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STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY
CONDITIONS IN AN EXTERIOR DOMAIN

CHÉRIF AMROUCHE, MOHAMED MESLAMENI

Abstract. In this article, we solve the Stokes problem in an exterior domain

of R3, with non-standard boundary conditions. Our approach uses weighted

Sobolev spaces to prove the existence, uniqueness of weak and strong solutions.
This work is based on the vector potentials studied in [7] for exterior domains,

and in [1] for bounded domains. This problem is well known in the classical

Sobolev spaces W m,2(Ω) when Ω is bounded; see [3, 4].

1. Introduction and functional setting

Let Ω′ denotes a bounded open in R3 of class C1,1, simply-connected and with
a connected boundary ∂Ω′ = Γ, representing an obstacle and Ω is its complement;
i.e. Ω = R3\Ω′. Then a unit exterior normal vector to the boundary can be defined
almost everywhere on Γ; it is denoted by n. The purpose of this paper is to solve
the Stokes equation in Ω, with two types of non standard boundary conditions on
Γ:

−∆u +∇π = f and div u = χ in Ω,
u · n = g and curl u× n = h× n on Γ,

(1.1)

and
−∆u +∇π = f and div u = χ in Ω,

π = π0, u× n = g × n on Γ and
∫

Γ

u · n dσ = 0.
(1.2)

Since this problem is posed in an exterior domain, our approach is to use weighted
Sobolev spaces. Let us begin by introducing these spaces. A point in Ω will be
denoted by x = (x1, x2, x3) and its distance to the origin by r = |x| = (x2

1 + x2
2 +

x2
3)1/2. We will use the weights

ρ = ρ(r) = (1 + r2)1/2.

For all m in N and all k in Z, we define the weighted space

Wm,2
k (Ω) = {u ∈ D′(Ω) : ∀λ ∈ N3 : 0 ≤ |λ| ≤ m, ρ(r)k−m+|λ|Dλu ∈ L2(Ω)},

2000 Mathematics Subject Classification. 35J25, 35J50, 76M30.
Key words and phrases. Stokes equations; exterior domain; weighted Sobolev spaces;

vector potentials; inf-sup conditions.
c©2013 Texas State University - San Marcos.

Submitted July 28, 2013. Published September 3, 2013.

1



2 C. AMROUCHE, M. MESLAMENI EJDE-2013/196

which is a Hilbert space with the norm

‖u‖Wm,2
k (Ω) =

( m∑
|λ|=0

‖ρk−m+|λ|Dλu‖2L2(Ω)

)1/2

,

where ‖ · ‖L2(Ω) denotes the standard norm of L2(Ω). We shall sometimes use the
seminorm

|u|Wm,2
k (Ω) =

( ∑
|λ|=m

‖ρkDλu‖2L2(Ω)

)1/2

.

In addition, it is established by Hanouzet in [11], for domains with a Lipschitz-
continuous boundary, that D(Ω) is dense in Wm,2

k (Ω). We set W̊m,2
k (Ω) as the

adherence of D(Ω) for the norm ‖ · ‖Wm,2
k (Ω). Then, the dual space of W̊m,2

k (Ω),

denoting by W−m,2−k (Ω), is a space of distributions. Furthermore, as in bounded
domain, we have for m = 1 or m = 2,

W̊ 1,2
k (Ω) = {v ∈W 1,2

k (Ω), v = 0 on Γ},

W̊ 2,2
0 (Ω) = {v ∈W 2,2

0 (Ω), v =
∂v

∂n
= 0 on Γ},

where ∂v
∂n is the normal derivative of v. As a consequence of Hardy’s inequality, the

following Poincaré inequality holds: for m = 0 or m = 1 and for all k in Z there
exists a constant C such that

∀v ∈ W̊m,2
k (Ω), ‖v‖Wm,2

k (Ω) ≤ C|v|Wm,2
k (Ω); (1.3)

i.e., the seminorm | · |Wm,2
k (Ω) is a norm on W̊m,2

k (Ω) equivalent to the norm ‖ ·
‖Wm,2

k (Ω).
In the sequel, we shall use the following properties. For all integers m and k in

Z, we have
∀n ∈ Z with n ≤ m− k − 2, Pn ⊂Wm,2

k (Ω), (1.4)
where Pn denotes the space of all polynomials (of three variables) of degree at most
n, with the convention that the space is reduced to zero when n is negative. Thus
the difference m− k is an important parameter of the space Wm,2

k (Ω). We denote
by P∆

n the subspace of all harmonic polynomials of Pn.
Using the derivation in the distribution sense, we can define the operators curl

and div on L2(Ω). Indeed, let 〈·, ·〉 denote the duality pairing between D(Ω) and
its dual space D′(Ω). For any function v = (v1, v2, v3) ∈ L2(Ω), we have for any
ϕ = (ϕ1, ϕ2, ϕ3) ∈ D(Ω),

〈curl v,ϕ〉 =
∫

Ω

v · curlϕ dx

=
∫

Ω

(
v1(

∂ϕ3

∂x2
− ∂ϕ2

∂x3
) + v2(

∂ϕ1

∂x3
− ∂ϕ3

∂x1
) + v3(

∂ϕ2

∂x1
− ∂ϕ1

∂x2
)
)
dx,

and for any ϕ ∈ D(Ω),

〈div v, ϕ〉 = −
∫

Ω

v · gradϕdx = −
∫

Ω

(
v1
∂ϕ

∂x1
+ v2

∂ϕ

∂x2
+ v3

∂ϕ

∂x3

)
dx.

We note that the vector-valued Laplace operator of a vector field v = (v1, v2, v3)
is equivalently defined by

∆v = grad(div v)− curl curl v. (1.5)
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This leads to the following definitions:

Definition 1.1. For all integers k ∈ Z, we define the space

H2
k(curl,Ω) = {v ∈W0,2

k (Ω); curl v ∈W0,2
k+1(Ω)} ,

with the norm

‖v‖H2
k(curl,Ω) =

(
‖v‖2W0,2

k (Ω) + ‖ curl v‖2W0,2
k+1(Ω)

)1/2

.

Also we define the space

H2
k(div,Ω) = {v ∈W0,2

k (Ω); div v ∈W 0,2
k+1(Ω)} ,

with the norm

‖v‖H2
k(div,Ω) =

(
‖v‖2

W0,2
k (Ω)

+ ‖div v‖2
W 0,2

k+1(Ω)

)1/2

.

Finally, we set
X2
k(Ω) = H2

k(curl,Ω) ∩H2
k(div,Ω).

with the norm

X2
k(Ω) =

(
‖v‖2

W0,2
k (Ω)

+ ‖ div v‖2
W 0,2

k+1(Ω)
+ ‖ curl v‖2

W0,2
k+1(Ω)

)1/2

.

These definitions will also be used with Ω replaced by R3.

The argument used by Hanouzet [11] to prove the denseness of D(Ω) in Wm,2
k (Ω)

can be easily adapted to establish that D(Ω) is dense in the space H2
k(div,Ω) and

in the space H2
k(curl,Ω) and so in X2

k(Ω). Therefore, denoting by n the exterior
unit normal to the boundary Γ, the normal trace v · n and the tangential trace
v × n can be defined respectively in H−1/2(Γ) for the functions of H2

k(div,Ω) and
in H−1/2(Γ) for functions of H2

k(curl,Ω), where H−1/2(Γ) denotes the dual space
of H1/2(Γ). They satisfy the trace theorems; i.e, there exists a constant C such
that

∀v ∈ H2
k(div,Ω), ‖v · n‖H−1/2(Γ) ≤ C‖v‖H2

k(div,Ω), (1.6)

∀v ∈ H2
k(curl,Ω), ‖v × n‖H−1/2(Γ) ≤ C‖v‖H2

k(curl,Ω) (1.7)

and the following Green’s formulas holds: For any v ∈ H2
k(div,Ω) and ϕ ∈W 1,2

−k (Ω)

〈v · n, ϕ〉Γ =
∫

Ω

v · ∇ϕdx+
∫

Ω

ϕdiv v dx, (1.8)

where 〈, 〉Γ denotes the duality pairing between H−1/2(Γ) and H1/2(Γ). For any
v ∈ H2

k(curl,Ω) and ϕ ∈W1,2
−k(Ω)

〈v × n,ϕ〉Γ =
∫

Ω

v · curlϕ dx−
∫

Ω

curl v ·ϕdx, (1.9)

where 〈, 〉Γ denotes the duality pairing between H−1/2(Γ) and H1/2(Γ).

Remark 1.2. If v belongs to H2
k(div,Ω) for some integer k ≥ 1, then div v is in

L1(Ω) and Green’s formula (1.8) yields

〈v · n, 1〉Γ =
∫

Ω

div v dx (1.10)

But when k ≤ 0, then div v is not necessarily in L1(Ω) and (1.10) is generally not
valid. Note also that when k ≤ 0, W 0,2

−k−1(Ω) does not contain the constants.
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The closures of D(Ω) in H2
k(div,Ω) and in H2

k(curl,Ω) are denoted respectively
by H̊2

k(curl,Ω) and H̊2
k(div,Ω) and can be characterized respectively by

H̊2
k(curl,Ω) = {v ∈ H2

k(curl,Ω) : v × n = 0 on Γ},

H̊2
k(div,Ω) = {v ∈ H2

k(div,Ω) : v · n = 0 on Γ}.

Their dual spaces are characterized by the following propositions:

Proposition 1.3. A distribution f belongs to [H̊2
k(div,Ω)]′ if and only if there exist

ψ ∈W0,2
−k(Ω) and χ ∈W 0,2

−k−1(Ω), such that f = ψ + gradχ. Moreover

‖f‖[H̊2
k(div,Ω)]′ = max{‖ψ‖W0,2

−k(Ω), ‖χ‖W 0,2
−k−1(Ω)}. (1.11)

Proof. Let ψ ∈W0,2
−k(Ω) and χ ∈W 0,2

−k−1(Ω), we have

∀v ∈ D(Ω), 〈ψ + gradχ,v〉D′(Ω)×D(Ω) =
∫

Ω

(ψ · v − χ div v) dx.

Therefore, the linear mapping ` : v 7−→
∫

Ω
(ψ · v − χ div v)dx defined on D(Ω)

is continuous for the norm of H̊2
k(div,Ω). Since D(Ω) is dense in H̊2

k(div, Ω), `
can be extended by continuity to a mapping still called ` ∈ [H̊2

k(div, Ω)]′. Thus
ψ + gradχ is an element of [H̊2

k(div,Ω)]′.
Conversely, Let E = W0,2

k (Ω)×W 0,2
k+1(Ω) equipped by the following norm

‖v‖E = (‖v‖2
W0,2

k (Ω)
+ ‖ div v‖2

W 0,2
k+1(Ω)

)1/2.

