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ASYMPTOTIC BEHAVIOR OF NON-AUTONOMOUS
STOCHASTIC PARABOLIC EQUATIONS WITH NONLINEAR

LAPLACIAN PRINCIPAL PART

BIXIANG WANG, BOLING GUO

Abstract. We prove the existence and uniqueness of random attractors for

the p-Laplace equation driven simultaneously by non-autonomous determinis-
tic and stochastic forcing. The nonlinearity of the equation is allowed to have

a polynomial growth rate of any order which may be greater than p. We fur-

ther establish the upper semicontinuity of random attractors as the intensity
of noise approaches zero. In addition, we show the pathwise periodicity of

random attractors when all non-autonomous deterministic forcing terms are

time periodic.

1. Introduction

In this article, we investigate the existence and upper semicontinuity of random
attractors for a class of degenerate parabolic equations driven simultaneously by
non-autonomous deterministic and stochastic forcing. More precisely, we consider
the p-Laplace equation defined in a bounded domain O ⊆ Rn:

∂u

∂t
− div(|∇u|p−2∇u) = f1(t, x, u) + f2(t, x, u) + g(t, x) + αu ◦ dW

dt
(1.1)

with homogeneous Dirichlet boundary condition, where g ∈ L2
loc(R, L2(O)), p > 2,

α > 0, and W is a two-sided real-valued Wiener process on a probability space.
The symbol ◦ means that the stochastic equation is understood in the sense of
Stratonovich integration. The functions f1, f2 : R × O × R → R are continuous
and satisfy some growth conditions which will be specified later. In particular, we
will assume that f2 is Lipschitz continuous in its third argument and f1 has the
property:

f1(t, x, s)s ≤ −λ|s|q + ψ1(t, x), for all t, s ∈ R and x ∈ O, (1.2)

where λ > 0, q > 1 and ψ1 ∈ L1
loc(R, L1(O)).

The random attractors of the stochastic p-Laplace equation (1.1) were studied
in [22, 23, 24] recently, where the authors successfully established the existence
of such attractors under the condition q ≤ p for the exponents p and q in (1.1)
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and (1.2). In these papers, an abstract framework of the variational approach was
introduced and equation (1.1) fits these frameworks only when q ≤ p. To the best
of our knowledge, the existence of random attractors for q > p is still open and the
first goal of the present paper is to solve this problem. In other words, we will show
the stochastic equation (1.1) has a random attractor in L2(O) for any p > 2 and
q > 1. In addition, if f1, f2 and g are periodic in their first argument, then the
corresponding random attractor is pathwise periodic. The second goal of this paper
is to establish the upper semicontinuity of random attractors when the intensity
of noise approaches zero. Such continuity of attractors is new for the p-Laplace
equation even when q ≤ p.

If f1, f2 and g are independent of t ∈ R, then (1.1) reduces to an autonomous
stochastic equation. The attractors of autonomous stochastic systems have been
extensively investigated in [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 22,
25, 26, 29, 30, 31, 33, 34] and the references therein. For non-autonomous random
attractors, we refer the reader to [1, 11, 17, 23, 24, 27, 35, 36, 37, 38] for details.

This paper is organized as follows. In the next section, we review an existence
result on random attractors for non-autonomous stochastic equations. In Section 3,
we establish the well-posedness of equation (1.1) in L2(O) and define a continuous
cocycle for the solution operators. In Section 4, we derive uniform estimates of
solutions which are necessary for the existence of random absorbing sets. The
asymptotic compactness of solutions for a non-autonomous deterministic equation
is also contained in this section. Sections 5 and 6 are devoted to the existence and
upper semicontinuity of random attractors for (1.1), respectively.

In the sequel, we use ‖ · ‖ and (·, ·) for the norm and inner product of L2(O),
respectively. The norm of a general Banach space X is written as ‖ · ‖X , For
convenience, we will use c or ci (i = 1, 2, . . .) to denote a positive number whose
value is not of significance.

2. Notation

In this section, we assume (X, d) is a complete separable metric space and
(Ω,F , P, {θ}t∈R) is a metric dynamical system. Denote by D a collection of families
of nonempty subsets of X. We recall the following definitions from [35].

Definition 2.1. A mapping Φ: R+×R×Ω×X → X is called a continuous cocycle
on X over (Ω,F , P, {θ}t∈R) if for all τ ∈ R, ω ∈ Ω and t, s ∈ R+,

(i) Φ(·, τ, ·, ·) : R+ × Ω×X → X is (B(R+)×F × B(X), B(X))-measurable;
(ii) Φ(0, τ, ω, ·) is the identity on X;
(iii) Φ(t+ s, τ, ω, ·) = Φ(t, τ + s, θsω, ·) ◦ Φ(s, τ, ω, ·);
(iv) Φ(t, τ, ω, ·) : X → X is continuous.

A continuous cocycle Φ is called T -periodic if Φ(t, τ + T, ω, ·) = Φ(t, τ, ω, ·) for all
t ∈ R+, τ ∈ R and ω ∈ Ω.

Definition 2.2. A cocycle Φ is said to be D-pullback asymptotically compact in
X if for all τ ∈ R and ω ∈ Ω, the sequence {Φ(tn, τ − tn, θ−tnω, xn)}∞n=1 has a
convergent subsequence in X whenever tn → ∞, and xn ∈ B(τ − tn, θ−tnω) with
{B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D.

Definition 2.3. A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called a D-pullback attractor
of Φ if
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(i) A is measurable and A(τ, ω) is compact for all τ ∈ R and ω ∈ Ω.
(ii) A is invariant, that is, for every τ ∈ R and ω ∈ Ω,

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀ t ≥ 0.

(iii) For every B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and for every τ ∈ R and
ω ∈ Ω,

lim
t→∞

d(Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),A(τ, ω)) = 0.

A pullback attractor A is said to be T -periodic if A(τ + T, ω) = A(τ, ω) for all
τ ∈ R and ω ∈ Ω.

We borrow the following result from [35]. Similar results can be found in [3, 11,
15, 18, 23, 30].

