”g”W(l’f(Q)
Using the fact that curl ¢ € H?(div, Q) and applying (1.8)), we obtain
/ curly - Vxdx = 0. (3.8)
Q

Now, let A € Wy'?(€2) the unique solution of the problem
AX=0 inQ and A=1 onl.
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It follows from [7, Lemma 3.11] that
/ —do=C1 > 0.

1
Z=1z— a<z~n,1>pV)\.

It is clear that z € W>?(Q), divz = 0 in Q and that (Z - n,1)p = 0. Due to [T,
Theorem 3.15], there exists a potential vector ¢ € W 2(€) such that

z=curly, divyp=0 in and ¥ -n=0 onl. (3.9)

Now, setting

and we have
Wv(q) € N2, / - Vv(q) do = 0. (3.10)
r
In addition, we have the estimate
1¥llwi2q) < Clizllwozq) < Cllzllwozq)- (3.11)

Using (3.10), we obtain that % belongs to V2, 1.(). Since ¢ is H" in a neigh-
borhood of T, then ¢ has an H' extension in €’ denoted by @. Applying Green’s
formula in €', we obtain

0= / div(curlp)dx = (curl® - n, 1)r = (curlp - n, 1)r.

Using the fact that curl  in H3(div, Q) and X in W'2(Q) and applying (L.8), we
obtain

0= (curly -n,1)r = (curlp - n, \)r = / curlp - VAdx. (3.12)
Q
Using (3.8) and (3.12)), we deduce that
/curlgo-gdx:/curlcp~zdx:/cur14p~idx. (3.13)
Q Q Q

From (3.11)), (3.6) and (3.13)), we deduce that

| [ curly - gdx]|
||g||w‘1~f(fz)

Applying again (2.4)) and using (3.10), we obtain
| |, curlp - g dx|

curlp -z dx curl ¢ - curly dx
<O =Y .

Zlwoz) [ curl o2 (g

- C‘ Jq curle - curl 9 dx|

Igllwoz@) 1¥lxz, @ 7
and the inf-sup Condition (3.5)) follows immediately from (3.7]). O

The second ”inf sup” condition is given by the following lemma:

Lemma 3.4. The following inf-sup Condition holds: there exists a constant 3 > 0,
such that
14 - lod
inf sup fQ curly - curlp dx > 0. (3.14)
PEVZ, N (D), pF0 eV N (), 0 |\¢||x2N(sz)||<P||x321N(sz)




EJDE-2013/196 STOKES PROBLEM WITH SEVERAL BOUNDARY CONDITIONS 11

Proof. The proof is similar to that of Lemma Let g € WY2(Q) and let us
introduce the generalized Neumann problem

div(Vx—g)=0 inQ and (Vx—g)-n=0 onl. (3.15)
It follows from [10] that Problem has a solution y € W;"*(Q) and we have
IVxllwozq) < Cliglwo2q)-
Setting z = g — Vx, then we have z € H2(div, Q) and divz = 0 with the estimate
12l wo2 o) < Cligllwoz - (3.16)

Let ¢ be any function of V2, y(92). Due to Theorem we have X2, () —
W!2(Q) and by (2.6) we can write

J, curlp - gdx
lolxe, o < Clomlplyorg =€ sp Lo |

(3.17)
eew?? (@), g0 |18llwozo)

Observe that curl ¢ belongs to H2 | (div, Q) with ¢ xn = 0 on I and y € W;"*(Q).
Then using (1.8]), we obtain

/ curlp - Vxdz = (curly -n, x)r =0. (3.18)
Q
Due to [7, Proposition 3.12], there exists a potential vector 1 € W}2(Q) such that
z=curly, divyy=0 inQ and ¥ xn=0 onT, (3.19)
/ Y -ndo =0. (3.20)
r

In addition, we have
HI/’HWi’z(Q) = CHZHW‘}?(Q)- (3:21)

Then, we deduce that 1 belongs to V§ (). Using (3.16)), (3.18) and (3.19), we
deduce that

| | curlp - g dx| | Jocurle-zdx| | [, curl ¢ - curl ¢ dx|

18llwo2 (o) lzllwoem) [ curl®|[yyo.2 (g,

Applying again and using , we obtain
| |, curlp - g dx| - | |, curlep - curlep dx|

Igllwoz) 1lixz @) 7
and the inf-sup condition (3.14]) follows immediately from (3.17)). O

4. ELLIPTIC PROBLEMS WITH DIFFERENT BOUNDARY CONDITIONS

Next, we study the problem
—Ag=f and divE=0 in Q,

Exn=gxn onl and /(£~n)qdo:(), VqEPkA.
r
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Propcosition 4.1. Let k = —1 or k = 0 and suppose that g x n = 0 and let

f e [Hi_ (curl,Q)] with divf =0 in Q and satisfying the compatibility condition
2

Vv e Yin(9), <f7v>[I:Iiil(curlQ)]’Xﬁiil(CUrlQ) =0. (4.2)

Then, Problem has a unique solution in Wiz(Q) and we have
1€llwr2 ) < Clifllg2 | (curtay (4.3)
Moreover, if £ in W(i’,zH(Q) and ' is of class C*', then the solution & is in
WQ_’IQCH(Q) and satisfies the estimate
€llw22 () < Clifllwez (o) (4.4)
Proof. (i) On the one hand, observe that Problem is reduced to the variational
problem: Find & € V2, | v (Q) such that

Ve € X3y n(9), / curlé - curlpdx = (f, ¢)q, (4.5)
Q
where the duality on €2 is
<" >Q = <" '>[I:Ii71(curl,Q)]’xﬁiil(curl,Q)'