The mapping T : v ∈ H̊2
k(div,Ω)→ (v,div v) ∈ E is an isometry from H̊2

k(div,Ω)
in E. Suppose G = T (H̊2

k(div,Ω)) with the E-topology. Let S = T−1 : G →
H̊2
k(div,Ω). Thus, we can define the following mapping:

v ∈ G 7→ 〈f , Sv〉[H̊2
k(div,Ω)]′×H̊2

k(div,Ω) for f ∈ [H̊2
k(div,Ω)]′

which is a linear continuous form on G. Thanks to Hahn-Banach’s Theorem, such
form can be extended to a linear continuous form on E, denoted by Υ such that

‖Υ‖E′ = ‖f‖[H̊2
k(div,Ω)]′ . (1.12)

From the Riesz’s Representation Lemma, there exist functions ψ ∈ W0,2
−k(Ω) and

χ ∈W 0,2
−k−1(Ω), such that for any v = (v1, v2) ∈ E,

〈Υ,v〉E′×E =
∫

Ω

v1 ·ψ dx+
∫

Ω

v2χdx,

with ‖Υ‖E′ = max{‖ψ‖W0,2
−k(Ω), ‖χ‖W 0,2

−k−1(Ω)}. In particular, if v = Tϕ ∈ G, where
ϕ ∈ D(Ω), we have

〈f ,ϕ〉[H̊2
k(div,Ω)]′×H̊2

k(div,Ω) = 〈ψ −∇χ,ϕ〉[H̊2
k(div,Ω)]′×H̊2

k(div,Ω),

and (1.11) follows imeddiatly from (1.12). �

We skip the proof of the following result as it is similar to that of Proposition
1.3.
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Proposition 1.4. A distribution f belongs to [H̊2
k(curl,Ω)]′ if and only if there

exist functions ψ ∈ W0,2
−k(Ω) and ξ ∈ W0,2

−k−1(Ω), such that f = ψ + curl ξ.
Moreover

‖f‖[H̊2
k(curl,Ω)]′ = max{‖ψ‖W0,2

−k(Ω), ‖ξ‖W0,2
−k−1(Ω)}.

Definition 1.5. Let X2
k,N (Ω), X2

k,T (Ω) and X̊2
k(Ω) be the following subspaces of

X2
k(Ω):

X2
k,N (Ω) = {v ∈ X2

k(Ω); v × n = 0 on Γ},
X2
k,T (Ω) = {v ∈ X2

k(Ω); v · n = 0 on Γ},

X̊2
k(Ω) = X2

k,N (Ω) ∩X2
k,T (Ω).

2. Preliminary results

Now, we give some results related to the Dirichlet problem and Neumann problem
which are essential to ensure the existence and the uniqueness of some vectors
potentials and one usually forces either the normal component to vanish or the
tangential components to vanish. We start by giving the definition of the kernel of
the Laplace operator for any integer k ∈ Z:

A∆
k−1 = {χ ∈W 1,2

−k (Ω) : ∆χ = 0 in Ω and χ = 0 on Γ}.

In contrast to a bounded domain, the Dirichlet problem for the Laplace operator
with zero data can have nontrivial solutions in an exterior domain; it depends upon
the exponent of the weight. The result that we state below is established by Giroire
in [10].

Proposition 2.1. For any integer k ≥ 1, the space A∆
k−1 is a subspace of all

functions in W 1,2
−k (Ω) of the form v(p) − p, where p runs over all polynomials of

P∆
k−1 and v(p) is the unique solution in W 1,2

0 (Ω) of the Dirichlet problem

∆v(p) = 0 in Ω and v(p) = p on Γ. (2.1)

The space A∆
k−1 is a finite-dimentional space of the same dimension as P∆

k−1 and
A∆
k−1 = {0} when k ≤ 0.

Our second proposition is established also by Giroire in [10], it characterizes the
kernel of the Laplace operator with Neumann boundary condition. For any integer
k ∈ Z,

N∆
k−1 = {χ ∈W 1,2

−k (Ω) : ∆χ = 0 in Ω and
∂χ

∂n
= 0 on Γ}.

Proposition 2.2. For any integer k ≥ 1, N∆
k−1 the subspace of all functions in

W 1,2
−k (Ω) of the form w(p)− p, where p runs over all polynomials of P∆

k−1 and w(p)
is the unique solution in W 1,2

0 (Ω) of the Neumann problem

∆w(p) = 0 in Ω and
∂w(p)
∂n

=
∂p

∂n
on Γ. (2.2)

Here also, we set N∆
k−1 = {0} when k ≤ 0; N∆

k−1 is a finite-dimentional space of
the same dimension as P∆

k−1 and in particular, N∆
0 = R.
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Next, the uniqueness of the solutions of Problem (1.1) and Problem (1.2) will
follow from the characterization of the kernel. For all integers k in Z, we define

Y2
k,N (Ω) = {w ∈ X2

−k,N (Ω) : div w = 0 and curl w = 0 in Ω}
Y2
k,T (Ω) = {w ∈ X2

−k,T (Ω) : div w = 0 and curl w = 0 in Ω}.

The proof of the following propositions can be easily deduced from [7].

Proposition 2.3. Let k ∈ Z and suppose that Ω′ is of class C1,1, simply-connected
and with a Lipshitz-continuous and connected boundary Γ.

• If k < 1, then Y2
k,N (Ω) = {0}.

• If k ≥ 1, then Y2
k,N (Ω) = {∇(v(p)−p), p ∈ P∆

k−1}, where v(p) is the unique
solution in W 1,2

0 (Ω) of the Dirichlet problem (2.1).

Proof. Let k ∈ Z and let w ∈ X2
−k,N (Ω) such that div w = 0 and curl w = 0 in

Ω. Then since Ω′ is simply-connected, there exists χ ∈ W 1,2
−k (Ω), unique up to an

additive constant, such that w = ∇χ. But w × n = 0, hence, χ is constant on
Γ (Γ is a connected boundary) and we choose the additive constant in χ so that
χ = 0 on Γ. Thus χ belongs to A∆

k−1(Ω) . Due to Proposition 2.1, we deduce
that if k < 1, χ is equal to zero and if k ≥ 1, χ = v(p) − p, where p runs over all
polynomials of P∆

k−1 and v(p) is the unique solution in W 1,2
0 (Ω) of problem (2.1)

and thus w = ∇(v(p)−p). Now, to finish the proof we shall prove that ∇(v(p)−p)
belongs to Y2

k,N (Ω) and this is a simple consequence of the definition of p and
v(p). �

We skip the proof of the following result as it is entirely similar to that of
Proposition 2.3.

Proposition 2.4. Let the assumptions of Proposition 2.4 hold.
• If k < 1, then Y2

k,T (Ω) = {0}.
• If k ≥ 1, then Y2

k,T (Ω) = {∇(w(p) − p), p ∈ P∆
k−1}, where w(p) is the

unique solution in W 1,2
0 (Ω) of the Neumann problem (2.2)

The imbedding results that we state below are established by Girault in [7]. The
first imbedding result is given by the following theorem.

Theorem 2.5. Let k 6 2 and assume that Ω′ is of class C1,1. Then the space
X2
k−1,T (Ω) is continuously imbedded in W1,2

k (Ω). In addition there exists a constant
C such that for any ϕ ∈ X2

k−1,T (Ω),

‖ϕ‖W1,2
k (Ω) ≤ C

(
‖ϕ‖W0,2

k−1(Ω) + ‖divϕ‖W0,2
k (Ω) + ‖ curlϕ‖W0,2

k (Ω)

)
. (2.3)

If in addition, Ω′ is simply-connected, there exists a constant C such that for all
ϕ ∈ X2

k−1,T (Ω) we have

‖ϕ‖W1,2
k (Ω) ≤ C(‖ divϕ‖W0,2

k (Ω) + ‖ curlϕ‖W0,2
k (Ω)

+
N(−k)∑
j=2

|
∫

Γ

ϕ · ∇w(qj) dσ|),
(2.4)

where {qj}N(−k)
j=2 denotes a basis of {q ∈ P∆

−k : q(0) = 0}, N(−k) denotes the
dimension of P∆

−k and w(qj) is the corresponding function of N∆
−k. Thus, the
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seminorm in the right-hand side of (2.4) is a norm on X2
k−1,T (Ω) equivalent to the

norm ‖ϕ‖W1,2
k (Ω).

The second imbedding result is given by the following theorem.

Theorem 2.6. Let k 6 2 and assume that Ω′ is of class C1,1. Then the space
X2
k−1,N (Ω) is continuously imbedded in W1,2

k (Ω). In addition there exists a constant
C such that for any ϕ ∈ X2

k−1,N (Ω),

‖ϕ‖W1,2
k (Ω) ≤ C

(
‖ϕ‖W0,2

k−1(Ω) + ‖ divϕ‖W0,2
k (Ω) + ‖ curlϕ‖W0,2

k (Ω)

)
. (2.5)

If in addition, Ω′ is simply-connected and its boundary Γ is connected, there exists
a constant C such that for all ϕ ∈ X2

k−1,N (Ω) we have

‖ϕ‖W1,2
k (Ω) ≤ C(‖ divϕ‖W0,2

k (Ω) + ‖ curlϕ‖W0,2
k (Ω)

+ |
∫

Γ

(ϕ · n)dσ|+
N(−k)∑
j=1

|
∫

Γ

(ϕ · n)qj dσ|),
(2.6)

where the term |
∫

Γ
(ϕ · n)dσ| can be dropped if k 6= 1 and where {qj}N(−k)

j=1 denotes
a basis of P∆

−k. In other words, the seminorm in the right-hand side of (2.6) is a
norm on X2

k−1,N (Ω) equivalent to the norm ‖ϕ‖W1,2
k (Ω).

Finally, let us recall the abstract setting of Babuška-Brezzi’s Theorem (see
Babuška [5], Brezzi [6] and Amrouche-Selloula [4]).

Theorem 2.7. Let X and M be two reflexive Banach spaces and X ′ and M ′

their dual spaces. Let a be the continuous bilinear form defined on X × M , let
A ∈ L(X; M ′) and A′ ∈ L(M ; X ′) be the operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = 〈Av,w〉 = 〈v,A′w〉
and V = kerA. The following statements are equivalent:

(i) There exist β > 0 such that

inf
w∈M,w 6=0

sup
v∈X, v 6=0

a(v, w)
‖v‖X‖w‖M

≥ β. (2.7)

(ii) The operator A : X/V 7→ M ′ is an isomophism and 1/β is the continuity
constant of A−1.

(iii) The operator A′ : M 7→ X ′⊥V is an isomophism and 1/β is the continuity
constant of (A′)−1.

Remark 2.8. As consequence, if the inf-sup condition (2.7) is satisfied, then we
have the following properties:

(i) If V = {0}, then for any f ∈ X ′, there exists a unique w ∈M such that

∀v ∈ X, a(v, w) = 〈f, v〉 and ‖w‖M ≤
1
β
‖f‖X′ . (2.8)

(ii) If V 6= {0}, then for any f ∈ X ′, satisfying the compatibility condition:
∀v ∈ V, 〈f, v〉 = 0, there exists a unique w ∈M such that (2.8).