Proposition 2.4. Let D be an inclusion-closed collection of families of nonempty
subsets of X, and Φ be a continuous cocycle on X over (Ω,F , P, {θ}t∈R). If Φ is
D-pullback asymptotically compact in X and Φ has a closed measurable D-pullback
absorbing set K in D, then Φ has a unique D-pullback attractor A which is char-
acterized by, for each τ ∈ R and ω ∈ Ω,

A(τ, ω) = Ω(K, τ, ω) = ∪B∈DΩ(B, τ, ω)

= {ψ(0, τ, ω) : ψ is a D-complete solution of Φ}
= {ξ(τ, ω) : ξ is a D-complete quasi-solution of Φ}.

If, in addition, both Φ and K are T -periodic, then so is the attractor A.

Note that the F-measurability of the attractor A was proved in [37] which is an
improvement of the measurability of A with respect to the P -completion of F in
[35].

3. Cocycles associated with degenerate equations

Let O be a bounded domain in Rn. Consider the non-autonomous stochastic
equation defined in O for t > τ with τ ∈ R,

∂u

∂t
− div

(
|∇u|p−2∇u

)
= f1(t, x, u) + f2(t, x, u) + g(t, x) + αu ◦ dW

dt
, (3.1)

with boundary condition

u(t, x) = 0, x ∈ ∂O and t > τ, (3.2)

and initial condition
u(τ, x) = uτ (x), x ∈ O, (3.3)

where p > 2 and α > 0 are constants, g ∈ L2
loc(R, L2(O)), W is a two-sided real-

valued Wiener process on a probability space. Throughout this paper, we assume
that f1 : R×O × R → R is continuous and satisfies, for all t, s ∈ R and x ∈ O,

f1(t, x, s)s ≤ −λ|s|q + ψ1(t, x), (3.4)

|f1(t, x, s)| ≤ ψ2(t, x)|s|q−1 + ψ3(t, x), (3.5)
∂f1
∂s

(t, x, s) ≤ ψ4(t, x), (3.6)

where λ > 0 and q > 1 are constants, ψ1 ∈ L1
loc(R, L1(O)), ψ3 ∈ Lq1loc(R, Lq1(O)),

and ψ2, ψ4 ∈ L∞loc(R, L∞(O)). In this paper, we always use p1 and q1 for the
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conjugate exponents of p and q, respectively; that is, 1
p1

+ 1
p = 1 and 1

q1
+ 1

q = 1.
Let f2 : R×O × R → R be continuous and satisfy, for all t, s1, s2 ∈ R and x ∈ O,

f2(t, x, 0) = 0, |f2(t, x, s1)− f2(t, x, s2)| ≤ ψ5(t, x)|s1 − s2|, (3.7)

where ψ5 ∈ L∞loc(R, L∞(O)).
In the sequel, we will use the probability space (Ω,F , P ) where Ω = {ω ∈

C(R,R) : ω(0) = 0}, F is the Borel σ-algebra induced by the compact-open
topology of Ω, and P is the corresponding Wiener measure on (Ω,F). Let {θt}t∈R
be the standard group acting on (Ω,F , P ) given by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R. (3.8)

In later sections, we will study the dynamics of problem (3.1)-(3.3) over the para-
metric dynamical system (Ω,F , P, {θt}t∈R). To that end, we first convert the sto-
chastic equation (3.1) into a non-autonomous deterministic one by using the random
variable z given by:

z(ω) = −
∫ 0

−∞
eτω(τ)dτ, ω ∈ Ω. (3.9)

Then z satisfies
dz(θtω) + z(θtω)dt = dW. (3.10)

Moreover, from [2], there exists a θt-invariant set Ω̃ ⊆ Ω with P (Ω̃) = 1 such that
for every ω ∈ Ω̃, z(θtω) is continuous in t and

lim
t→±∞

|z(θtω)|
|t|

= 0 and lim
t→±∞

1
t

∫ t

0

z(θtω)dt = E(z) = 0. (3.11)

From now on, we only consider the space Ω̃ rather than Ω, and hence write Ω̃ as Ω
for convenience.

Throughout the rest of this article, we set V = W 1,p
0 (O). Given uτ ∈ L2(O), a

continuous L2(O)-valued process {u(t, τ, ω, uτ )}t≥τ is called a solution of problem
(3.1)-(3.3) if u(·, τ, ω, uτ ) ∈ Lploc([τ,∞), V ) ∩ Lqloc([τ,∞), Lq(O)) for almost all ω ∈
Ω, and if for all ξ ∈ V ∩ Lq(O),

(u(t, τ, ω, uτ ), ξ) +
∫ t

τ

∫
O
|∇u(s, τ, ω, uτ )|p−2∇u(s, τ, ω, uτ ) · ∇ξ dxds

= (uτ , ξ) +
∫ t

τ

∫
O
f1(s, x, u(s, τ, ω, uτ ))ξ dx ds

+
∫ t

τ

∫
O
f2(s, x, u(s, τ, ω, uτ ))ξ dx ds

+
∫ t

τ

∫
O
g(s, x)ξ dx ds+ α

∫ t

τ

(u(s, τ, ω, uτ ), ξ) ◦ dW,

for all t ≥ τ and for almost all ω ∈ Ω. Let u be a solution of (3.1)-(3.3) and set

v(t, τ, ω, vτ ) = e−αz(θtω)u(t, τ, ω, uτ ) with vτ = e−αz(θτω)uτ . (3.12)

By (3.1) and (3.12) we find
dv

dt
− eα(p−2)z(θtω) div(|∇v|p−2∇v)

= αz(θtω)v + e−αz(θtω)f1(t, x, eαz(θtω)v)

+ e−αz(θtω)f2(t, x, eαz(θtω)v) + e−αz(θtω)g(t, x),

(3.13)
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with boundary condition

v(t, x) = 0, x ∈ ∂O and t > τ, (3.14)

and initial condition
v(τ, x) = vτ (x), x ∈ O. (3.15)

In the sequel, we will establish the well-posedness of problem (3.13)-(3.15). For
that purpose, we need to introduce the definition of weak solutions for the equation.