On the other hand, (.5 is equivalent to the problem: Find £ € V2, | () such
that

Y € Vi_l,N(Q), / curlé - curl pdx = (f, p)q. (4.6)
Q

Indeed, every solution of (4.5) also solves (4.6). Conversely, assume that (4.6))
holds, and let ¢ € Xifl) ~(€). Let us solve the exterior Dirichlet problem

—Ax=dive inQ and x=0 onlI. (4.7)
It is shown in [, Theorem 3.5] that problem (4.7) has a unique solution x €
W22(Q) /A2,
First case. if kK =0, we set

N 1
p=p—Vx— a<<P = Vx, HrV(v(1) — 1),

where v(1) is the unique solution in Wy'*(€) of the Dirichlet problem (2.1)) and
ov(1)

do.
pan 7

C =

It follows from [7, Lemma 3.11] that C; > 0 and since V(v(1) — 1) belongs to
Y? 5 (), we deduce that @ belongs to V2, ().

Second case. if k = —1, for each polynomial p in P2, we take @ of the form
$=¢—Vx—V(u(p)—p)

where v(p) is the unique solution in W, *(Q) of the Dirichlet problem (2.1). The
polynomial p is chosen to satisfy the condition

/(@-n)qdo—:o Vg € PP (4.8)
I
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To show that this is possible, let T be a linear form defined by T : Pf — R?,

T(p) = ( /F 5(v(gil— ?) o, / 8(@(211— P) 4. do,

/F(Wmda,/ra(v(gil_mme),

where {1, 21, 2o, 23} denotes a basis of P{. It is shown in the proof of [8, Theorem

7], that if
/ 78(1)(10) ) qdo =0 Vqc¢€ PlA,
T 81’1

then p = 0. This implies that T is injective and so bijective. And so, there exists
a unique p in P{ so that condition is satisfied and since V(v(p) — p) belongs
to Y3 (9), we prove that @ € V2, ().

Finally, using , we obtain for £k = 0 and k = —1 that

(£, V(v(p) —p)a =0 and (£, V(v(1) - 1)o =0
and as D(Q) is dense in H2_, (curl, Q), we obtain that
f,Vx)a =0.

Then we have
/ curl¢ - curl pdx = / curl¢ - curl pdx = (£, p)q.
Q Q

Then Problem and Problem are equivalent. Now, to solve Problem ,
we use Lax-Milgram lemma for £ = 0 and the inf-sup condition for k = —1.
Let us start by & = 0. We consider the bilinear form a : V2, () x V2, (Q) = R
such that

a(g,p) = /Q curl€ - curl p dx.

According to Theorem a is continuous and coercive on V%L ~(€Q). Due to Lax-
Milgram lemma, there exists a unique solution & € V%L ~ () of Problem (4.6)).
Using again Theorem we prove that this solution & belongs to Wé’z(Q) and

the following estimate follows immediately
HEHW&%Q) < C||f||[1i131(cur1,n)]/' (4.9)

When k£ = —1, we have that Problem satisfies the inf-sup condition .
Let us consider the mapping £ : V2, y(Q) — R such that £(p) = (f,¢)q. It is
clear that £ belongs to (V2, y(Q))" and according to Remark there exists a
unique solution £ € V§ () of Problem (4.6). Due to Theorem we prove that
this solution & belongs to W1%(Q). It follows from Remark [2.81) that

€l 20y < ClEllgre  eury (4.10)

ii) We suppose in addition that f is in W22 (Q) for k= —1ork=0and
E+1

is of class C%! and we set z = curl &, where £ € Wii(Q) is the unique solution of
Problem (4.1). Then we have

ZGW(i’i(Q), curlz:fGW(i’iH(Q), divz=0 and z-n=0 onT
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and thus z belongs to X2, (). By Theorem we prove that z belongs to

WiiH(Q) and using (2.4]), we prove that z satisfies

||Z||w1_=§+1(sz) < CO[f|[yyo.2 Q)" (4.11)

—k+1

As a consequence £ satisfies
EeWHi(Q), curlée WY, (Q), divE=0 and £€xn=0 onl.

2,2

Applying [7, Corollary 3.14], we deduce that & belongs to W2, |

addition the boundary condition of (4.1) we prove that
l€lwes ) < Cleurlélwis . (4.12)
Finally, estimate (4.4)) follows from (4.11)) and (4.12). a

Corollary 4.2. Letk=—1 ork =0 and letf € [fl%_l(curL D)) with divf =0 in
Q and g € HY2(T) and satisfying the compatibility condition [&.2). Then, Problem
4.1) has a unique solution € in Wl_i(ﬂ) and we have:

(Q) and using in

||€||wg;§(9) < C(Hf||[I:Ii71(curl,Q)]’ +llg x nHH“"’(F))' (4.13)
Moreover, if £ in W(i’,zH(Q), g in H3/2(T) and & is of class C*', then the solution

£ isin WQ,;%H(Q) and satisfies

l€hwesz o < C(I8llwosz oy + & x Bligrage) ). (4.14)
Proof. Let k =0 or k = —1 and let g € H/2(I"). We know that there exists &, in
H!(Q) with compact support satisfying

Eo=gr onl' and divg, =0 in ,
where g, is the tangential component of g on I'. Since support of &, is compact,
we deduce that &, belongs to W52(Q) for k = —1 or k = 0 and satisfies
€0l < Cligr w2 (4.15)

Setting z = & — &, then Problem (4.1)) is equivalent to: find z € Wl_i (Q) such that
—Az=f+Af, and divz=0 inQ,
4.16
zxn=0 onl and /(z~n)qda=0, VqEPkA. (4.16)
r
Observe that F = f — curlcurl§, belongs to [Iilifl(curl,Q)]’. Since D() is
dense in IiIi_l(curl, Q), we have for any v € Yf_k,N(Q):