(iii) For any g ∈ M ′, there exists v ∈ X, unique up an additive element of V ,
such that:

∀w ∈M, a(v, w) = 〈g, w〉 and ‖v‖X/V ≤
1
β
‖g‖M ′ .
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3. Inequalities and inf-sup conditions

In this sequel, we prove some imbedding results. More precisely, we show that
the results of Theorem 2.5 and the result of Theorem 2.6 can be extended to the
case where the boundary conditions v · n = 0 or v × n = 0 on Γ are replaced
by inhomogeneous one. Next, we study some problems posed in an exterior do-
main which are essentials to prove the regularity of solutions for Problem (1.1) and
Problem (1.2).

For any integer k in Z, we introduce the following spaces:

Z2
k,T (Ω) = {v ∈ X2

k(Ω) and v · n ∈ H1/2(Γ)},

Z2
k,N (Ω) = {v ∈ X2

k(Ω) and v × n ∈ H1/2(Γ)}

and

M2
k,T (Ω) = {v ∈W1,2

k+1(Ω), div v ∈W 1,2
k+2(Ω), curl v ∈W1,2

k+2(Ω)

and v · n ∈ H3/2(Γ)}.

Proposition 3.1. Let k = −1 or k = 0, then the space Z2
k,T (Ω) is continuously

imbedded in W1,2
k+1(Ω) and we have the following estimate for any v in Z2

k,T (Ω):

‖v‖W1,2
k+1(Ω) ≤ C

(
‖v‖W0,2

k (Ω) +‖ curl v‖W0,2
k+1(Ω) +‖ div v‖W 0,2

k+1(Ω) +‖v ·n‖H1/2(Γ)

)
.

(3.1)

Proof. Let k = −1 or k = 0 and let v any function of Z2
k,T (Ω). Let us study the

Neumann problem

∆χ = div v in Ω and ∂nχ = v · n on Γ. (3.2)

It is shown in [7, Theorems 3.7 and 3.9], that Problem (3.2) has a unique solution
χ in W 2,2

k+1(Ω)/R if k = −1 and χ is unique in W 2,2
k+1(Ω) if k = 0. With the estimate

‖∇χ‖W 1,2
k+1(Ω) ≤ C

(
‖ div v‖W 0,2

k+1(Ω) + ‖v · n‖H1/2(Γ)

)
. (3.3)

Let w = v − gradχ, then w is a divergence-free function. Since W1,2
k+1(Ω) ↪→

W0,2
k (Ω), then w ∈ X2

k,T (Ω). Applying Theorem 2.5, we have w belongs to
W1,2

k+1(Ω) and then v is in W1,2
k+1(Ω). According to Inequality (2.3), we obtain

‖w‖W1,2
k+1(Ω) ≤ C

(
‖w‖W0,2

k (Ω) + ‖ curl w‖W0,2
k+1(Ω)

)
.

Then, inequality (3.1) follows directly from (3.3). �

Similarly, we can prove the following imbedding result.

Proposition 3.2. Suppose that Ω′ is of class C2,1. Then the space M2
−1,T (Ω) is

continuously imbedded in W2,2
1 (Ω) and we have the following estimate for any v in

M2
−1,T (Ω):

‖v‖W2,2
1 (Ω) ≤ C

(
‖v‖W1,2

0 (Ω) + ‖ curl v‖W1,2
1 (Ω) + ‖ div v‖W 1,2

1 (Ω) + ‖v · n‖H 3/2(Γ)

)
.

(3.4)

Proof. Proceeding as in Proposition 3.1. Let v in M2
−1,T (Ω). Since Ω′ is of

class C2,1, then according to [7, Theorem 3.9], there exists a unique solution χ
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in W 3,2
1 (Ω)/R of Problem (3.2). Setting w = v−grad χ. Since W 2,2

1 (Ω) is imbed-
ded in W 1,2

0 (Ω), it follows from [7, Corollary 3.16], that w belongs to W2,2
1 (Ω) and

moreover we have the estimate

‖w‖W2,2
1 (Ω) ≤ C

(
‖w‖W1,2

0 (Ω) + ‖ curl w‖W1,2
1 (Ω)

)
.

Then v = w + gradχ belongs to W2,2
1 (Ω) and we have the estimate (3.4). �

Although we are under the Hilbertian case but the Lax-Milgram lemma is not
always valid to ensure the existence of solutions. Thus, we shall establish two “inf-
sup” conditions in order to apply Theorem 2.7. First recall the following spaces for
all integers k ∈ Z:

V2
k,T (Ω) =

{
z ∈ X2

k,T (Ω) : div z = 0 in Ω and∫
Γ

z · ∇(w(q)− q) dσ = 0, ∀(w(q)− q) ∈ N∆
−k−1

}
and

V2
k,N (Ω) = {z ∈ X2

k,N (Ω) : div z = 0 in Ω and
∫

Γ

(z · n)q dσ = 0, ∀q ∈ P∆
−k−1}.

The first “inf-sup” condition is given by the following lemma.

Lemma 3.3. The following inf-sup Condition holds: there exists a constant β > 0,
such that

inf
ϕ∈V2

0,T (Ω),ϕ6=0
sup

ψ∈V2
−2,T (Ω),ψ 6=0

∫
Ω

curlψ · curlϕ dx
‖ψ‖X2

−2,T (Ω)‖ϕ‖X2
0,T (Ω)

≥ β. (3.5)

Proof. Let g ∈W0,2
−1(Ω) and let us introduce the Dirichlet problem

−∆χ = div g in Ω, χ = 0 on Γ.

It is shown in [7, Theorem 3.5], that this problem has a solution χ ∈ W̊ 1,2
−1 (Ω)

unique up to an element of A∆
0 and we can choose χ such that

‖∇χ‖W0,2
−1(Ω) ≤ C‖g‖W0,2

−1(Ω).

Set z = g −∇χ. Then we have z ∈W0,2
−1(Ω), div z = 0 and we have

‖z‖W0,2
−1(Ω) ≤ C‖g‖W0,2

−1(Ω). (3.6)

Let ϕ any function of V2
0,T (Ω), by Theorem 2.5 we have ϕ ∈ X2

0,T (Ω) ↪→W1,2
1 (Ω).

Then due to (2.4) we can write

‖ϕ‖X2
0,T (Ω) ≤ C‖ curlϕ‖W0,2

1 (Ω) = C sup
g∈W0,2

−1(Ω), g 6=0

∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖W0,2
−1(Ω)

. (3.7)

Using the fact that curlϕ ∈ H2
1(div,Ω) and applying (1.8), we obtain∫
Ω

curlϕ · ∇χdx = 0. (3.8)

Now, let λ ∈W 1,2
0 (Ω) the unique solution of the problem

∆λ = 0 in Ω and λ = 1 on Γ.



10 C. AMROUCHE, M. MESLAMENI EJDE-2013/196

It follows from [7, Lemma 3.11] that∫
Γ

∂λ

∂n
dσ = C1 > 0.

Now, setting

z̃ = z− 1
C1
〈z · n, 1〉Γ∇λ.

It is clear that z̃ ∈ W0,2
−1(Ω), div z̃ = 0 in Ω and that 〈z̃ · n, 1〉Γ = 0. Due to [7,

Theorem 3.15], there exists a potential vector ψ ∈W1,2
−1(Ω) such that

z̃ = curlψ, divψ = 0 in Ω and ψ · n = 0 on Γ. (3.9)

and we have

∀v(q) ∈ N∆
1 ,

∫
Γ

ψ · ∇v(q) dσ = 0. (3.10)

In addition, we have the estimate

‖ψ‖W1,2
−1(Ω) ≤ C‖z̃‖W0,2

−1(Ω) ≤ C‖z‖W0,2
−1(Ω). (3.11)

Using (3.10), we obtain that ψ belongs to V2
−2,T (Ω). Since ϕ is H1 in a neigh-

borhood of Γ, then ϕ has an H1 extension in Ω′ denoted by ϕ̃. Applying Green’s
formula in Ω′, we obtain

0 =
∫

Ω′
div(curl ϕ̃) dx = 〈curl ϕ̃ · n, 1〉Γ = 〈curlϕ · n, 1〉Γ.

Using the fact that curlϕ in H2
1(div,Ω) and λ in W 1,2

−1 (Ω) and applying (1.8), we
obtain

0 = 〈curlϕ · n, 1〉Γ = 〈curlϕ · n, λ〉Γ =
∫

Ω

curlϕ · ∇λ dx. (3.12)

Using (3.8) and (3.12), we deduce that∫
Ω

curlϕ · g dx =
∫

Ω

curlϕ · z dx =
∫

Ω

curlϕ · z̃ dx. (3.13)

From (3.11), (3.6) and (3.13), we deduce that∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖W0,2
−1(Ω)

≤ C
∣∣ ∫

Ω
curlϕ · z̃ dx

∣∣
‖z̃‖W0,2

−1(Ω)

= C

∣∣ ∫
Ω

curlϕ · curlψ dx
∣∣

‖ curlψ‖W0,2
−1(Ω)

.

Applying again (2.4) and using (3.10), we obtain∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖W0,2
−1(Ω)

≤ C
∣∣ ∫

Ω
curlϕ · curlψ dx

∣∣
‖ψ‖X2

−2,T (Ω)

,

and the inf-sup Condition (3.5) follows immediately from (3.7). �

The second ”inf sup” condition is given by the following lemma:

Lemma 3.4. The following inf-sup Condition holds: there exists a constant β > 0,
such that

inf
ϕ∈V2

−2,N (Ω),ϕ6=0
sup

ψ∈V2
0,N (Ω),ψ 6=0

∫
Ω

curlψ · curlϕ dx
‖ψ‖X2

0,N (Ω)‖ϕ‖X2
−2,N (Ω)

≥ β. (3.14)
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Proof. The proof is similar to that of Lemma 3.3. Let g ∈ W0,2
1 (Ω) and let us

introduce the generalized Neumann problem

div(∇χ− g) = 0 in Ω and (∇χ− g) · n = 0 on Γ. (3.15)

It follows from [10] that Problem (3.15) has a solution χ ∈W 1,2
1 (Ω) and we have

‖∇χ‖W 0,2
1 (Ω) ≤ C‖g‖W0,2

1 (Ω).

Setting z = g −∇χ, then we have z ∈ H̊2
1(div,Ω) and div z = 0 with the estimate

‖z‖W0,2
1 (Ω) 6 C‖g‖W0,2

1 (Ω). (3.16)

Let ϕ be any function of V2
−2,N (Ω). Due to Theorem 2.6, we have X2

−2,N (Ω) ↪→
W1,2
−1(Ω) and by (2.6) we can write

‖ϕ‖X2
−2,N (Ω) ≤ C‖ curlϕ‖W0,2

−1(Ω) = C sup
g∈W0,2

1 (Ω), g 6=0

∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖W0,2
1 (Ω)

. (3.17)

Observe that curlϕ belongs to H2
−1(div,Ω) with ϕ×n = 0 on Γ and χ ∈W 1,2

1 (Ω).
Then using (1.8), we obtain∫

Ω

curlϕ · ∇χdx = 〈curlϕ · n, χ〉Γ = 0. (3.18)

Due to [7, Proposition 3.12], there exists a potential vector ψ ∈W1,2
1 (Ω) such that

z = curlψ, divψ = 0 in Ω and ψ × n = 0 on Γ, (3.19)∫
Γ

ψ · n dσ = 0. (3.20)

In addition, we have
‖ψ‖W1,2

1 (Ω) ≤ C‖z‖W0,2
1 (Ω). (3.21)

Then, we deduce that ψ belongs to V2
0,N (Ω). Using (3.16), (3.18) and (3.19), we

deduce that∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖W0,2
1 (Ω)

≤ C
∣∣ ∫

Ω
curlϕ · z dx

∣∣
‖z‖W0,2

1 (Ω)

= C

∣∣ ∫
Ω

curlϕ · curlψ dx
∣∣

‖ curlψ‖W0,2
1 (Ω)

.