Definition 3.1. Given τ ∈ R, ω ∈ Ω and vτ ∈ L2(O), a continuous function
v(·, τ, ω, vτ ): [τ,∞)→ L2(O) is called a solution of (3.13)-(3.15) if v(τ, τ, ω, vτ ) = vτ
and

v ∈ Lploc([τ,∞), V ) ∩ Lqloc([τ,∞), Lq(O)),
dv

dt
∈ Lp1loc([τ,∞), V ∗) + Lq1loc([τ,∞), Lq1(O)),

and v satisfies, for every ξ ∈ V ∩ Lq(O),

d

dt
(v, ξ)− eα(p−2)z(θtω)

∫
O
|∇v|p−2∇v · ∇ξ dx

= αz(θtω)(v, ξ) + e−αz(θtω)

∫
O
f1(t, x, eαz(θtω)v)ξ dx

+ e−αz(θtω)

∫
O
f2(t, x, eαz(θtω)v)ξ dx+ e−αz(θtω)(g(t, ·), ξ)

in the sense of distribution on [τ,∞).

We will employ the Galerkin method to prove the existence of solutions for the
deterministic equation (3.13). For simplicity, we define an operator A: V → V ∗ by

(A(v1), v2)(V ∗,V ) =
∫
O
|∇v1|p−2∇v1 · ∇v2dx, for all v1, v2 ∈ V, (3.16)

where (·, ·)(V ∗,V ) is the duality pairing of V ∗ and V . It follows from [32] that A is
hemicontinuous and monotone. Let {ej}∞j=1 ⊆ V ∩ Lq(O) be an orthonormal basis
of L2(O) such that span{ej : j ∈ N} is dense in V ∩Lq(O). Given n ∈ N, let Xn be
the space spanned by {ej : j = 1, . . . , n} and Pn: L2(O) → Xn be the projection
given by

Pnv =
n∑
j=1

(v, ej)ej , ∀v ∈ L2(O).

Note that Pn can be extended to V ∗ and (Lq(O))∗ by

Pnφ =
n∑
j=1

(φ(ej))ej , for φ ∈ V ∗ or φ ∈ (Lq(O))∗.

Consider the following system for vn ∈ Xn defined for t > τ :
dvn
dt

+ eα(p−2)z(θtω)PnA(vn) = αz(θtω)vn + e−αz(θtω)Pnf1(t, ·, eαz(θtω)vn)

+ e−αz(θtω)Pnf2(t, ·, eαz(θtω)vn) + e−αz(θtω)Png,

(3.17)
with initial condition

vn(τ) = Pnvτ . (3.18)
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Under assumptions (3.4)-(3.7), we find that for every τ ∈ R, ω ∈ Ω and vτ ∈ L2(O),
problem (3.17)-(3.18) has a unique maximal solution vn(·, τ, ω) ∈ C1([τ, τ+T ), Xn)
for some T > 0. The uniform estimates given below imply T = ∞, and hence the
solution is defined for all t ≥ τ . In addition, vn(t, τ, ω, vτ ) is measurable with
respect to ω ∈ Ω. By examining the limiting behavior of vn, we prove the following
existence and uniqueness of solutions for (3.13)-(3.15).

Lemma 3.2. Suppose (3.4)-(3.7) hold. Then for every τ ∈ R, ω ∈ Ω and vτ ∈
L2(O), problem (3.13)-(3.15) has a unique solution v(t, τ, ω, vτ ) in the sense of
Definition 3.1. This solution is (F ,B(L2(O)))-measurable in ω and continuous in
initial data vτ in L2(O). Moreover, the solution v satisfies the energy equation:

d

dt
‖v(t, τ, ω, vτ )‖2 + 2eα(p−2)z(θtω)

∫
O
|∇v|pdx

= 2αz(θtω)‖v‖2 + 2e−αz(θtω)

∫
O
f1(t, x, eαz(θtω)v)v dx

+ 2e−αz(θtω)

∫
O
f2(t, x, eαz(θtω)v)vdx+ 2e−αz(θtω)

∫
O
g(t, x)vdx

(3.19)

for almost all t ≥ τ .

Proof. The proof consists of several steps. We first derive uniform estimates on the
solution vn of (3.17)-(3.18).

Step 1: Uniform estimates. By (3.17) we obtain

1
2
d

dt
‖vn‖2 + eα(p−2)z(θtω)

∫
O
|∇vn|pdx

= αz(θtω)‖vn‖2 + e−αz(θtω)

∫
O
f1(t, x, eαz(θtω)vn)vndx

+ e−αz(θtω)

∫
O
f2(t, x, eαz(θtω)vn)vndx+ e−αz(θtω)(g(t), vn).

(3.20)

By (3.4) we obtain

e−αz(θtω)

∫
O
f1(t, x, eαz(θtω)vn)vndx

≤ −λeα(q−2)z(θtω)

∫
O
|vn|qdx+ e−2αz(θtω)

∫
O
ψ1(t, x)dx.

(3.21)

By (3.7) we have

e−αz(θtω)|
∫
O
f2(t, x, eαz(θtω)vn)vndx| ≤ ‖ψ5(t)‖L∞(O)‖vn‖2. (3.22)

It follows from (3.20)-(3.22) that

d

dt
‖vn‖2 + 2eα(p−2)z(θtω)

∫
O
|∇vn|pdx+ 2λeα(q−2)z(θtω)

∫
O
|vn|qdx

≤
(
1 + 2αz(θtω) + 2‖ψ5(t)‖L∞(O)

)
‖vn‖2 + 2e−2αz(θtω)‖ψ1(t)‖L1(O)

+ e−2αz(θtω)‖g(t)‖2.