(curlcurléy, v)q = / curlé, - curlvdx = 0.
Q

Thus F satisfies the compatibility condition (4.2). Due to Proposition there
exists a unique z € Wl_i(Q) solution of problem (4.16]) such that

quwl_vi(g) < C”F”[ﬁi,l(curlﬂ)]’ < C(Hf|‘[ﬁi71(curl,9)]' + 1l Curl&o”w‘)_vi(g))'
(4.17)
Then £ = z + £, belongs to Wl_,z(Q) is the unique solution of ([5.8) and estimate

(4.13) follows immediately from (4.15) and (4.17).
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Regularity of the solution: Suppose in addition that Q is of class C%!, f in

W2, () and g in H*/2(T"). Then the function &, defined above belongs to H2(€2)

with compact support and thus &, belongs to WQ_E +1(82) and we have
||§0||wi§+1(9) < Cllgrllmszm)- (4.18)

Using again Proposition we prove that z belongs to W2_,i+1(Q) and satisfies
IZllw22 (o) < CllFllwoz (o)

Then £ is in Wi’iJrl(Q) and estimate follows from (4.18). O

The next theorem solves an other type of exterior problem.

Theorem 4.3. Let k = —1 or k = 0 and let v belongs to W2’2(Q). Then, the
following problem
—Aé=curlv and divE=0 in{,
En=0 and (curlé—v)xn=0 onT,

(4.19)
/FS V(w(g) —q)do =0, V(w(q)—q) N5
has a unique solution & in WIICQ(Q) and we have
1€llw2 () < CllvIiwe2q)- (4.20)

Moreover, ifv € W,lcfl(Q) and ' is of class C*', then the solution & is in Wifl(ﬁ)
and satisfies the estimate

||§||Wi;’f1(9) < C||V|\w;f1(sz)' (4.21)

Proof. At first observe that if & € W, *(Q) is a solution of Problem for
k= —1or k = 0, then curl £ — v belongs to HZ(curl,2) and thus (curl{ —v) x n
is well defined in T and belongs to H™/2(T").

On the other hand, note that can be reduced to the variational problem:
Find £ € Vi_; p(9) such that

Vo e X2, p(Q) / curl§ - curlpdx = / v - curlp dx. (4.22)
Q Q

Indeed, every solution of (4.19)) also solves ([4.22]). Conversely, let & € V,%_LT(Q) a
solution of the problem (4.22)). Then,

Vo € D(Q), (curlcurl§ —curlv, ¢)po)xp@) = 0.

Then
— A =curlv in Q. (4.23)
Moreover, by the fact that & belongs to the space V%q,T(Q) we have divé = 0

in Q and € -n = 0 on I'. Then, it remains to verify the boundary condition
(curlé—v)xn = 0 on I'. Now setting z = curl €—v, then z belongs to H? (curl, ).

Therefore, (4.23) becomes
curlz=0 in Q. (4.24)
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Let p € X2, | (), by Theoremﬁwe have X2, | 7(Q) — W17(Q). Thank’s
to (1.9) we obtain

/ z-curlpdx = (z X 0, ) g-1/2(r)xH11/2(T) +/ curlz - pdx. (4.25)
Q Q

Compare (4.25) with (4.22)) and using (4.24), we deduce that
Yo € X%kﬂ,T(Q)a (zxn,o)r =0.

Let now g any element of the space H'/2(I'). As Q' is bounded, we can fix once for
all a ball Bg, centered at the origin and with radius R, such that  C Bg. Setting
Qg = QN Bg, then we have the existence of ¢ in H(2g) such that ¢ = 0 on 9B
and ¢ = p, on I', where p, is the tangential component of p on I'. The function
¢ can be extended by zero outside Br and the extended function, still denoted by
®, belongs to WLP(Q), for any « since its support is bounded. Thus ¢, belongs to
Wl_i(Q) It is clear that ¢ belongs to X2—k—1,T(Q) and

(zxn,pu)r =(zxn,pu,)r =(zxn,er=0. (4.26)

This implies that z x n = 0 on I which is the last boundary condition in (|4.19).
On the other hand, let us introduce the problem: Find £ € Vifl,T(Q) such that

Vo e V2, 4 1(Q) / curlé - curlpdx = / v - curl p dx. (4.27)
Q Q

Problem (4.27) can be solved by Lax-Milgram lemma if ¥ = 0 and by Lemma
if k=—-1.

We start by the case k = —1. Observe that Problem (4.27)) satisfies the inf-sup
condition (3.5). Let consider the mapping £ : V§ () — R such that £(p) =
Jo v -curlpdx. Tt is clear that £ belongs to (V§ 1(2))’ and according to Remark
there exists a unique solution § € V%Q’T(Q). Applying Theorem we deduce
that this solution & belongs to W ?(€2). It follows from Remarki) and Theorem
[2.6] that

||€||W1;f(§z) < C'HEH(VaT(Q))' < CHV”w‘}f(Qy (4.28)
For k = 0, let us consider the bilinear form b : V2, 1.(Q) x V2, 1(2) — R such
that

b, p) = / curl§ - curl pdx.
Q

According to Theorem ﬁ b is continuous and coercive on V2, (Q). Due to Lax-
Milgram lemma, there exists a unique solution & € V2, +.(Q) of Problem ([&.27).
Using again Theorem [2.5] we prove that this solution € belongs to Wé’Q(Q) and
estimate (4.20) follows immediately.
Next, we extend (4.27) to any test function in X2_k_17T(Q). Let ¢ € X2_k_17T(Q)
and let us solve the exterior Neumann problem
: . dx
Ax =dive inQ and Tn 0 onT. (4.29)
n