Applying again (2.6) and using (3.20), we obtain∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖W0,2
1 (Ω)

≤ C
∣∣ ∫

Ω
curlϕ · curlψ dx

∣∣
‖ψ‖X2

0,N (Ω)

,

and the inf-sup condition (3.14) follows immediately from (3.17). �

4. Elliptic problems with different boundary conditions

Next, we study the problem

−∆ξ = f and div ξ = 0 in Ω,

ξ × n = g × n on Γ and
∫

Γ

(ξ · n)q dσ = 0, ∀q ∈ P∆
k .

(4.1)
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Proposition 4.1. Let k = −1 or k = 0 and suppose that g × n = 0 and let
f ∈ [H̊2

k−1(curl,Ω)]′ with div f = 0 in Ω and satisfying the compatibility condition

∀v ∈ Y2
1−k,N (Ω), 〈f ,v〉[H̊2

k−1(curl Ω)]′×H̊2
k−1(curl Ω) = 0. (4.2)

Then, Problem (4.1) has a unique solution in W1,2
−k(Ω) and we have

‖ξ‖W1,2
−k(Ω) 6 C‖f‖[H̊2

k−1(curl,Ω)]′ . (4.3)

Moreover, if f in W0,2
−k+1(Ω) and Ω′ is of class C2,1, then the solution ξ is in

W2,2
−k+1(Ω) and satisfies the estimate

‖ξ‖W2,2
−k+1(Ω) 6 C‖f‖W0,2

−k+1(Ω). (4.4)

Proof. (i) On the one hand, observe that Problem (4.1) is reduced to the variational
problem: Find ξ ∈ V2

−k−1,N (Ω) such that

∀ϕ ∈ X2
k−1,N (Ω),

∫
Ω

curl ξ · curlϕdx = 〈f , ϕ〉Ω, (4.5)

where the duality on Ω is

〈·, ·〉Ω = 〈·, ·〉[H̊2
k−1(curl,Ω)]′×H̊2

k−1(curl,Ω).

On the other hand, (4.5) is equivalent to the problem: Find ξ ∈ V2
−k−1,N (Ω) such

that

∀ϕ ∈ V2
k−1,N (Ω),

∫
Ω

curl ξ · curlϕ dx = 〈f ,ϕ〉Ω. (4.6)

Indeed, every solution of (4.5) also solves (4.6). Conversely, assume that (4.6)
holds, and let ϕ ∈ X2

k−1,N (Ω). Let us solve the exterior Dirichlet problem

−∆χ = divϕ in Ω and χ = 0 on Γ. (4.7)

It is shown in [7, Theorem 3.5] that problem (4.7) has a unique solution χ ∈
W 2,2
k (Ω)/A∆

−k.

First case. if k = 0, we set

ϕ̃ = ϕ−∇χ− 1
C1
〈ϕ−∇χ, 1〉Γ∇(v(1)− 1),

where v(1) is the unique solution in W 1,2
0 (Ω) of the Dirichlet problem (2.1) and

C1 =
∫

Γ

∂v(1)
∂n

dσ.

It follows from [7, Lemma 3.11] that C1 > 0 and since ∇(v(1) − 1) belongs to
Y2

1,N (Ω), we deduce that ϕ̃ belongs to V2
−1,N (Ω).

Second case. if k = −1, for each polynomial p in P∆
1 , we take ϕ̃ of the form

ϕ̃ = ϕ−∇χ−∇(v(p)− p)

where v(p) is the unique solution in W 1,2
0 (Ω) of the Dirichlet problem (2.1). The

polynomial p is chosen to satisfy the condition∫
Γ

(ϕ̃ · n) q dσ = 0 ∀q ∈ P∆
1 . (4.8)
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To show that this is possible, let T be a linear form defined by T : P∆
1 → R4,

T (p) =
(∫

Γ

∂(v(p)− p)
∂n

dσ,

∫
Γ

∂(v(p)− p)
∂n

x1dσ,∫
Γ

∂(v(p)− p)
∂n

x2dσ,

∫
Γ

∂(v(p)− p)
∂n

x3dσ
)
,

where {1, x1, x2, x3} denotes a basis of P∆
1 . It is shown in the proof of [8, Theorem

7], that if ∫
Γ

∂(v(p)− p)
∂n

q dσ = 0 ∀q ∈ P∆
1 ,

then p = 0. This implies that T is injective and so bijective. And so, there exists
a unique p in P∆

1 so that condition (4.8) is satisfied and since ∇(v(p)− p) belongs
to Y2

2,N (Ω), we prove that ϕ̃ ∈ V2
−2,N (Ω).

Finally, using (4.2), we obtain for k = 0 and k = −1 that

〈f ,∇(v(p)− p)〉Ω = 0 and 〈f ,∇(v(1)− 1)〉Ω = 0

and as D(Ω) is dense in H̊2
k−1(curl,Ω), we obtain that

〈f ,∇χ〉Ω = 0.

Then we have∫
Ω

curl ξ · curlϕ dx =
∫

Ω

curl ξ · curl ϕ̃ dx = 〈f ,ϕ〉Ω.

Then Problem (4.5) and Problem (4.6) are equivalent. Now, to solve Problem (4.6),
we use Lax-Milgram lemma for k = 0 and the inf-sup condition (3.14) for k = −1.
Let us start by k = 0. We consider the bilinear form a : V2

−1,N (Ω)×V2
−1,N (Ω)→ R

such that

a(ξ,ϕ) =
∫

Ω

curl ξ · curlϕ dx.

According to Theorem 2.6, a is continuous and coercive on V2
−1,N (Ω). Due to Lax-

Milgram lemma, there exists a unique solution ξ ∈ V2
−1,N (Ω) of Problem (4.6).

Using again Theorem 2.6, we prove that this solution ξ belongs to W1,2
0 (Ω) and

the following estimate follows immediately

‖ξ‖W1,2
0 (Ω) 6 C‖f‖[H̊2

−1(curl,Ω)]′ . (4.9)

When k = −1, we have that Problem (4.6) satisfies the inf-sup condition (3.14).
Let us consider the mapping ` : V2

−2,N (Ω) → R such that `(ϕ) = 〈f ,ϕ〉Ω. It is
clear that ` belongs to (V2

−2,N (Ω))′ and according to Remark 2.8, there exists a
unique solution ξ ∈ V2

0,N (Ω) of Problem (4.6). Due to Theorem 2.6, we prove that
this solution ξ belongs to W1,2

1 (Ω). It follows from Remark 2.8 i) that

‖ξ‖W1,2
1 (Ω) 6 C‖f‖[H̊2

−2(curl,Ω)]′ . (4.10)

(ii) We suppose in addition that f is in W0,2
−k+1(Ω) for k = −1 or k = 0 and Ω′

is of class C2,1 and we set z = curl ξ, where ξ ∈W1,2
−k(Ω) is the unique solution of

Problem (4.1). Then we have

z ∈W0,2
−k(Ω), curl z = f ∈W0,2

−k+1(Ω), div z = 0 and z · n = 0 on Γ
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and thus z belongs to X2
−k,T (Ω). By Theorem 2.5, we prove that z belongs to

W1,2
−k+1(Ω) and using (2.4), we prove that z satisfies

‖z‖W1,2
−k+1(Ω) 6 C‖f‖W0,2

−k+1(Ω). (4.11)

As a consequence ξ satisfies

ξ ∈W1,2
−k(Ω), curl ξ ∈W1,2

−k+1(Ω), div ξ = 0 and ξ × n = 0 on Γ.

Applying [7, Corollary 3.14], we deduce that ξ belongs to W2,2
−k+1(Ω) and using in

addition the boundary condition of (4.1) we prove that

‖ξ‖W2,2
−k+1(Ω) 6 C‖ curl ξ‖W1,2

−k+1(Ω). (4.12)

Finally, estimate (4.4) follows from (4.11) and (4.12). �

Corollary 4.2. Let k = −1 or k = 0 and let f ∈ [H̊2
k−1(curl,Ω)]′ with div f = 0 in

Ω and g ∈ H1/2(Γ) and satisfying the compatibility condition (4.2). Then, Problem
(4.1) has a unique solution ξ in W1,2

−k(Ω) and we have:

‖ξ‖W1,2
−k(Ω) 6 C

(
‖f‖[H̊2

k−1(curl,Ω)]′ + ‖g × n‖H1/2(Γ)

)
. (4.13)

Moreover, if f in W0,2
−k+1(Ω), g in H 3/2(Γ) and Ω′ is of class C2,1, then the solution

ξ is in W2,2
−k+1(Ω) and satisfies

‖ξ‖W2,2
−k+1(Ω) 6 C

(
‖f‖W0,2

−k+1(Ω) + ‖g × n‖H3/2(Γ)

)
. (4.14)

Proof. Let k = 0 or k = −1 and let g ∈ H1/2(Γ). We know that there exists ξ0 in
H1(Ω) with compact support satisfying

ξ0 = gτ on Γ and div ξ0 = 0 in Ω,

where gτ is the tangential component of g on Γ. Since support of ξ0 is compact,
we deduce that ξ0 belongs to W1,2

−k(Ω) for k = −1 or k = 0 and satisfies

‖ξ0‖W1,2
−k(Ω) ≤ C‖gτ‖H1/2(Γ). (4.15)

Setting z = ξ−ξ0, then Problem (4.1) is equivalent to: find z ∈W1,2
−k(Ω) such that

−∆z = f + ∆ξ0 and div z = 0 in Ω,

z× n = 0 on Γ and
∫

Γ

(z · n) q dσ = 0, ∀q ∈ P∆
k .

(4.16)

Observe that F = f − curl curl ξ0 belongs to [H̊2
k−1(curl,Ω)]′. Since D(Ω) is

dense in H̊2
k−1(curl, Ω), we have for any v ∈ Y2

1−k,N (Ω):

〈curl curl ξ0,v〉Ω =
∫

Ω

curl ξ0 · curl v dx = 0.

Thus F satisfies the compatibility condition (4.2). Due to Proposition 4.1, there
exists a unique z ∈W1,2

−k(Ω) solution of problem (4.16) such that

‖z‖W1,2
−k(Ω) 6 C‖F‖[H̊2

k−1(curl,Ω)]′ ≤ C
(
‖f‖[H̊2

k−1(curl,Ω)]′ + ‖ curl ξ0‖W0,2
−k(Ω)

)
.