(3.23)
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Note that z(θtω) is continuous in t for fixed ω. Therefore, for every τ ∈ R, ω ∈ Ω
and T > 0, we obtain from (3.23) that

{vn}∞n=1 is bounded in L∞(τ, τ +T ;L2(O))∩Lq(τ, τ +T ;Lq(O))∩Lp(τ, τ +T ;V ).
(3.24)

By (3.16) and (3.24) we obtain

{A(vn)}∞n=1 is bounded in Lp1(τ, τ + T ;V ∗), (3.25)

where 1
p1

+ 1
p = 1. By (3.5) we have∫ τ+T

τ

∫
O
|f1(t, x, eαz(θtω)vn)|q1 dx dt

≤ c1
∫ τ+T

τ

∫
O
|vn|q dx dt+

∫ τ+T

τ

∫
O
|ψ3(t, x)|q1 dx dt,

with 1
q1

+ 1
q = 1, which along with (3.24) implies

{f1(t, x, eαz(θtω)vn)}∞n=1 is bounded in Lq1(τ, τ + T ;Lq1(O)). (3.26)

By (3.25) and (3.26), we infer from (3.17) that

{dvn
dt
}∞n=1 is bounded in Lp1(τ, τ + T ;V ∗) + Lq1(τ, τ + T ;Lq1(O)). (3.27)

Next, we prove the existence of solutions for (3.13)-(3.15) based on (3.24)-(3.27).

Step 2: Existence of solutions. It follows from (3.24)-(3.26) that there exist
ṽ ∈ L2(O), v ∈ L∞(τ, τ + T ;L2(O)) ∩ Lp(τ, τ + T ;V ) ∩ Lq(τ, τ + T ;Lq(O)), χ1 ∈
Lq1(τ, τ + T ;Lq1(O)), χ2 ∈ Lp1(τ, τ + T ;V ∗) such that, up to a subsequence,

vn → v weak-star in L∞(τ, τ + T ;L2(O)), (3.28)

vn → v weakly in Lp(τ, τ + T ;V ) and Lq(τ, τ + T ;Lq(O)), (3.29)

f1(t, x, eαz(θtω)vn)→ χ1 weakly in Lq1(τ, τ + T ;Lq1(O)), (3.30)

A(vn)→ χ2 weakly in Lp1(τ, τ + T ;V ∗), (3.31)
dvn
dt
→ dv

dt
weakly in Lp1(τ, τ + T ;V ∗) + Lq1(τ, τ + T ;Lq1(O)), (3.32)

vn(τ + T, τ, ω)→ ṽ weakly in L2(O). (3.33)

Let σ = min{p1, q1}. By (3.27) we see that {dvndt } is bounded in Lσ(τ, τ + T ; (V ∩
Lq(O))∗). Note that V ↪→ L2(O) ↪→ (V ∩Lq(O))∗ and the embedding V ↪→ L2(O)
is compact. Therefore, it follows from [28] that, up to a subsequence,

vn → v strongly in L2(τ, τ + T ;L2(O)). (3.34)

By (3.7) and (3.34) one can verify that for every j ∈ N and φ ∈ C∞0 (τ, τ + T ),

lim
n→∞

∫ τ+T

τ

e−αz(θtω)(Pnf2(t, ·, eαz(θtω)vn), φej)dt

=
∫ τ+T

τ

e−αz(θtω)(f2(t, ·, eαz(θtω)v), φej)dt.

(3.35)
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Letting n → ∞ in (3.17), by (3.28)-(3.31) and (3.35), we obtain, for j ∈ N and
φ ∈ C∞0 (τ, τ + T ),

−
∫ τ+T

τ

(v, ej)φ′dt+
∫ τ+T

τ

eα(p−2)z(θtω)(χ2, φej)(V ∗,V )dt

= α

∫ τ+T

τ

z(θtω)(v, φej)dt+
∫ τ+T

τ

e−αz(θtω)(χ1, φej)(Lq1 ,Lq)dt

+
∫ τ+T

τ

e−αz(θtω)(f2(t, ·, eαz(θtω)v), φej)dt+
∫ τ+T

τ

e−αz(θtω)(g, φej)dt.

(3.36)

Since span{ej , j ∈ N} is dense in V ∩ Lq(O), we find that (3.36) is still valid when
ej is replaced by any element in V ∩Lq(O). Therefore, for every ξ ∈ V ∩Lq(O), in
the sense of distributions, we have

d

dt
(v, ξ) + eα(p−2)z(θtω)(χ2, ξ)(V ∗,V )

= αz(θtω)(v, ξ) + e−αz(θtω)(χ1, ξ)(Lq1 ,Lq)

+ e−αz(θtω)(f2(t, ·, eαz(θtω)v), ξ) + e−αz(θtω)(g, ξ),

(3.37)

Note that (3.37) implies

dv

dt
= −eα(p−2)z(θtω)χ2 + αz(θtω)v + e−αz(θtω)χ1

+ e−αz(θtω)f2(t, ·, eαz(θtω)v) + e−αz(θtω)g,
(3.38)

in Lp1(τ, τ + T ;V ∗) + Lq1(τ, τ + T ;Lq1(O)). Since v ∈ Lp(τ, τ + T ;V ) ∩ Lq(τ, τ +
T ;Lq(O)) and dv

dt ∈ L
p1(τ, τ + T ;V ∗) + Lq1(τ, τ + T ;Lq1(O)), as in [28], we find

that v ∈ C([τ, τ + T ], L2(O)) and

1
2
d

dt
‖v‖2 = (

dv

dt
, v)(V ∗+Lq1 ,V ∩Lq) for almost all t ∈ (τ, τ + T ). (3.39)

We now prove v(τ) = vτ and v(τ+T ) = ṽ. Let φ ∈ C1([τ, τ+T ]) and ξ ∈ V ∩Lq(O).
Multiplying (3.17) by φξ and then taking the limit as before, we obtain from (3.18)
and (3.33) that

(ṽ, ξ)φ(τ + T )− (vτ , ξ)φ(τ)

=
∫ τ+T

τ

(v, ξ)φ′dt−
∫ τ+T

τ

eα(p−2)z(θtω)(χ2, φξ)(V ∗,V )dt

+ α

∫ τ+T

τ

z(θtω)(v, φξ)dt+
∫ τ+T

τ

e−αz(θtω)(χ1, φξ)(Lq1 ,Lq)dt

+
∫ τ+T

τ

e−αz(θtω)(f2(t, ·, eαz(θtω)v), φξ)dt+
∫ τ+T

τ

e−αz(θtω)(g, φξ)dt.