It is shown in [7, Lemma 3.7 and Theorem 3.9] that this problem has a unique
solution y in Wi,ffl(Q) if k = —1 and unique up to a constant if £ = 0. Set

p=¢—Vyx. (4.30)
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It is clear that for k = 0 and k = —1, [.¢-V(w(q) —¢) do = 0 for any (w(q) —q) €
N2, Then @ belongs to V%,FLT(Q). Now, if (4.27) holds, we have

/cur1£~curlgodx:/curlé‘-curlfodx:/v-curlcpdx.
Q Q Q

Hence, problem (4.22) and problem (4.27)) are equivalent. This implies that problem
(4.19) has a unique solution & in W7(Q) for k=0 or k = —1.
Regularity. Now, we suppose that v € W,lcfl(Q) — W%Q(Q) and € is of class

C>l. Let & € W;Z(Q) the weak solution of (4.19) and we set z = curl§ — v.
It is clear that z belongs to XiN(Q) Applying Theorem we obtain that

z € Wifl(Q) and using (2.5) and (4.20) we obtain that

lellwez, o < O (17w + l1divallwes, o))

k+1
< C(H curllyyo2 ) + [Vllwoz(q) + |l divv||W£fl(Q)) (4.31)
< Clviwyz, @
This implies that £ satisfies
EeWA(Q), divE=0e W7 (Q), curlée W7 (), £€n=0 onl.

Applying [7, Corollary 3.16], we deduce that & belongs to Wifl(Q) and using
(4.31)), we obtain

1€llw22 () < C(H'SHW}C»Z(Q) + 1l Curlﬁﬂw;fl(m)

7
< C(IVlwyo + Izlwez, ) + IVIwiz o))
< Ivllwiz (@)

This completes the proof of the theorem. O

As consequence, we can prove other imbedding results. We start by the following
theorem.
Theorem 4.4. Let k = —1 or k = 0. Then the space Z%N(Q) s continuously
imbedded in W,lcfl(Q) and we have the following estimate for any v in ZiN(Q)

||V||w;f1(9) = C(||VHW2’2(Q) + | Cuerngfl(Q)

. (4.32)

+ | dlvaW}Sfl(Q) + IV X nllgzm)-
Proof. Let k = —1 or k = 0 and let v be any function of Z%’N(Q). We set z =
curl£—v where £ € WiQ(Q) is the solution of the problem (4.19). Hence, z belongs

to the space Xi’N(Q). By Theorem [2.6|and ({2.5)), z even belongs to W,lcfl(Q) with
the estimate

||Z||W}Cj:‘1(9) < C(||Z||W2’2(Q) + diVZ”ngfl(Q) + Curlz”wgfl(ﬂ))- (4.33)

Then, it suffices to prove that curl€ € W,lcfl(ﬂ) to obtain v € W,lcil(Q) Setting
w = curl&. Tt is clear that

/ w-ndo=0 (4.34)
r
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and then w satisfies
—Aw =curlcurlv and divw=0 in{

4.35
wxn=vxn onl and /(w-n)qdazO,VqEPfk,l. ( )
r

Note that curlv € ngl(Q) then curlcurlv is in [13127,%2 (curl, )] and we have

v x n € HY/2(T). Since D(R) is dense in IiIQ_k_Q(curl7 ), we prove that
Vo Y,%+27N(Q), (curlcurlv, ¢) (B2 (curl Q) xH2, _,(curl,Q) = 0.
Due to Corollary the function w belongs to W,i_fl (Q) and satisfies the estimate

Hw”Wifl(Q) < C(|| curl curlv||[ﬁ27k72(curl’ﬂ)], +||v x n||H1/2(p)) (436)
< (] cur1v||wgfl(9) +[Iv X nllgzmr)-

Finally, estimate (4.32) can be deduced by using inequalities (4.33]) and (4.36). O

Before giving the second imbedding result, we need to introduce the following
space for any integer k in Z,

M2 () = {v e W2 (), divv € WE2(Q), curlv € W2, (),
vXne H3/2(I‘)}.

Proposition 4.5. Suppose that ' is of class C*'. Then the space M%LN(Q) is
continuously imbedded in Wf’g (Q) and we have the following estimate for any v in
le N(Q)f

IVllwz2(g) < C(IVIlwzzg) + [ eurl vz g + | div vilye g + IV < nllgs2r).-
(4.37)

Proof. The proof is very similar to that of Theorem [£.4] Let v be any function of
M?, y(©) and set z = curl £ —v where § € W2?(Q) is the solution of the problem

[@.19). According to [7, Corollary 3.14], we prove that z belongs to W>?(Q) with
the estimate

||z||Wf’2(Q) < C(HZHWCI)*Q(Q) + H diVZlel,z(Q) + || curleWi,z(Q)). (4.38)

Then, it suffices to prove that curlé € W22(Q2) to obtain v € W2?(Q). We set

w = curlé. Using [1, Theorem 3.1], we prove that w satisfies Problem (4.35).
Using the regularity of Corollary we prove that w belongs to WfQ(Q) and
satisfies

@l 2oy < C(Ileurleurlvyezo) + v x 0o r))
and then estimate follows from . ([
5. GENERALIZED SOLUTIONS FOR AND
We start this sequel by introducing the space
EX(Q) = {ve W ?(Q) : Av € [H2(div,Q)]'}.
This is a Banach space with the norm

[vlE2(0) = HV“Wé*Q(Q) + ||AVH[15131(div,Q)]'-
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We have the following preliminary result.
Lemma 5.1. The space D(R) is dense in E2(Q).