(4.17)
Then ξ = z + ξ0 belongs to W1,2

−k(Ω) is the unique solution of (5.8) and estimate
(4.13) follows immediately from (4.15) and (4.17).
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Regularity of the solution: Suppose in addition that Ω′ is of class C2,1, f in
W0,2
−k+1(Ω) and g in H 3/2(Γ). Then the function ξ0 defined above belongs to H2(Ω)

with compact support and thus ξ0 belongs to W2,2
−k+1(Ω) and we have

‖ξ0‖W2,2
−k+1(Ω) ≤ C‖gτ‖H 3/2(Γ). (4.18)

Using again Proposition 4.1, we prove that z belongs to W2,2
−k+1(Ω) and satisfies

‖z‖W2,2
−k+1(Ω) 6 C‖F‖W0,2

−k+1(Ω).

Then ξ is in W2,2
−k+1(Ω) and estimate (4.14) follows from (4.18). �

The next theorem solves an other type of exterior problem.

Theorem 4.3. Let k = −1 or k = 0 and let v belongs to W0,2
k (Ω). Then, the

following problem

−∆ξ = curl v and div ξ = 0 in Ω,

ξ · n = 0 and (curl ξ − v)× n = 0 on Γ,∫
Γ

ξ · ∇(w(q)− q) dσ = 0, ∀ (w(q)− q) ∈ N∆
−k

(4.19)

has a unique solution ξ in W1,2
k (Ω) and we have

‖ξ‖W1,2
k (Ω) ≤ C‖v‖W0,2

k (Ω). (4.20)

Moreover, if v ∈W1,2
k+1(Ω) and Ω′ is of class C2,1, then the solution ξ is in W2,2

k+1(Ω)
and satisfies the estimate

‖ξ‖W2,2
k+1(Ω) ≤ C‖v‖W1,2

k+1(Ω). (4.21)

Proof. At first observe that if ξ ∈ W1,2
k (Ω) is a solution of Problem (4.19) for

k = −1 or k = 0, then curl ξ−v belongs to H2
k(curl,Ω) and thus (curl ξ−v)×n

is well defined in Γ and belongs to H−1/2(Γ).
On the other hand, note that (4.19) can be reduced to the variational problem:

Find ξ ∈ V2
k−1,T (Ω) such that

∀ϕ ∈ X2
−k−1,T (Ω)

∫
Ω

curl ξ · curlϕ dx =
∫

Ω

v · curlϕdx. (4.22)

Indeed, every solution of (4.19) also solves (4.22). Conversely, let ξ ∈ V2
k−1,T (Ω) a

solution of the problem (4.22). Then,

∀ϕ ∈ D(Ω), 〈curl curl ξ − curl v, ϕ〉D′(Ω)×D(Ω) = 0.

Then
−∆ξ = curl v in Ω. (4.23)

Moreover, by the fact that ξ belongs to the space V2
k−1,T (Ω) we have div ξ = 0

in Ω and ξ · n = 0 on Γ. Then, it remains to verify the boundary condition
(curl ξ−v)×n = 0 on Γ. Now setting z = curl ξ−v, then z belongs to H2

k(curl,Ω).
Therefore, (4.23) becomes

curl z = 0 in Ω. (4.24)
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Let ϕ ∈ X2
−k−1,T (Ω), by Theorem 2.5 we have X2

−k−1,T (Ω) ↪→W1,2
−k(Ω). Thank’s

to (1.9) we obtain∫
Ω

z · curlϕdx = 〈z× n,ϕ〉H−1/2(Γ)×H1/2(Γ) +
∫

Ω

curl z ·ϕdx. (4.25)

Compare (4.25) with (4.22) and using (4.24), we deduce that

∀ϕ ∈ X2
−k−1,T (Ω), 〈z× n,ϕ〉Γ = 0.

Let now µ any element of the space H1/2(Γ). As Ω′ is bounded, we can fix once for
all a ball BR, centered at the origin and with radius R, such that Ω′ ⊂ BR. Setting
ΩR = Ω∩BR, then we have the existence of ϕ in H1(ΩR) such that ϕ = 0 on ∂BR
and ϕ = µt on Γ, where µt is the tangential component of µ on Γ. The function
ϕ can be extended by zero outside BR and the extended function, still denoted by
ϕ, belongs to W1,p

α (Ω), for any α since its support is bounded. Thus ϕ, belongs to
W1,2
−k(Ω). It is clear that ϕ belongs to X2

−k−1,T (Ω) and

〈z× n,µ〉Γ = 〈z× n,µt〉Γ = 〈z× n,ϕ〉Γ = 0. (4.26)

This implies that z× n = 0 on Γ which is the last boundary condition in (4.19).
On the other hand, let us introduce the problem: Find ξ ∈ V2

k−1,T (Ω) such that

∀ϕ ∈ V2
−k−1,T (Ω)

∫
Ω

curl ξ · curlϕdx =
∫

Ω

v · curlϕ dx. (4.27)

Problem (4.27) can be solved by Lax-Milgram lemma if k = 0 and by Lemma 3.3
if k = −1.

We start by the case k = −1. Observe that Problem (4.27) satisfies the inf-sup
condition (3.5). Let consider the mapping ` : V2

0,T (Ω) → R such that `(ϕ) =∫
Ω

v · curlϕ dx. It is clear that ` belongs to (V2
0,T (Ω))′ and according to Remark

2.8, there exists a unique solution ξ ∈ V2
−2,T (Ω). Applying Theorem 2.5, we deduce

that this solution ξ belongs to W1,2
−1(Ω). It follows from Remark 2.8 i) and Theorem

2.6 that
‖ξ‖W1,2

−1(Ω) ≤ C‖`‖(V2
0,T (Ω))′ ≤ C‖v‖W0,2

−1(Ω). (4.28)

For k = 0, let us consider the bilinear form b : V2
−1,T (Ω) × V2

−1,T (Ω) → R such
that

b(ξ,ϕ) =
∫

Ω

curl ξ · curlϕ dx.

According to Theorem 2.5, b is continuous and coercive on V2
−1,T (Ω). Due to Lax-

Milgram lemma, there exists a unique solution ξ ∈ V2
−1,T (Ω) of Problem (4.27).

Using again Theorem 2.5, we prove that this solution ξ belongs to W1,2
0 (Ω) and

estimate (4.20) follows immediately.
Next, we extend (4.27) to any test function in X2

−k−1,T (Ω). Let ϕ ∈ X2
−k−1,T (Ω)

and let us solve the exterior Neumann problem

∆χ = divϕ in Ω and
∂ χ

∂n
= 0 on Γ. (4.29)

It is shown in [7, Lemma 3.7 and Theorem 3.9] that this problem has a unique
solution χ in W 1,2

−k−1(Ω) if k = −1 and unique up to a constant if k = 0. Set

ϕ̃ = ϕ−∇χ. (4.30)
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It is clear that for k = 0 and k = −1,
∫

Γ
ϕ̃ ·∇(w(q)− q) dσ = 0 for any (w(q)− q) ∈

N∆
k . Then ϕ̃ belongs to V2

−k−1,T (Ω). Now, if (4.27) holds, we have∫
Ω

curl ξ · curlϕdx =
∫

Ω

curl ξ · curl ϕ̃dx =
∫

Ω

v · curlϕdx.

Hence, problem (4.22) and problem (4.27) are equivalent. This implies that problem
(4.19) has a unique solution ξ in W1,2

k (Ω) for k = 0 or k = −1.

Regularity. Now, we suppose that v ∈ W1,2
k+1(Ω) ↪→ W0,2

k (Ω) and Ω′ is of class
C2,1. Let ξ ∈ W1,2

k (Ω) the weak solution of (4.19) and we set z = curl ξ − v.
It is clear that z belongs to X2

k,N (Ω). Applying Theorem 2.6, we obtain that
z ∈W1,2

k+1(Ω) and using (2.5) and (4.20) we obtain that

‖z‖W1,2
k+1(Ω) ≤ C

(
‖z‖W0,2

k (Ω) + ‖ div z‖W 0,2
k+1(Ω)

)
≤ C

(
‖ curl ξ‖W0,2

k (Ω) + ‖v‖W0,2
k (Ω) + ‖ div v‖W 0,2

k+1(Ω)

)
≤ C‖v‖W1,2

k+1(Ω).

(4.31)

This implies that ξ satisfies

ξ ∈W1,2
k (Ω), div ξ = 0 ∈W1,2

k+1(Ω), curl ξ ∈W1,2
k+1(Ω), ξ · n = 0 on Γ.

Applying [7, Corollary 3.16], we deduce that ξ belongs to W2,2
k+1(Ω) and using

(4.31), we obtain

‖ξ‖W2,2
k+1(Ω) ≤ C

(
‖ξ‖W1,2

k (Ω) + ‖ curl ξ‖W1,2
k+1(Ω)

)
≤ C

(
‖v‖W0,2

k (Ω) + ‖z‖W1,2
k+1(Ω) + ‖v‖W1,2

k+1(Ω)

)
≤ ‖v‖W1,2

k+1(Ω).

This completes the proof of the theorem. �

As consequence, we can prove other imbedding results. We start by the following
theorem.

Theorem 4.4. Let k = −1 or k = 0. Then the space Z2
k,N (Ω) is continuously

imbedded in W1,2
k+1(Ω) and we have the following estimate for any v in Z2

k,N (Ω):

‖v‖W1,2
k+1(Ω) ≤ C

(
‖v‖W0,2

k (Ω) + ‖ curl v‖W0,2
k+1(Ω)

+ ‖ div v‖W 0,2
k+1(Ω) + ‖v × n‖H1/2(Γ)

)
.

(4.32)

Proof. Let k = −1 or k = 0 and let v be any function of Z2
k,N (Ω). We set z =

curl ξ−v where ξ ∈W1,2
k (Ω) is the solution of the problem (4.19). Hence, z belongs

to the space X2
k,N (Ω). By Theorem 2.6 and (2.5), z even belongs to W1,2

k+1(Ω) with
the estimate

‖z‖W1,2
k+1(Ω) ≤ C

(
‖z‖W0,2

k (Ω) + ‖ div z‖W 0,2
k+1(Ω) + ‖ curl z‖W0,2

k+1(Ω)

)
. (4.33)

Then, it suffices to prove that curl ξ ∈W1,2
k+1(Ω) to obtain v ∈W1,2

k+1(Ω). Setting
ω = curl ξ. It is clear that ∫

Γ

ω · n dσ = 0 (4.34)
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and then ω satisfies
−∆ω = curl curl v and divω = 0 in Ω

ω × n = v × n on Γ and
∫

Γ

(ω · n)q dσ = 0, ∀ q ∈ P∆
−k−1.

(4.35)

Note that curl v ∈W0,2
k+1(Ω) then curl curl v is in [H̊2

−k−2(curl,Ω)]′ and we have
v × n ∈ H1/2(Γ). Since D(Ω) is dense in H̊2

−k−2(curl,Ω), we prove that

∀φ ∈ Y2
k+2,N (Ω), 〈curl curl v,φ〉[H̊2

−k−2(curl,Ω)]′×H̊2
−k−2(curl,Ω) = 0.