(3.40)

On the other hand, by (3.37) we find that the right-hand side of (3.40) is given by
(v(τ + T ), ξ)φ(τ + T )− (v(τ), ξ)φ(τ). Therefore we obtain

(v(τ + T ), ξ)φ(τ + T )− (v(τ), ξ)φ(τ) = (ṽ, ξ)φ(τ + T )− (vτ , ξ)φ(τ).

Choose ψ ∈ C1([τ, τ + T ]) such that ψ(τ) = 1 and ψ(τ + T ) = 0. First letting
φ = ψ and then letting φ = 1− ψ, from the above, we obtain

v(τ) = vτ and v(τ + T ) = ṽ. (3.41)
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By (3.33) and (3.41) we obtain

vn(τ + T, τ, ω)→ v(τ + T ) weakly in L2(O), (3.42)

which implies that

lim inf
n→∞

‖vn(τ + T, τ, ω)‖ ≥ ‖v(τ + T )‖. (3.43)

Next, we prove χ1 = f1(t, ·, v). By (3.34) we see that, up to a subsequence,

vn → v for almost all (t, x) ∈ (τ, τ + T )×O. (3.44)

By (3.44) and the continuity of f1, we obtain

f1(t, x, eαz(θtω)vn)→ f1(t, x, eαz(θtω)v) (3.45)

for almost all (t, x) ∈ (τ, τ +T )×O. By (3.26) and (3.45), from [28] it follows that

f1(t, x, eαz(θtω)vn)→ f1(t, x, eαz(θtω)v) weakly in Lq1(τ, τ + T ;Lq1(O)). (3.46)

By (3.30) and (3.46) we have

χ1 = f1(t, x, eαz(θtω)v). (3.47)

We now show that χ2 = A(v). By (3.4),

e−2αz(θtω)ψ1(t, x)− e−αz(θtω)f1(t, x, eαz(θtω)vn)vn ≥ 0.

Therefore, from Fatou’s lemma it follows that

lim inf
n→∞

∫ τ+T

τ

∫
O

(
e−2αz(θtω)ψ1(t, x)− e−αz(θtω)f1(t, x, eαz(θtω)vn)vn

)
dx dt

≥
∫ τ+T

τ

∫
O

lim inf
n→∞

(
e−2αz(θtω)ψ1(t, x)− e−αz(θtω)f1(t, x, eαz(θtω)vn)vn

)
dx dt

which along with (3.44)-(3.45) shows that

lim sup
n→∞

∫ τ+T

τ

∫
O
e−αz(θtω)f1(t, x, eαz(θtω)vn)vn

≤
∫ τ+T

τ

∫
O
e−αz(θtω)f1(t, x, eαz(θtω)v)v .

(3.48)

By (3.17)-(3.18) we find that∫ τ+T

τ

eα(p−2)z(θtω)(A(vn), vn)(V ∗,V )dt

=
1
2
‖vn(τ)‖2 − 1

2
‖vn(τ + T )‖2 + α

∫ τ+T

τ

z(θtω)‖vn‖2dt

+
∫ τ+T

τ

∫
O
e−αz(θtω)f1(t, x, eαz(θtω)vn)vn dx dt

+
∫ τ+T

τ

∫
O
e−αz(θtω)f2(t, x, eαz(θtω)vn)vn dx dt

+
∫ τ+T

τ

∫
O
e−αz(θtω)g(t, x)vn dx dt.

(3.49)
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Letting n→∞ in (3.49), by (3.34), (3.43) and (3.48) we obtain

lim sup
n→∞

∫ τ+T

τ

eα(p−2)z(θtω)(A(vn), vn)(V ∗,V )dt

≤ 1
2
‖v(τ)‖2 − 1

2
‖v(τ + T )‖2 + α

∫ τ+T

τ

z(θtω)‖v‖2dt

+
∫ τ+T

τ

∫
O
e−αz(θtω)f1(t, x, eαz(θtω)v)v dx dt

+
∫ τ+T

τ

∫
O
e−αz(θtω)f2(t, x, eαz(θtω)v)v dx dt

+
∫ τ+T

τ

∫
O
e−αz(θtω)g(t, x)v dx dt.

(3.50)

On the other hand, by (3.38), (3.39) and (3.47) we see that the right-hand side of
(3.50) is given by

∫ τ+T
τ

eα(p−2)z(θtω)(χ2, v)(V ∗,V )dt. Therefore we obtain

lim sup
n→∞

∫ τ+T

τ

eα(p−2)z(θtω)(A(vn), vn)(V ∗,V )dt ≤
∫ τ+T

τ

eα(p−2)z(θtω)(χ2, v)(V ∗,V )dt.

(3.51)
Since A : Lp(τ, τ + T ;V )→ Lp1(τ, τ + T ;V ∗) is hemicontinuous and monotone, by
(3.29), (3.31) and (3.51) we infer that

χ2 = A(v). (3.52)

It follows from (3.37), (3.41), (3.47) and (3.52) that v is a solution of problem
(3.13)-(3.15) in the sense of Definition 3.1. By (3.38), (3.39), (3.47) and (3.52) we
find that v satisfies the energy equation (3.19).

Step 3: Uniqueness of solutions. Suppose v1 and v2 are two solutions of (3.13)-
(3.14) with initial data v1,τ and v2,τ , respectively. Then ṽ = v1 − v2 satisfies

dṽ

dt
+ eα(p−2)z(θtω)(A(v1)−A(v2))

= αz(θtω)ṽ + e−αz(θtω)
(
f1(t, x, eαz(θtω)v1)− f1(t, x, eαz(θtω)v2)

)
+ e−αz(θtω)

(
f2(t, x, eαz(θtω)v1)− f2(t, x, eαz(θtω)v2)

)
.