Proof. Let P be a continuous linear mapping from W(l)’2(Q) to Wé’Q (R3), such that
Pv]q = v and let £ € (E?(2))’, such that for any v € D(Q), we have (£,v) = 0.
We want to prove that £ = 0 on E?(Q). Then there exists (f,g) € W, "*(R3) x
H2 | (div, Q) such that: for any v € E2(),

(£, v) = {f, PV>W51'2(R3)XW5’2(R3) + <AV7g>[ﬁ31(div,9)]/xﬁ31(div,Q)~

Observe that we can easily extend by zero the function g in such a way that
g € H2 | (div,R?). Now we take ¢ € D(R?). Then we have by assumption that

(f, 90>W0_1’2(]R3)><W(1)‘2(]R3) + /}R3 8- Apdr =0,

because (f, ) = (f, Pv) where v = ¢|g. Thus we have f + Ag = 0 in D'(R?).
Then we can deduce that Ag = —f € W5 "*(R?) and due to [2, Theorem 1.3], there
exists a unique A € Wy *(R?) such that AX = Ag. Thus the harmonic function
A — g belonging to Wg% (R?) is necessarily equal to zero. Since g € W(1)2(Q) and
g € Wy *(R?), we deduce that g € WéQ(Q) As D(9Q) is dense in VDV(l)’Q(Q), there
exists a sequence gy € D(Q) such that g — g in W4?(Q), when k — oo. Then
V-gp — V-gin L2(Q). Since W, ?(Q) is imbedded in W?(Q), we deduce that
gr — g in H2 (div, Q). Now, we consider v € E?(Q2) and we want to prove that
(€,v) = 0. Observe that:

(€, v) = —(Ag, PV>wgle(R3)xw;=2(R3) + <AV7g>[1112_1(div,9)]/xﬁz_l(div,g)

= lim (—/QAgk VAT AV, 81 2 (div, ) 2, (div, 2)

k—o0

= lim (—/Agk'vdx—l—/v-Agkdw):O.
Q Q

k—o0

As a consequence, we have the following result.

Corollary 5.2. The linear mapping v : v — curlv|r x n defined on D(2) can be
extended to a linear continuous mapping

v :E2(Q) - H-Y2(T).

Moreover, we have the Green formula:for any v € E2(Q) and any ¢ € W(l)Q(Q)
such that divep =0in Q and ¢ - mn=0 on I,

—(AV, @iz aiv oy, (aiv, ) :/Q curlv-curlp dx—(curlv xn, @)r, (5.1)

where the duality on T is defined by (-,-)r = (-, " )u-1/2(ryxH1/2(I) -

Proof. Let v € D(Q). Observe that if o € WE?(Q) such that ¢ -n =0 on I' we
deduce that ¢ € X2_17T(Q), then (5.1)) holds for such ¢. Now, let u € HY?(T),

then there exists ¢ € W(I)Z(Q) such that ¢ = p, on I' and that div¢ = 0 with
HSOHWS)’Q(Q) < CHNtHHl/?(F) < CHNHHW(F)- (5.2)
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As a consequence, using (5.1]), we have

eurly xn. e < Cvllms(en s
Thus,

[ eurlv x nflg-1/2r)| < ClvE2(0)-
We deduce that the linear mapping + is continuous for the norm E2(). Since D(Q)
is dense in E2(2), v can be extended to by continuity to v € L(E*(Q), H~Y/2(T"))
and formula holds for all v € E2(Q) and ¢ € W(l)’z(Q) such that dive =0 in
Qand p-n=0onT. O

Proposition 5.3. Let f belongs to W*(Q) with divf =0 in Q, g € H'/2(T) and
h € H-'/2(T") verify the compatibility conditions: for any v € YiT(Q),
/ f-vdx+ <h X n, V>H*1/2(F)><H1/2(F) = O, (53)
Q
f-n+divp(hxn)=0 onT, (5.4)

where divr is the surface divergence on I'. Then, the problem
—Az=f and divz=0 in

z-n=g and curlzxn=hxn onT, (55)
has a unique solution z in W(l)’2(Q) satisfying the estimate
2l 2@y < € (IElwoy + gl @y + B x nlls-ra). (5.6)

Moreover, if h in HY?(T"), g in H3/?(T') and Q' is of class C**, then the solution
z is in W72(Q) and satisfies the estimate

2l w22y < € (IElwozy + lglmone) + I x nllga ). (5.7)

Proof. First, note that if h € H~'/2(T"), then h x n also belongs to H~/2(T"). On
the other hand, let us consider the Neumann problem:

A=0 inQ and %:g on I (5.8)
On

It is shown in [7, Theorem 3.9], that this problem has a unique solution 6 €
WZ2()/R satisfying the estimate

10122y < Cllgllar ey (5.9)
Setting €& = z — V6, then problem (/5.5) becomes: find & € Wé’2(Q) such that
—Ag=f and divE=0 in Q,

E-n=0 and curléxn=hxn onT.

Now, observe that problem ([5.10) is reduced to the variational problem: Find
£ € V2, 1(9) such that

Ve € X2—1,T(Q) /Q

Indeed, every solution of ((5.10) also solves (5.11). Conversely, let € a solution of
the problem (5.11]). Then,

Vo € D(Q), (curlcurlé —f, @)p (o)xp() = 0.

(5.10)

cur1£~cur1godx:/ f-pdx+ (hxn,pr. (5.11)
Q
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So —A€ = f in Q. Moreover, by the fact that € belongs to the space V2_17T(Q)7 we
have divE =0 in 2 and £ -n = 0 on I'. Then, it remains to verify the boundary
condition curl€ x n = h x n on I'. Observe that & belongs to E?(Q2) so by
and comparing with we deduce that for any ¢ € XQ_LT(Q), we have

(curlé x n,)r = (h x n, @)r.