Due to Corollary 4.2, the function ω belongs to W1,2
k+1(Ω) and satisfies the estimate

‖ω‖W1,2
k+1(Ω) ≤ C

(
‖ curl curl v‖[H̊2

−k−2(curl,Ω)]′ + ‖v × n‖H1/2(Γ)

)
≤ C

(
‖ curl v‖W0,2

k+1(Ω) + ‖v × n‖H1/2(Γ)

)
.

(4.36)

Finally, estimate (4.32) can be deduced by using inequalities (4.33) and (4.36). �

Before giving the second imbedding result, we need to introduce the following
space for any integer k in Z,

M2
k,N (Ω) =

{
v ∈W1,2

k+1(Ω), div v ∈W 1,2
k+2(Ω), curl v ∈W1,2

k+2(Ω),

v × n ∈ H3/2(Γ)
}
.

Proposition 4.5. Suppose that Ω′ is of class C2,1. Then the space M2
−1,N (Ω) is

continuously imbedded in W2,2
1 (Ω) and we have the following estimate for any v in

M2
−1,N (Ω),

‖v‖W2,2
1 (Ω) ≤ C

(
‖v‖W1,2

0 (Ω) + ‖ curl v‖W1,2
1 (Ω) + ‖ div v‖W 1,2

1 (Ω) + ‖v×n‖H 3/2(Γ)

)
.

(4.37)

Proof. The proof is very similar to that of Theorem 4.4. Let v be any function of
M2
−1,N (Ω) and set z = curl ξ−v where ξ ∈W2,2

0 (Ω) is the solution of the problem
(4.19). According to [7, Corollary 3.14], we prove that z belongs to W2,2

1 (Ω) with
the estimate

‖z‖W2,2
1 (Ω) ≤ C

(
‖z‖W1,2

0 (Ω) + ‖ div z‖W 1,2
1 (Ω) + ‖ curl z‖W1,2

1 (Ω)

)
. (4.38)

Then, it suffices to prove that curl ξ ∈ W2,2
1 (Ω) to obtain v ∈ W2,2

1 (Ω). We set
ω = curl ξ. Using [7, Theorem 3.1], we prove that ω satisfies Problem (4.35).
Using the regularity of Corollary 4.2, we prove that ω belongs to W2,2

1 (Ω) and
satisfies

‖ω‖W1,2
−k(Ω) 6 C

(
‖ curl curl v‖W0,2

1 (Ω) + ‖v × n‖H3/2(Γ)

)
and then estimate (4.37) follows from (4.38). �

5. Generalized solutions for (1.1) and (1.2)

We start this sequel by introducing the space

E2(Ω) = {v ∈W1,2
0 (Ω) : ∆v ∈ [H̊2

−1(div,Ω)]′}.
This is a Banach space with the norm

‖v‖E2(Ω) = ‖v‖W1,2
0 (Ω) + ‖∆v‖[H̊2

−1(div,Ω)]′ .
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We have the following preliminary result.

Lemma 5.1. The space D(Ω) is dense in E2(Ω).

Proof. Let P be a continuous linear mapping from W1,2
0 (Ω) to W1,2

0 (R3), such that
Pv|Ω = v and let ` ∈ (E2(Ω))′, such that for any v ∈ D(Ω), we have 〈`,v〉 = 0.
We want to prove that ` = 0 on E2(Ω). Then there exists (f ,g) ∈ W−1,2

0 (R3) ×
H̊2
−1(div, Ω) such that: for any v ∈ E2(Ω),

〈`,v〉 = 〈f , P v〉W−1,2
0 (R3)×W1,2

0 (R3) + 〈∆v,g〉[H̊2
−1(div,Ω)]′×H̊2

−1(div,Ω).

Observe that we can easily extend by zero the function g in such a way that
g̃ ∈ H2

−1(div,R3). Now we take ϕ ∈ D(R3). Then we have by assumption that

〈f ,ϕ〉W−1,2
0 (R3)×W1,2

0 (R3) +
∫

R3
g̃ ·∆ϕdx = 0,

because 〈f ,ϕ〉 = 〈f , Pv〉 where v = ϕ|Ω. Thus we have f + ∆g̃ = 0 in D′(R3).
Then we can deduce that ∆g̃ = −f ∈W−1,2

0 (R3) and due to [2, Theorem 1.3], there
exists a unique λ ∈ W1,2

0 (R3) such that ∆λ = ∆g̃. Thus the harmonic function
λ − g̃ belonging to W0,2

−1(R3) is necessarily equal to zero. Since g ∈W1,2
0 (Ω) and

g̃ ∈W1,2
0 (R3), we deduce that g ∈ W̊1,2

0 (Ω). As D(Ω) is dense in W̊1,2
0 (Ω), there

exists a sequence gk ∈ D(Ω) such that gk → g in W1,2
0 (Ω), when k → ∞. Then

∇ · gk → ∇ · g in L2(Ω). Since W1,2
0 (Ω) is imbedded in W0,2

−1(Ω), we deduce that
gk → g in H2

−1(div, Ω). Now, we consider v ∈ E2(Ω) and we want to prove that
〈`,v〉 = 0. Observe that:

〈`,v〉 = −〈∆g̃, Pv〉W−1,2
0 (R3)×W1,2

0 (R3) + 〈∆v,g〉[H̊2
−1(div,Ω)]′×H̊2

−1(div,Ω)

= lim
k→∞

(−
∫

Ω

∆gk · vdx+ 〈∆v,gk〉[H̊2
−1(div,Ω)]′×H̊2

−1(div,Ω)

= lim
k→∞

(−
∫

Ω

∆gk · vdx+
∫

Ω

v ·∆gkdx) = 0.

�

As a consequence, we have the following result.

Corollary 5.2. The linear mapping γ : v→ curl v|Γ × n defined on D(Ω) can be
extended to a linear continuous mapping

γ : E2(Ω)→ H−1/2(Γ).

Moreover, we have the Green formula:for any v ∈ E2(Ω) and any ϕ ∈ W1,2
0 (Ω)

such that divϕ = 0 in Ω and ϕ · n = 0 on Γ,

−〈∆v, ϕ〉[H̊2
−1(div,Ω)]′×H̊2

−1(div,Ω) =
∫

Ω

curl v ·curlϕ dx−〈curl v×n, ϕ〉Γ, (5.1)

where the duality on Γ is defined by 〈·, ·〉Γ = 〈·, ·〉H−1/2(Γ)×H1/2(Γ).

Proof. Let v ∈ D(Ω). Observe that if ϕ ∈ W1,2
0 (Ω) such that ϕ · n = 0 on Γ we

deduce that ϕ ∈ X2
−1,T (Ω), then (5.1) holds for such ϕ. Now, let µ ∈ H1/2(Γ),

then there exists ϕ ∈W1,2
0 (Ω) such that ϕ = µt on Γ and that divϕ = 0 with

‖ϕ‖W1,2
0 (Ω) 6 C‖µt‖H1/2(Γ) 6 C‖µ‖H1/2(Γ). (5.2)
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As a consequence, using (5.1), we have

|〈curl v × n,µ〉Γ| 6 C‖v‖E2(Ω)‖µ‖H1/2(Γ).

Thus,
‖ curl v × n‖H−1/2(Γ)| 6 C‖v‖E2(Ω).

We deduce that the linear mapping γ is continuous for the norm E2(Ω). Since D(Ω)
is dense in E2(Ω), γ can be extended to by continuity to γ ∈ L(E2(Ω),H−1/2(Γ))
and formula (5.1) holds for all v ∈ E2(Ω) and ϕ ∈W1,2

0 (Ω) such that divϕ = 0 in
Ω and ϕ · n = 0 on Γ. �

Proposition 5.3. Let f belongs to W0,2
1 (Ω) with div f = 0 in Ω, g ∈ H1/2(Γ) and

h ∈ H−1/2(Γ) verify the compatibility conditions: for any v ∈ Y2
1,T (Ω),∫

Ω

f · v dx + 〈h× n, v〉H−1/2(Γ)×H1/2(Γ) = 0, (5.3)

f · n + divΓ(h× n) = 0 on Γ, (5.4)

where divΓ is the surface divergence on Γ. Then, the problem
−∆z = f and div z = 0 in Ω,

z · n = g and curl z× n = h× n on Γ,
(5.5)

has a unique solution z in W1,2
0 (Ω) satisfying the estimate

‖z‖W1,2
0 (Ω) ≤ C

(
‖f‖W0,2

1 (Ω) + ‖g‖H1/2(Γ) + ‖h× n‖H−1/2(Γ)

)
. (5.6)

Moreover, if h in H1/2(Γ), g in H3/2(Γ) and Ω′ is of class C2,1, then the solution
z is in W2,2

1 (Ω) and satisfies the estimate

‖z‖W2,2
1 (Ω) ≤ C

(
‖f‖W0,2

1 (Ω) + ‖g‖H 3/2(Γ) + ‖h× n‖H1/2(Γ)

)
. (5.7)

Proof. First, note that if h ∈ H−1/2(Γ), then h× n also belongs to H−1/2(Γ). On
the other hand, let us consider the Neumann problem:

∆θ = 0 in Ω and
∂ θ

∂ n
= g on Γ. (5.8)

It is shown in [7, Theorem 3.9], that this problem has a unique solution θ ∈
W 2,2

0 (Ω)/R satisfying the estimate

‖θ‖W 2,2
0 (Ω) ≤ C‖g‖H1/2(Γ). (5.9)

Setting ξ = z−∇θ, then problem (5.5) becomes: find ξ ∈W1,2
0 (Ω) such that

−∆ξ = f and div ξ = 0 in Ω,
ξ · n = 0 and curl ξ × n = h× n on Γ.

(5.10)

Now, observe that problem (5.10) is reduced to the variational problem: Find
ξ ∈ V2

−1,T (Ω) such that

∀ϕ ∈ X2
−1,T (Ω)

∫
Ω

curl ξ · curlϕ dx =
∫

Ω

f ·ϕ dx + 〈h× n,ϕ〉Γ. (5.11)

Indeed, every solution of (5.10) also solves (5.11). Conversely, let ξ a solution of
the problem (5.11). Then,

∀ϕ ∈ D(Ω), 〈curl curl ξ − f ,ϕ〉D′(Ω)×D(Ω) = 0.
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So −∆ξ = f in Ω. Moreover, by the fact that ξ belongs to the space V2
−1,T (Ω), we

have div ξ = 0 in Ω and ξ · n = 0 on Γ. Then, it remains to verify the boundary
condition curl ξ × n = h × n on Γ. Observe that ξ belongs to E2(Ω) so by (5.1)
and comparing with (5.11) we deduce that for any ϕ ∈ X2

−1,T (Ω), we have

〈curl ξ × n,ϕ〉Γ = 〈h× n, ϕ〉Γ.
Proceeding as in the proof of Theorem 4.3, we prove that curl ξ×n = h×n on Γ.