By (3.6)-(3.7) and the monotonicity of A, we obtain for t ∈ [τ, τ + T ],
1
2
d

dt
‖ṽ‖2 ≤ αz(θtω)‖ṽ‖2 + e−αz(θtω)

∫
O
ψ4(t, x)|ṽ|2dx+

∫
O
ψ5(t, x)|ṽ|2dx ≤ c1‖ṽ‖2,

where c1 is a positive constant depending on τ, T and ω. Therefore, for all t ∈
[τ, τ + T ], we have

‖v1(t, τ, ω, v1,τ )− v2(t, τ, ω, v2,τ )‖2 ≤ ec1(t−τ)‖v1,τ − v2,τ‖2,
which implies the uniqueness and continuous dependence of solutions on initial data
in L2(O).

By (3.33), (3.41) and the uniqueness of solutions, we infer that for every ω ∈ Ω,
the whole sequence vn(τ + T, τ, ω)→ v(τ + T, τ, ω) weakly in L2(O). By a similar
argument, one can verify that vn(t, τ, ω)→ v(t, τ, ω) weakly in L2(O) for any t ≥ τ
and ω ∈ Ω. Then the measurability of v(t, τ, ω) follows from that of vn(t, τ, ω).
This completes the proof. �
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From the proof of Lemma 3.2, we see that the solution operator of problem
(3.13)-(3.15) is compact in L2(O) as stated below.

Lemma 3.3. If (3.4)-(3.7) hold, then for every ω ∈ Ω and t, τ ∈ R with t > τ , the
solution operator v(t, τ, ω, ·): L2(O)→ L2(O) of problem (3.13)-(3.15) is compact;
that is, for every bounded set B in L2(O), the image v(t, τ, ω,B) is precompact in
L2(O).

Proof. We argue as in [24]. Suppose {v0,n}∞n=1 is an arbitrary sequence in B.
Choose a positive number T such that t ∈ [τ, τ + T ]. As in (3.34), one can show
that there exists v ∈ L2((τ, τ + T ), L2(O)) such that, up to a subsequence,

v(·, τ, ω, v0,n)→ v in L2((τ, τ + T ), L2(O)).

Therefore, there exists a subsequence (which is still denoted by v(·, τ, ω, v0,n)) such
that

v(s, τ, ω, v0,n)→ v(s) in L2(O) for almost all s ∈ (τ, τ + T ). (3.53)

Since t > τ , we may choose s0 ∈ (τ, t) such that (3.53) is fulfilled at s = s0. It
follows from the continuity of solutions in initial data that

v(t, τ, ω, v0,n) = v(t, s0, ω, v(s0, τ, ω, v0,n)→ v(t, s0, ω, v(s0)),

and hence {v(t, τ, ω, v0,n)} has a convergent subsequence in L2(O). �

We now define a continuous cocycle for the stochastic equation (3.1). Let
u(t, τ, ω, uτ ) = eαz(θtω)v(t, τ, ω, vτ ) with uτ = eαz(θτω)vτ , where v is the solution
of problem (3.13)-(3.15). It follows from Lemma 3.2 that u is a solution of prob-
lem (3.1)-(3.3) which is continuous in t ∈ [τ,∞) as well as in uτ ∈ L2(O). Let
Φ : R+×R×Ω×L2(O) → L2(O) be a mapping given by, for every t ∈ R+, τ ∈ R,
ω ∈ Ω and uτ ∈ L2(O),

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ) = eαz(θtω)v(t+ τ, τ, θ−τω, vτ ), (3.54)

where vτ = e−αz(ω)uτ .
Then Φ is a continuous cocycle on L2(O) over (Ω,F , P, {θt}t∈R). We will prove

the existence of D-pullback attractors for Φ for an appropriate collection of fam-
ilies of subsets of L2(O). To define such a collection, we first recall the Poincare
inequality: ∫

O
|∇v(x)|pdx ≥ β

∫
O
|v(x)|pdx, for all v ∈W 1,p

0 (O), (3.55)

where β is a positive constant depending only on O and p. Note that for any p ≥ 2,∫
O
|v(x)|2dx ≤ p− 2

p
|O|+ 2

p

∫
O
|v(x)|pdx, (3.56)

where |O| stands for the Lebesgue measure of O. By (3.55) and (3.56) we have∫
O
|∇v(x)|pdx ≥ 1

2
βp‖v‖2 − 1

2
β(p− 2)|O|, for all v ∈W 1,p

0 (O). (3.57)

Given r ∈ R and ω ∈ Ω, denote by

h(r, ω) =
1
2
βpeα(p−2)z(θrω) − 2αz(θrω). (3.58)
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By the ergodic theory, we find that

lim
s→−∞

1
s

∫ s

0

h(r, ω)dr = E
(1

2
βpeα(p−2)z(ω) − 2αz(ω)

)
=

1
2
βpE

(
eα(p−2)z(ω)

)
> 0.

(3.59)
We now fix a number δ such that

0 < δ <
1
2
βpE

(
eα(p−2)z(ω)

)
. (3.60)

It follows from (3.59) and (3.60) that for every ε ∈
(
0, 1

4βpE
(
eα(p−2)z(ω)

)
− 1

2δ
)
,

there exists s0 = s0(ω, ε) < 0 such that for all s ≤ s0,∫ s

0

h(r, ω)dr < (δ + ε)s < δs. (3.61)

Let D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets of
L2(O) with the property: for every τ ∈ R and ω ∈ Ω,

lim
s→−∞

e
R s
0 h(r,ω)dr−2αz(θsω)‖D(τ + s, θsω)‖2 = 0, (3.62)

where h is given by (3.58) and ‖S‖ = supu∈S ‖u‖L2(O) for a subset S of L2(O).
Hereafter, we use D to denote the collection of all families satisfying (3.62):

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (3.62)}. (3.63)

From now on, we assume ψ5 ∈ L∞(R, L∞(O)) and∫ 0

−∞
eδs
(
‖g(s+ τ)‖2 + ‖ψ1(s+ τ)‖L1(O)

)
ds <∞, ∀τ ∈ R, (3.64)

where δ is the fixed number satisfying (3.60).