Proceeding as in the proof of Theorem we prove that curlé xn=hxnonT.
On the other hand, let us introduce the following problem: Find & € V2, (Q)
such that

Y € V2_17T(Q) / curl¢ - curl pdx = / f-pdx+ (hxn,pr. (5.12)
Q Q

As in the proof of Theorem we use Lax-Milgram lemma to prove the existence
of a unique solution £ in V2_17T(Q) of Problem (5.12)). Using Theorem we

prove that this solution £ belongs to Wé’Q(Q) and the following estimate follows
immediately

€@ < C(IElwnaqa + I < nlli-vae)). (513)
Next, we extend (5.12) to any test function ¢ in X2, 1.(Q). Let g € X?, ()
and let us solve the exterior Neumann problem:

Ax =dive inQ and g—ii:O onTI. (5.14)

It is shown in [I0, Theorem 4.12] that this problem has a unique solution x in
WZ2(€2) up to an additive constant. Then, we set

p=p¢—Vyx. (5.15)

Since W37*(Q) is imbedded in W' (), then ¢ belongs to V2, 7(Q). Now, if (5.12)
holds, we have

/ curl¢ - curlpdx = / f-pdx+ (hxn,@)r — / f- Vxdx — (h xn, Vx)r.
Q Q Q
Using (|1.8) and (5.4)), we obtain

/cur1£~cur1§o'dx:/f~§5dx—|—<h><n,§5)p.
Q Q

This implies that problem (5.11]) and problem (5.12]) are equivalent and thus prob-
lem (5.10) has a unique solution £ in W?(€2). Finally, we set z = £+V6 € W 2()
the unique solution of (5.5). Finally, (5.6) follows immediately from (5.13) and
9.

Regularity of the solution. We suppose in addition that h is in H1/2(F), g
in H3/2(T) and Q' is of class C>! and let z in W*(Q) be the weak solution of
Problem (5.5). Setting w = curlz, then w satisfies

weL?(Q), divw=0e W *Q),
curlw =f ¢ W?’Z(Q), wxn=curlz xn¢€ Hl/Q(I‘).

Applying Theorem (with £ = 0), we prove that w belongs to W%Q(Q) This
implies that z satisfies

z¢e W(l)’z(Q), divz =0 ¢ Wll’z(Q), curlz € WP(Q) z-n e HY*(T).
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Applying Proposition we prove that z belongs to W?(Q) and we have the
estimate (5.7)). ([

Next, we solve the Stokes problem (L.1)).
Theorem 5.4 (Weak solutions for (L.1)). Suppose that g = 0 and x = 0. For
f given in [H2,(div,Q)]" and h given in H~Y/2(T) satisfying (5.3). The Stokes
problem (1) has a unique solution (u,7) € Wy*(Q) x L*(Q) and we have the
estimate

lallwzz )+ Illza@) < CIEge | v,y + IR X 0lla-120m))- (5.16)

Proof. At first, observe that problem (1.1]) is reduced to the variational problem:
Find u € V2, () such that
VCP € Vgl,T(Q)v
(5.17)
/chrlu -curlpdx = (f, ‘P>[ﬁ§1(div,§z)]'xﬁil(div,Q) + (h x n, ¢)r.

Indeed, every solution of (|1.1)) also solves (5.17). Conversely, let u a solution of
problem (5.17)). Then

for all ¢ € D(Q) such that dive =0, (—-Au—f,¥)p()xp@) = 0.
By De Rham theorem, there exists ¢ € D'(2) such that

—Au—-f=Vq in Q.

Note that [H2, (div, Q)] is imbedded in W "*(Q) and thus —Au—f € W, ().
It follows from [7, Theorem 2.7], that there exists a unique real constant C' and a
unique 7 € L?(£2) such that 7 has the decomposition ¢ = 7 + C.

Observe that since f and Vr are two elements of [H2 , (div, Q)], it is the same
for Au. Since D(Q) is dense in H2 | (div, ), we obtain for any ¢ € H2,(div, ()

such that dive = 0:
(Vm, ‘P>[ﬁ,1(div, O] xH_; (div, Q) 0.
Moreover, if ¢ € V%LT(Q)7 using Corollary we have

(=Au, ‘P>[1312_1(div, Q)]’ xH2 | (div, Q)
= / curlu - curlpdx — (curlu X n, ‘,0>H—1/2(F)><H1/2(F).
Q
We deduce that for all ¢ € V2, 1.(Q)

<curlu X n, ‘P>H—1/2(F)><H1/2(F) = <h X n, ‘10>H—1/2(F)><H1/2(F)'
Let now g any element of the space H'/ 2(T'). So, there exists an element ¢ €
W,?(€) such that dive = 0in Q and ¢ = g, on T. Tt is clear that ¢ € V2_17T(Q)
and
(curlu x n, w)yr — (h x n, w)r = (curlu x n, p,)r — (h x n, p,)r
= (curlu x n,¢)r — (h x n,p)r = 0.
This implies that curu x n = h x n on I'. As a consequence, Problem (5.17)) and

(1.1) are equivalent. As in the proof of Theorem we use Lax-Milgram lemma
to prove the existence of a unique solution u in V2—1,T(Q) of Problem ([5.17). Using
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Theorem we prove that this solution u belongs to W4?(Q). Then the pair
(u, 7) € Wy*(Q) x L2(Q) is the unique solution of the problem (T.T)). The estimate
(5.16) follows from ([2.4)). O