On the other hand, let us introduce the following problem: Find ξ ∈ V2
−1,T (Ω)

such that

∀ϕ ∈ V2
−1,T (Ω)

∫
Ω

curl ξ · curlϕ dx =
∫

Ω

f ·ϕ dx + 〈h× n,ϕ〉Γ. (5.12)

As in the proof of Theorem 4.3, we use Lax-Milgram lemma to prove the existence
of a unique solution ξ in V2

−1,T (Ω) of Problem (5.12). Using Theorem 2.5, we
prove that this solution ξ belongs to W1,2

0 (Ω) and the following estimate follows
immediately

‖ξ‖W1,2
0 (Ω) 6 C

(
‖f‖W0,2

1 (Ω) + ‖h× n‖H−1/2(Γ)

)
. (5.13)

Next, we extend (5.12) to any test function ϕ in X2
−1,T (Ω). Let ϕ̃ ∈ X2

−1,T (Ω)
and let us solve the exterior Neumann problem:

∆χ = div ϕ̃ in Ω and
∂χ

∂n
= 0 on Γ. (5.14)

It is shown in [10, Theorem 4.12] that this problem has a unique solution χ in
W 2,2

0 (Ω) up to an additive constant. Then, we set

ϕ = ϕ̃−∇χ. (5.15)

Since W 2,2
0 (Ω) is imbedded in W 1,2

−1 (Ω), then ϕ belongs to V2
−1,T (Ω). Now, if (5.12)

holds, we have∫
Ω

curl ξ · curl ϕ̃dx =
∫

Ω

f · ϕ̃dx + 〈h× n, ϕ̃〉Γ −
∫

Ω

f · ∇χdx− 〈h× n, ∇χ〉Γ.

Using (1.8) and (5.4), we obtain∫
Ω

curl ξ · curl ϕ̃dx =
∫

Ω

f · ϕ̃dx + 〈h× n, ϕ̃〉Γ.

This implies that problem (5.11) and problem (5.12) are equivalent and thus prob-
lem (5.10) has a unique solution ξ in W1,2

0 (Ω). Finally, we set z = ξ+∇θ ∈W1,2
0 (Ω)

the unique solution of (5.5). Finally, (5.6) follows immediately from (5.13) and
(5.9).

Regularity of the solution. We suppose in addition that h is in H1/2(Γ), g
in H3/2(Γ) and Ω′ is of class C2,1 and let z in W1,2

0 (Ω) be the weak solution of
Problem (5.5). Setting ω = curl z, then ω satisfies

ω ∈ L2(Ω), divω = 0 ∈W 0,2
1 (Ω),

curlω = f ∈W0,2
1 (Ω), ω × n = curl z× n ∈ H1/2(Γ).

Applying Theorem 4.4 (with k = 0), we prove that ω belongs to W1,2
1 (Ω). This

implies that z satisfies

z ∈W1,2
0 (Ω), div z = 0 ∈W 1,2

1 (Ω), curl z ∈W1,2
1 (Ω) z · n ∈ H3/2(Γ).
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Applying Proposition 3.2, we prove that z belongs to W2,2
1 (Ω) and we have the

estimate (5.7). �

Next, we solve the Stokes problem (1.1).

Theorem 5.4 (Weak solutions for (1.1)). Suppose that g = 0 and χ = 0. For
f given in [H̊2

−1(div,Ω)]′ and h given in H−1/2(Γ) satisfying (5.3). The Stokes
problem (1.1) has a unique solution (u, π) ∈ W1,2

0 (Ω) × L2(Ω) and we have the
estimate

‖u‖W1,2
0 (Ω) + ‖π‖L2(Ω) ≤ C

(
‖f‖[H̊2

−1 div,Ω)]′ + ‖h× n‖H−1/2(Γ)

)
. (5.16)

Proof. At first, observe that problem (1.1) is reduced to the variational problem:
Find u ∈ V2

−1,T (Ω) such that

∀ϕ ∈ V2
−1,T (Ω),∫

Ω

curl u · curlϕdx = 〈f ,ϕ〉[H̊2
−1(div,Ω)]′×H̊2

−1(div,Ω) + 〈h× n, ϕ〉Γ.
(5.17)

Indeed, every solution of (1.1) also solves (5.17). Conversely, let u a solution of
problem (5.17). Then

for all ϕ ∈ D(Ω) such that divϕ = 0, 〈−∆u− f ,ϕ〉D′(Ω)×D(Ω) = 0.

By De Rham theorem, there exists q ∈ D′(Ω) such that

−∆u− f = ∇q in Ω.

Note that [H̊2
−1(div,Ω)]′ is imbedded in W−1,2

0 (Ω) and thus −∆u− f ∈W−1,2
0 (Ω).

It follows from [7, Theorem 2.7], that there exists a unique real constant C and a
unique π ∈ L2(Ω) such that π has the decomposition q = π + C.

Observe that since f and ∇π are two elements of [H̊2
−1(div, Ω)]′, it is the same

for ∆u. Since D(Ω) is dense in H̊2
−1(div, Ω), we obtain for any ϕ ∈ H̊2

−1(div,Ω)
such that divϕ = 0:

〈∇π,ϕ〉[H̊−1(div,Ω)]′×H̊−1(div,Ω) = 0.

Moreover, if ϕ ∈ V2
−1,T (Ω), using Corollary 5.2 we have

〈−∆u, ϕ〉[H̊2
−1(div,Ω)]′×H2

−1(div,Ω)

=
∫

Ω

curl u · curlϕ dx− 〈curl u× n,ϕ〉H−1/2(Γ)×H1/2(Γ).

We deduce that for all ϕ ∈ V2
−1,T (Ω)

〈curl u× n,ϕ〉H−1/2(Γ)×H1/2(Γ) = 〈h× n,ϕ〉H−1/2(Γ)×H1/2(Γ).

Let now µ any element of the space H1/2(Γ). So, there exists an element ϕ ∈
W1,2

0 (Ω) such that divϕ = 0 in Ω and ϕ = µt on Γ. It is clear that ϕ ∈ V2
−1,T (Ω)

and

〈curl u× n,µ〉Γ − 〈h× n,µ〉Γ = 〈curl u× n,µt〉Γ − 〈h× n, µt〉Γ
= 〈curl u× n,ϕ〉Γ − 〈h× n,ϕ〉Γ = 0.

This implies that cur u× n = h× n on Γ. As a consequence, Problem (5.17) and
(1.1) are equivalent. As in the proof of Theorem 4.3, we use Lax-Milgram lemma
to prove the existence of a unique solution u in V2

−1,T (Ω) of Problem (5.17). Using
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Theorem 2.5, we prove that this solution u belongs to W1,2
0 (Ω). Then the pair

(u, π) ∈W1,2
0 (Ω)×L2(Ω) is the unique solution of the problem (1.1). The estimate

(5.16) follows from (2.4). �

Corollary 5.5. Let f , χ, g, h such that

f ∈ [H̊2
−1(div,Ω)]′, χ ∈ L2(Ω), g ∈ H1/2(Γ), h ∈ H−1/2(Γ),

and that (5.3) holds. Then, the Stokes problem (1.1) has a unique solution (u, π) ∈
W1,2

0 (Ω)× L2(Ω) and we have:

‖u‖W1,2
0 (Ω) + ‖π‖L2(Ω)

6 C
(
‖f‖[H̊2

−1(div,Ω)]′ + ‖χ‖L2(Ω) + ‖g‖H1/2(Γ) + ‖h× n‖H−1/2(Γ)

)
.

(5.18)

Proof. First case: We suppose that χ = 0. Let θ ∈ W 2,2
0 (Ω) be a solution of the

exterior Neumann problem (5.8). Setting z = u−∇θ, then, problem (1.1) becomes:
Find (z, π) ∈W1,2

0 (Ω)× L2(Ω) such that

−∆z +∇π = f and div z = 0 in Ω,
z · n = 0 and curl z× n = h× n on Γ .

(5.19)

Due to Theorem 5.4, this problem has a unique solution (z, π) ∈W1,2
0 (Ω)×L2(Ω).

Thus u = z +∇θ belongs to W1,2
0 (Ω) and using (5.9) and (5.16), we deduce that

‖u‖W1,2
0 (Ω) +‖π‖L2(Ω) ≤ C

(
‖f‖[H̊2

−1(div,Ω)]′+‖g‖H1/2(Γ) +‖h×n‖H−1/2(Γ)

)
. (5.20)

Second case: We suppose that χ ∈ L2(Ω). We solve the following Neumann
problem in Ω:

∆θ = χ in Ω,
∂θ

∂n
= g on Γ. (5.21)

It follows from [7, Theorem 3.9] that Problem (5.21) has a unique solution θ in
W 2,2

0 (Ω)/R and we have

‖θ‖W 2,2
0 (Ω)/R 6 C

(
‖χ‖L2(Ω) + ‖g‖H1/2(Γ)

)
. (5.22)

Setting z = u−∇θ, then Problem problem (1.1) becomes: Find (z, π) ∈W1,2
0 (Ω)×

L2(Ω) such that

−∆z +∇π = f +∇χ and div z = 0 in Ω,
z · n = 0 and curl z× n = h× n on Γ .

(5.23)

Observe that f+∇χ belongs to [H̊2
−1(div, Ω)]′ and 〈∇χ,v〉[H̊2

−1(div,Ω)]′×H̊2
−1(div,Ω) =

0 for all v in Y2
1,T (Ω). According to the first step, this problem has a unique solu-

tion (z, π) ∈W1,2
0 (Ω)×L2(Ω). Thus u = z +∇θ belongs to W1,2

0 (Ω) and estimate
(5.18) follows from (5.20) and (5.22). �

Now, we study the problem (1.2).

Theorem 5.6 (Weak solutions for (1.2)). Assume that χ = 0, f is in the space
[H̊2
−1(curl,Ω)]′, g is in H1/2(Γ) and π0 is in H1/2(Γ), satisfying the compatibility

condition

∀λ ∈ Y2
1,N (Ω), 〈f ,λ〉[H̊2

−1(curl,Ω)]′×H̊2
−1(curl,Ω) = 〈λ · n, π0〉Γ. (5.24)
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Then the Stokes problem (1.2) has a unique solution (u, π) ∈W1,2
0 (Ω) ×W 1,2

1 (Ω)
and we have

‖u‖W1,2
0 (Ω) + ‖π‖W 1,2

1 (Ω) 6 C(‖f‖[H̊2
−1(curl,Ω)]′ + ‖g × n‖H1/2(Γ) + ‖π0‖H1/2(Γ)).