4. Uniform estimates of solutions

We will derive uniform estimates of solutions for problem (3.13)-(3.15) in this
section. These estimates will be used to prove the existence of pullback absorbing
sets and the asymptotic compactness of the stochastic equation (3.1).

Lemma 4.1. Suppose (3.4)-(3.7) and (3.64) hold. Then for every σ ∈ R, τ ∈ R,
ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, σ) > 0
such that for all t ≥ T , the solution v of problem (3.13)-(3.15) satisfies

‖v(σ, τ − t, θ−τω, vτ−t)‖2

≤ c
∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dreα(p−2)z(θsω)ds

+ c

∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dre−2αz(θsω)ds+ c

∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dre

4α(p−1)
2−p z(θsω)ds

+ 2
∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

+
∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dr‖g(s+ τ)‖2ds,

where eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) and c is a positive constant independent of τ ,
ω, D and α.
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Proof. We start with the energy identity (3.19). By (3.4), the nonlinearity f1
satisfies

2e−αz(θtω)

∫
O
f1(t, x, eαz(θtω)v)vdx

≤ −2λeα(q−2)z(θtω)

∫
O
|v|qdx+ 2

∫
O
e−2αz(θtω)ψ1(t, x)dx.

(4.1)

By the Young inequality and (3.7) we obtain

2e−αz(θtω)|
∫
O
f2(t, x, eαz(θtω)v)vdx|

≤ 2‖ψ5(t)‖L∞(O)‖v‖2

≤ c1e−2αz(θtω) +
1
2
βeα(p−2)z(θtω)

∫
O
|v|pdx,

(4.2)

where c1 is a positive number independent of τ, ω and α. Similarly, by the Young
inequality, we have

2e−αz(θtω)|
∫
O
g(t, x)vdx|

≤ ‖g(t)‖2 + e−2αz(θtω)‖v‖2

≤ ‖g(t)‖2 + c2e
4α(p−1)

2−p z(θtω) +
1
2
βeα(p−2)z(θtω)

∫
O
|v|pdx.

(4.3)

By (3.55) and (3.57) we obtain

2eα(p−2)z(θtω)

∫
O
|∇v|pdx ≥ βeα(p−2)z(θtω)

∫
O
|v|pdx+

1
2
βpeα(p−2)z(θtω)‖v‖2

− 1
2
β(p− 2)|O|eα(p−2)z(θtω).

(4.4)
It follows from (3.19) and (4.1)-(4.4) that

d

dt
‖v‖2 + h(t, ω)‖v‖2 ≤ c3eα(p−2)z(θtω) + c3e

−2αz(θtω) + c3e
4α(p−1)

2−p z(θtω)

+ 2e−2αz(θtω)‖ψ1(t)‖L1(O) + ‖g(t)‖2,
(4.5)

where h(t, ω) is given by (3.58). Multiplying (4.5) by e
R t
0 h(r,ω)dr and then solving

the inequality, we obtain for every τ ∈ R, t ∈ R+, σ ≥ τ − t and ω ∈ Ω,

‖v(σ, τ − t, ω, vτ−t)‖2

≤ e
R τ−t
σ

h(r,ω)dr‖vτ−t‖2 + c3

∫ σ

τ−t
e

R s
σ
h(r,ω)dreα(p−2)z(θsω)ds

+ c3

∫ σ

τ−t
e

R s
σ
h(r,ω)dre−2αz(θsω)ds+ c3

∫ σ

τ−t
e

R s
σ
h(r,ω)dre

4α(p−1)
2−p z(θsω)ds

+ 2
∫ σ

τ−t
e

R s
σ
h(r,ω)dre−2αz(θsω)‖ψ1(s)‖L1(O)ds

+
∫ σ

τ−t
e

R s
σ
h(r,ω)dr‖g(s)‖2ds.

(4.6)
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Replacing ω by θ−τω in (4.6) we obtain

‖v(σ, τ − t, θ−τω, vτ−t)‖2

≤ e
R τ−t
σ

h(r,θ−τω)dr‖vτ−t‖2 + c3

∫ σ

τ−t
e

R s
σ
h(r,θ−τω)dreα(p−2)z(θs−τω)ds

+ c3

∫ σ

τ−t
e

R s
σ
h(r,θ−τω)dre−2αz(θs−τω)ds+ c3

∫ σ

τ−t
e

R s
σ
h(r,θ−τω)dre

4α(p−1)
2−p z(θs−τω)ds

+ 2
∫ σ

τ−t
e

R s
σ
h(r,θ−τω)dre−2αz(θs−τω)‖ψ1(s)‖L1(O)ds

+
∫ σ

τ−t
e

R s
σ
h(r,θ−τω)dr‖g(s)‖2ds

≤ e
R−t
σ−τ h(r,ω)dr‖vτ−t‖2 + c3

∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dreα(p−2)z(θsω)ds

+ c3

∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dre−2αz(θsω)ds+ c3

∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dre

4α(p−1)
2−p z(θsω)ds

+ 2
∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

+
∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dr‖g(s+ τ)‖2ds.