Corollary 5.5. Let f, x, g, h such that

fe [l (div,Q), xeL*Q), geHY*T), heH VD),
and that (5.3) holds. Then, the Stokes problem (L.1) has a unique solution (u, ) €
W2(Q) x L2(Q) and we have:

sy + Ilz2c@)
(5.18)
<C (”f”[ﬁil(div,sz)]f +Ixllzz) + 19l /2@y + [ x nHHfl/Z(r)) :

Proof. First case: We suppose that y = 0. Let 6 € W*(Q) be a solution of the
exterior Neumann problem (5.8]). Setting z = u— V#, then, problem (1.1)) becomes:
Find (z,7) € W4(Q) x L(2) such that

—Az+Vr=f and divz=0 in(,

z-n=0 and curlzxn=hxn onl. (5.19)

Due to Theorem this problem has a unique solution (z,7) € W§%(Q) x L2().
Thus u = z + V6 belongs to W, *(Q) and using (5.9) and (5.16)), we deduce that

Il 20+ Imllz2@) < CIEllgre v, ayp + 190 arv/oey + X nlleg1/2ry) - (5.20)

Second case: We suppose that x € L?(Q). We solve the following Neumann

problem in Q:
X ’ 311 ' '

It follows from [7, Theorem 3.9] that Problem (5.21) has a unique solution 6 in
W2(€2)/R and we have

1822 < C (Il z2c@) + gl )- (5.22)
Setting z = u— V46, then Problem problem ([1.1]) becomes: Find (z,7) € Wé’Q () x
L?(Q) such that
—Az+Vr=f+Vyxy and divz=0 in Q,

z-n=0 and curlzxn=hxn onl. (5.23)

Observe that f4+Vy belongs to [HZ ; (div, )]’ and (Vy;, V)2 | (div, Q)] <22, (div, ) =
0 for all v in Yf’T(Q). According to the first step, this problem has a unique solu-
tion (z,7) € W5 (Q) x L(2). Thus u = z + V6 belongs to W >(Q) and estimate
(5.18) follows from ([5.20) and ([5.22)). O

Now, we study the problem (|1.2)).

Theorem 5.6 (Weak solutions for (1.2)). Assume that x = 0, f is in the space
[H2 (curl,Q)], g is in HY2(T') and mq is in H/?(T'), satisfying the compatibility
condition

VAEYIN(@Q), (N2 (eun o)y iz, (euro) = (A1 To)r (5.24)
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Then the Stokes problem (T.2) has a unique solution (u,7) € W5 (Q) x W}?(Q)
and we have

Iallwez ) + I7llwrz) < CUE g2 | curn, )y + 18 X 0llmzm) + Tl mzm))-
(5.25)

Proof. First, we consider the problem
Ar=divf inQ, wmw=m onl. (5.26)
Since f € [H2 (curl,Q)]’, we deduce from Proposition that divf belongs to
W, %(Q). Now, let (v(1) — 1) an element of A%, it is clear that V(v(1) — 1)
belongs to Y7 (). Then using the density of D(Q2) in W!2(Q) and (5.24), we
prove that
<d1V f, (1}(1) — 1)>W;12(Q)><W1_f(9) = _<fa V(’U(l) - 1)>[Iilil(curl,(2)]’Xﬁzl(curl,ﬂ)

= _<V(’U(1) — 1) . 1’1,7T0>1".
(5.27)
Since is satisfied, we apply [1, Theorem 3.6] to prove that Problem
has a unique solution 7 € W11 = (©2) and we have the following estimate:

Il < c(|| div fllyy-1.2(0) + HWOHHW(F)). (5.28)

Setting F = f — Vr, then F belongs to [H2 (curl, Q)]. Thus Problem
becomes: Find u € Wy?(Q2) such that:
—Au=F and diva=0 in €,
(5.29)
uxn=gxn onl and /Fu-ndozo.

Using (5.24) and the fact that D(€2) is dense in H2 | (curl, ), we prove that
VA e Yf,N(Q)a <F’ )‘>[ﬁal(curl,Q)]’Xﬁzl(curl,ﬂ) =0. (530)

Therefore, F satisfies the assumptions of Corollary and thus Problem (5.29) has
a unique solution u € Wé’Q(Q) with

lullw e < € (IF e eurnanyr + I8 % nlliraqry)- (5:31)
Thus estimate (5.25) follows from (5.31)) and from (5.28)). O

Corollary 5.7. Let f, x, g, mo such that
fe[H2(curl, Q)), yeW?*Q), geHYI), e HY*I),
and satisfying the compatibility condition:
YA YT N(©Q), (f )\>[ﬁ31(cur1,ﬂ)]/xﬁzl(curl,ﬂ) = (A-m,mo = X)r- (5.32)

Then the Stokes problem (1.2) has a unique solution (u, ) € Wy*(2) x W*(Q).
Moreover, we have the estimate
lallwz2q) + lI7llwre g

5.33
< Oz ourt ey + I8 % Bllsw ey + ol oy + o) o)
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Proof. First, we consider the problem
Ar=divf+Ayxy in, mw=m onl. (5.34)

Since f € [H2 , (curl, )]’, we deduce from Proposition [1.4] that div f + Ay belongs
to Wl_l’Q(Q). Proceeding as in the proof of Theorem we prove that

<lef + AX, (’U(l) — 1)>WII’Z(Q)XVQV17’T(Q) = —<V(’U(1) — 1) . n,7T0>1"
and then we apply [7, Theorem 3.6] to prove that Problem (5.34) has a unique
solution € W;"%(Q) and we have the following estimate:
Il 2y < C(I1div € + Axllyg: 120y + Imollzrvary ). (5.35)

Thus Problem (T.2) becomes: Find u € W(€2) such that
—Au=f—-Vr and divu=yx in ),

(5.36)
uxn=gxn onl and u-ndo =0.
r

On the other hand, let us solve the Dirichlet problem
Af=x inQ, =0 onl.