(5.25)

Proof. First, we consider the problem

∆π = div f in Ω, π = π0 on Γ. (5.26)

Since f ∈ [H̊2
−1(curl,Ω)]′, we deduce from Proposition 1.4 that div f belongs to

W−1,2
1 (Ω). Now, let (v(1) − 1) an element of A∆

0 , it is clear that ∇(v(1) − 1)
belongs to Y2

1,N (Ω). Then using the density of D(Ω) in W̊1,2
−1(Ω) and (5.24), we

prove that

〈div f , (v(1)− 1)〉W−1,2
1 (Ω)×W̊1,2

−1(Ω) = −〈f ,∇(v(1)− 1)〉[H̊2
−1(curl,Ω)]′×H̊2

−1(curl,Ω)

= −〈∇(v(1)− 1) · n, π0〉Γ.
(5.27)

Since (5.27) is satisfied, we apply [7, Theorem 3.6] to prove that Problem (5.26)
has a unique solution π ∈W 1,2

1 (Ω) and we have the following estimate:

‖π‖W 1,2
1 (Ω) 6 C

(
‖ div f‖W−1,2

1 (Ω) + ‖π0‖H1/2(Γ)

)
. (5.28)

Setting F = f − ∇π, then F belongs to [H̊2
−1(curl, Ω)]′. Thus Problem (1.2)

becomes: Find u ∈W1,2
0 (Ω) such that:

−∆u = F and div u = 0 in Ω,

u× n = g × n on Γ and
∫

Γ

u · n dσ = 0.
(5.29)

Using (5.24) and the fact that D(Ω) is dense in H̊2
−1(curl,Ω), we prove that

∀λ ∈ Y2
1,N (Ω), 〈F,λ〉[H̊2

−1(curl,Ω)]′×H̊2
−1(curl,Ω) = 0. (5.30)

Therefore, F satisfies the assumptions of Corollary 4.2 and thus Problem (5.29) has
a unique solution u ∈W1,2

0 (Ω) with

‖u‖W1,2
0 (Ω) 6 C

(
‖F‖[H̊2

−1(curl,Ω)]′ + ‖g × n‖H1/2(Γ)

)
. (5.31)

Thus estimate (5.25) follows from (5.31) and from (5.28). �

Corollary 5.7. Let f , χ, g, π0 such that

f ∈ [H̊2
−1(curl,Ω)]′, χ ∈W 1,2

1 (Ω), g ∈ H1/2(Γ), π0 ∈ H1/2(Γ),

and satisfying the compatibility condition:

∀λ ∈ Y2
1,N (Ω), 〈f ,λ〉[H̊2

−1(curl,Ω)]′×H̊2
−1(curl,Ω) = 〈λ · n, π0 − χ〉Γ. (5.32)

Then the Stokes problem (1.2) has a unique solution (u, π) ∈W1,2
0 (Ω)×W 1,2

1 (Ω).
Moreover, we have the estimate

‖u‖W1,2
0 (Ω) + ‖π‖W 1,2

1 (Ω)

6 C(‖f‖[H̊2
−1(curl,Ω)]′ + ‖g × n‖H1/2(Γ) + ‖π0‖H1/2(Γ) + ‖χ‖W 1,2

1 (Ω)).
(5.33)
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Proof. First, we consider the problem

∆π = div f + ∆χ in Ω, π = π0 on Γ. (5.34)

Since f ∈ [H̊2
−1(curl,Ω)]′, we deduce from Proposition 1.4 that div f + ∆χ belongs

to W−1,2
1 (Ω). Proceeding as in the proof of Theorem 5.6, we prove that

〈div f + ∆χ, (v(1)− 1)〉W−1,2
1 (Ω)×W̊1,2

−1(Ω) = −〈∇(v(1)− 1) · n, π0〉Γ

and then we apply [7, Theorem 3.6] to prove that Problem (5.34) has a unique
solution π ∈W 1,2

1 (Ω) and we have the following estimate:

‖π‖W 1,2
1 (Ω) 6 C

(
‖ div f + ∆χ‖W−1,2

1 (Ω) + ‖π0‖H1/2(Γ)

)
. (5.35)

Thus Problem (1.2) becomes: Find u ∈W1,2
0 (Ω) such that

−∆u = f −∇π and div u = χ in Ω,

u× n = g × n on Γ and
∫

Γ

u · n dσ = 0.
(5.36)

On the other hand, let us solve the Dirichlet problem

∆θ = χ in Ω, θ = 0 on Γ.

Since W 1,2
1 (Ω) is imbedded in L2(Ω), it follows from [7, Theorem 3.5], that this

problem has a unique solution θ ∈ W 2,2
0 (Ω) (there is no compatibility condition)

and we have the estimate

‖θ‖W 2,2
0 (Ω) 6 C‖χ‖L2(Ω). (5.37)

Setting

z = u−
(
∇θ − 1

C1
〈∇θ · n, 1〉Γ∇(v(1)− 1)

)
,

where v(1) is the unique solution in W 1,2
0 (Ω) of the Dirichlet problem (2.1) and

C1 =
∫

Γ
∂v(1)
∂n dσ. We know from [7, Lemma 3.11] that C1 > 0 and that ∇(v(1)−1)

belongs to Y2
1,N (Ω). Then Problem (5.36) becomes: Find z ∈W1,2

0 (Ω) such that

−∆z = f −∇π +∇χ and div z = 0 in Ω,

z× n = g × n on Γ and
∫

Γ

z · n dσ = 0.
(5.38)

Now, we will solve the Problem (5.38). Setting F = f −∇π +∇χ, then F belongs
to [H̊2

−1(curl, Ω)]′. Using (5.32) and the fact that D(Ω) is dense in H̊2
−1(curl,Ω),

we prove that

∀λ ∈ Y2
1,N (Ω), 〈F,λ〉[H̊2

−1(curl,Ω)]′×H̊2
−1(curl,Ω) = 0. (5.39)

Therefore, F satisfies the assumptions of Corollary 4.2 and thus Problem (5.38) has
a unique solution z ∈W1,2

0 (Ω) with

‖z‖W1,2
0 (Ω) 6 C

(
‖F‖[H̊2

−1(curl,Ω)]′ + ‖g × n‖H1/2(Γ)

)
(5.40)

and estimate (5.33) holds. �
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6. Strong solutions for (1.1) and (1.2)

We prove in this sequel the existence and the uniqueness of strong solutions for
Problem (1.1) and (1.2), we start with Problem (1.1).

Theorem 6.1. Suppose that Ω′ is of class C2,1. Let f , χ, g, h be such that

f ∈W0,2
1 (Ω), χ ∈W 1,2

1 (Ω), g ∈ H 3/2(Γ), h ∈ H1/2(Γ),

and that (5.3) holds. Then, the Stokes problem (1.1) has a unique solution (u, π) ∈
W2,2

1 (Ω)×W 1,2
1 (Ω) and we have

‖u‖W2,2
1 (Ω) + ‖π‖W 1,2

1 (Ω) 6 ‖f‖W0,2
1 (Ω) + ‖χ‖W 1,2

1 (Ω) + ‖g‖H 3/2(Γ) + ‖h×n‖H1/2(Γ).

(6.1)

Proof. First case: χ = 0. Since W0,2
1 (Ω) is included in [H̊2

−1(div, Ω)]′, we deduce
that we are under the hypothesis of Corollary 5.5 and so Problem (1.1) has a unique
solution (u, π) ∈W1,2

0 (Ω)× L2(Ω). Setting z = curl u, then z satisfies

z ∈ L2(Ω), div z = 0 ∈W 0,2
1 (Ω),

−∆z = curl f , z× n = h× n ∈ H1/2(Γ).

Applying Corollary 4.2 (with k = −1) and the uniqueness argument, we prove that
z belongs to W1,2

1 (Ω). This implies that u satisfies

u ∈W1,2
0 (Ω), div u = 0 ∈W 1,2

1 (Ω), curl u ∈W1,2
1 (Ω), u · n = g ∈ H3/2(Γ).

Applying Proposition 3.2, we prove that u belongs to W2,2
1 (Ω) and thus ∇π =

f + ∆u ∈W0,2
1 (Ω). Since π is in L2(Ω) then π is in W 1,2

1 (Ω).
Second case: χ is in W 1,2

1 (Ω). Since Ω′ is of class C2,1, it follows from [7,
Theorem 3.9] that there exists a unique solution θ in W 3,2

1 (Ω)/R satisfies Problem
(5.21) and

‖θ‖W 3,2
1 (Ω)/R 6 C

(
‖χ‖W 1,2

1 (Ω) + ‖g‖H3/2(Γ)

)
. (6.2)

The rest of the proof is similar to that Corollary 5.5. �

Remark 6.2. Assume that the hypothesis of Theorem 6.1 hold and suppose in
addition that χ = 0. Let (u, π) ∈W1,2

0 (Ω)×L2(Ω) the unique solution of Problem
(1.1) then π satisfies the problem

div(∇π − f) = 0 in Ω and (∇π − f) · n = − divΓ(h× n) on Γ. (6.3)

It follows from [10] that Problem (6.3) has a solution π in W 1,2
1 (Ω). Setting F =

∇π − f ∈W0,2
1 (Ω). Then problem (1.1) becomes

−∆u = F and div u = 0 in Ω,
u · n = g and curl u× n = h× n on Γ.

Therefore, F, g and h satisfy the assumptions of Proposition 5.3 and thus u belongs
to W2,2

1 (Ω).

Next, we study the regularity of the solution for Problem (1.2).

Theorem 6.3. Suppose that Ω′ is of class C2,1. Let f , χ, g, π0 be such that

f ∈W0,2
1 (Ω), χ ∈W 1,2

1 (Ω), g ∈ H 3/2(Γ), π0 ∈ H1/2(Γ),
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and satisfying the compatibility condition (5.32). Then the Stokes problem (1.2)
has a unique solution (u, π) ∈W2,2

1 (Ω)×W 1,2
1 (Ω). Moreover, we have the estimate

‖u‖W2,2
1 (Ω)+‖π‖W 1,2

1 (Ω) 6 C(‖f‖W0,2
1 (Ω)+‖g×n‖H3/2(Γ)+‖π0‖H1/2(Γ)+‖χ‖W 1,2

1 (Ω)).
(6.4)

Proof. First case: We suppose that χ = 0. Since W0,2
1 (Ω) is in [H̊2

−1(curl,Ω)]′,
we deduce that we are under the hypothesis of Corollary 5.6 and so Problem (1.2)
has a unique solution (u, π) ∈ W1,2

0 (Ω) ×W 1,2
1 (Ω). Setting z = curl u. Observe

that u×n = g×n belongs to H 3/2(Γ) and thus curl u ·n belongs to H1/2(Γ) and
so z satisfies

z ∈ L2(Ω), div z = 0 ∈W 0,2
1 (Ω),

curl z = f −∇π ∈W0,2
1 (Ω), z · n = curl u · n ∈ H1/2(Γ).

Applying Proposition 3.1 (with k = 0), we prove that z belongs to W1,2
1 (Ω). This

implies that u satisfies

u ∈W1,2
0 (Ω), div u = 0 ∈W 1,2

1 (Ω),

curl u ∈W1,2
1 (Ω), u× n = g × n ∈ H3/2(Γ).

Applying Proposition 4.5, we prove that u belongs to W2,2
1 (Ω).

Second case: χ is in W 1,2
1 (Ω). The proof of this case is very similar to that

Corollary 5.7. �
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