Since W}"*(Q) is imbedded in L2(Q), it follows from [7, Theorem 3.5], that this
problem has a unique solution § € W3*(Q) (there is no compatibility condition)
and we have the estimate

10]l22(q) < Cllxllz2o)- (5.37)
Setting

Z=u— (V0 - C%(V@ ‘n,1)rV(v(l) — 1))7

where v(1) is the unique solution in Wy?(Q) of the Dirichlet problem (2.1)) and
Ci1=J- 839 do. We know from [7, Lemma 3.11] that C; > 0 and that V(v(1) —1)
belongs to Y7 (). Then Problem (5.36) becomes: Find z € W,?(€) such that

—Az=f-Vr+Vyxy and divz=0 in Q,

(5.38)
zxn=gxn onl and z-ndo = 0.
r

Now, we will solve the Problem ([5.38)). Setting F = f — Vr + Vy, then F belongs
to [H2 (curl, )])’. Using (5.32) and the fact that D(Q) is dense in H2 | (curl, ),
we prove that

YA EYT N(Q), (F, A2 | (curl,@)) xE2 | (curl,) = - (5.39)

Therefore, F satisfies the assumptions of Corollary and thus Problem (5.38)) has
a unique solution z € Wé’2(Q) with

2l w2y < € (Pl eurt ey + Il X Dllerzqr) (5.40)
and estimate (5.33) holds. O
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6. STRONG SOLUTIONS FOR (1.1 AND (1.2)

We prove in this sequel the existence and the uniqueness of strong solutions for

Problem (1.1) and (1.2)), we start with Problem (L.1J).
Theorem 6.1. Suppose that Q' is of class C*'. Let f, x, g, h be such that
fe W(Q), xeW (), ge H¥*I), heHY*(D),

and that (5.3) holds. Then, the Stokes problem (1.1) has a unique solution (u, ) €
W22(Q) x W;%(Q) and we have

lallwz20) + Imllyrzq) < IEllwo2 o) + Ixllwr2q) + lgllzezm) + I x 0l r).
(6.1)

Proof. First case: x = 0. Since W)*(Q) is included in [HZ | (div, )], we deduce
that we are under the hypothesis of Corollary and so Problem (/1.1]) has a unique
solution (u,7) € Wy(Q) x L(Q). Setting z = curlu, then z satisfies

z e L2(Q), divz=0e W)*(Q),
—Az =curlf, zxn=hxneH/?T).

Applying Corollary [4.2] (with £ = —1) and the uniqueness argument, we prove that
z belongs to W'*(2). This implies that u satisfies

ue W 3(Q), divu=0e W, ?(), curlue W;?Q), u-n=ge H*I).

Applying Proposition we prove that u belongs to W$2(Q) and thus Vr =
f+ Au e W)?(Q). Since 7 is in L2(Q) then  is in W"?(1).

Second case: y is in W,"%(Q). Since ' is of class C>1, it follows from [7,
Theorem 3.9] that there exists a unique solution € in Wf’ 2(Q) /R satisfies Problem

(5.21) and
1032w < C(Ixllwaaoy + gl )- (6.2)
The rest of the proof is similar to that Corollary O

Remark 6.2. Assume that the hypothesis of Theorem hold and suppose in
addition that y = 0. Let (u,7) € W§?(€) x L(Q) the unique solution of Problem
(1.1) then 7 satisfies the problem

div(iVe—£f)=0 inQ and (Vr—f) -n=—divp(hxn) onT. (6.3)

It follows from [10] that Problem (6.3) has a solution 7 in W,"*(€). Setting F =
Vr —f € WY2(Q). Then problem (T.1)) becomes

—Au=F and divu=0 in{,

u'n=g and curluxn=hxn onTl.

Therefore, F, g and h satisfy the assumptions of Proposition [5.3/and thus u belongs
to W22(Q).

Next, we study the regularity of the solution for Problem (|1.2)).
Theorem 6.3. Suppose that Q' is of class C*'. Let f, x, g, mo be such that
feWP(Q), xeW?Q), geHY?T), meH*(I),
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and satisfying the compatibility condition (5.32)). Then the Stokes problem (1.2))
has a unique solution (u, ) € W2(Q) x W, *(Q). Moreover, we have the estimate

||U-Hw32(9)+||7T||w11v2(g) < C(||f||w‘f~2(Q)"‘HgXHHH3/2(F)+||7TO||H1/2(I‘)+HX||W1L2(Q))'
(6.4)

Proof. First case: We suppose that x = 0. Since WY?(Q) is in [H2 , (curl, )],
we deduce that we are under the hypothesis of Corollary and so Problem
has a unique solution (u,7) € Wg2(€) x W,"*(Q). Setting z = curlu. Observe
that u x n = g x n belongs to H3/2(I") and thus curlu-n belongs to H'/?(T") and
so z satisfies

z e L?(Q), divz=0e W>?*(Q),
curlz=f —Vr e WY?(Q), z-n=curlu-neHY?).

Applying Proposition (with k = 0), we prove that z belongs to WiQ(Q) This
implies that u satisfies

ue Wi?(Q), divu=0e W ),
curlu e W1?(Q), uxn=gxneHI).

Applying Proposition we prove that u belongs to Wf2(Q)
Second case: x is in Wll’Q(Q). The proof of this case is very similar to that

Corollary O
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