(4.7)
Next, we estimate every term on the right-hand side of (4.7). First, by (3.61) we
find that for all s ≤ s0,∫ s0

−∞
e

R s
σ−τ h(r,ω)dr‖g(s+ τ)‖2ds = e

R 0
σ−τ h(r,ω)dr

∫ s0

−∞
e

R s
0 h(r,ω)dr‖g(s+ τ)‖2ds

≤ e
R 0
σ−τ h(r,ω)dr

∫ s0

−∞
eδs‖g(s+ τ)‖2ds

≤ e
R 0
σ−τ h(r,ω)dr

∫ 0

−∞
eδs‖g(s+ τ)‖2ds <∞,

where we have used (3.64) for the last integral. Therefore, for t > 0, we obtain∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dr‖g(s+ τ)‖2ds ≤

∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dr‖g(s+ τ)‖2ds <∞. (4.8)

Note that (3.11) implies that for ε > 0, there exists s1 ≤ s0 such that for all s ≤ s1,

− 2αz(θsω) < −εs. (4.9)

By (3.61), (4.9) and (3.64) we obtain∫ s1

−∞
e

R s
σ−τ h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

= e
R 0
σ−τ h(r,ω)dr

∫ s1

−∞
e

R s
0 h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

≤ e
R 0
σ−τ h(r,ω)dr

∫ s1

−∞
eδs‖ψ1(s+ τ)‖L1(O)ds <∞,
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and hence ∫ σ−τ

−t
e

R s
σ−τ h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

≤
∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds <∞.

(4.10)

By a similar argument, one can verify that the following integrals are also conver-
gent: ∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dreα(p−2)z(θsω)ds <∞, (4.11)∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dre−2αz(θsω)ds <∞, (4.12)∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dre

4α(p−1)
2−p z(θsω)ds <∞. (4.13)

For the first term on the right-hand side of (4.7), since eαz(θ−tω)vτ−t ∈ D(τ −
t, θ−tω) ∈ D, we have

e
R−t
0 h(r,ω)dr‖vτ−t‖2 ≤ e

R−t
0 h(r,ω)dr−2αz(θ−tω)‖D(τ − t, θ−tω)‖2 → 0,

as t→∞. Therefore, there exists T = T (τ, ω,D, σ) > 0 such that for all t ≥ T ,

e
R−t
σ−τ h(r,ω)dr‖vτ−t‖2 = e

R 0
σ−τ h(r,ω)dre

R−t
0 h(r,ω)dr‖vτ−t‖2

≤
∫ σ−τ

−∞
e

R s
σ−τ h(r,ω)dreα(p−2)z(θsω)ds.

(4.14)

Thus, the lemma follows from (4.7)-(4.14) immediately. �

As a consequence of Lemma 4.1, we have the following estimates.

Lemma 4.2. Suppose (3.4)-(3.7) and (3.64) hold. Then for every τ ∈ R, ω ∈ Ω and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D) > 0 such that for all
t ≥ T , the solution v of problem (3.13)-(3.15) with eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω)
satisfies, for all t ≥ T ,

‖v(τ, τ − t, θ−τω, vτ−t)‖2 ≤ R(τ, ω, α), (4.15)

where
R(τ, ω, α)

= c

∫ 0

−∞
e

R s
0 h(r,ω)dreα(p−2)z(θsω)ds

+ c

∫ 0

−∞
e

R s
0 h(r,ω)dre−2αz(θsω)ds+ c

∫ 0

−∞
e

R s
0 h(r,ω)dre

4α(p−1)
2−p z(θsω)ds

+ 2
∫ 0

−∞
e

R s
0 h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

+
∫ 0

−∞
e

R s
0 h(r,ω)dr‖g(s+ τ)‖2ds,

(4.16)

with c being a positive constant independent of τ , ω, D and α. Moreover, we have

lim
t→∞

e
R−t
0 h(r,ω)drR(τ − t, θ−tω, α) = 0. (4.17)
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Proof. Note that (4.15) follows from Lemma 4.1 by setting σ = τ . We only need
to show (4.17). By (4.16) we obtain

R(τ − t, θ−tω, α)

= c

∫ 0

−∞
e

R s
0 h(r,θ−tω)dreα(p−2)z(θs−tω)ds

+ c

∫ 0

−∞
e

R s
0 h(r,θ−tω)dre−2αz(θs−tω)ds+ c

∫ 0

−∞
e

R s
0 h(r,θ−tω)dre

4α(p−1)
2−p z(θs−tω)ds

+ 2
∫ 0

−∞
e

R s
0 h(r,θ−tω)dre−2αz(θs−tω)‖ψ1(s+ τ − t)‖L1(O)ds

+
∫ 0

−∞
e

R s
0 h(r,θ−tω)dr‖g(s+ τ − t)‖2ds

= c

∫ −t
−∞

e
R s
−t h(r,ω)dreα(p−2)z(θsω)ds

+ c

∫ −t
−∞

e
R s
−t h(r,ω)dre−2αz(θsω)ds+ c

∫ −t
−∞

e
R s
−t h(r,ω)dre

4α(p−1)
2−p z(θsω)ds

+ 2
∫ −t
−∞

e
R s
−t h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

+
∫ −t
−∞

e
R s
−t h(r,ω)dr‖g(s+ τ)‖2ds.

Therefore,

e
R−t
0 h(r,ω)drR(τ − t, θ−tω, α)

= c

∫ −t
−∞

e
R s
0 h(r,ω)dreα(p−2)z(θsω)ds+ c

∫ −t
−∞

e
R s
0 h(r,ω)dre−2αz(θsω)ds

+ c

∫ −t
−∞

e
R s
0 h(r,ω)dre

4α(p−1)
2−p z(θsω)ds

+ 2
∫ −t
−∞

e
R s
0 h(r,ω)dre−2αz(θsω)‖ψ1(s+ τ)‖L1(O)ds

+
∫ −t
−∞

e
R s
0 h(r,ω)dr‖g(s+ τ)‖2ds.

(4.18)

By the convergence of the integral∫ 0

−∞
e

R s
0 h(r,ω)dreα(p−2)z(θsω)ds <∞

we obtain

lim
t→∞

∫ −t
−∞

e
R s
0 h(r,ω)dreα(p−2)z(θsω)ds = 0. (4.19)

Similarly, we find that all remaining terms on the right-hand side of (4.18) converge
to zero as t→∞. Therefore, from (4.18)-(4.19), the desired limit (4.17) follows. �

The asymptotic compactness of solutions of equation (3.13) is stated as follows.
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Lemma 4.3. Suppose (3.4)-(3.7) and (3.64) hold. Then for every τ ∈ R, ω ∈ Ω
and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, the sequence v(τ, τ − tn, θ−τω, v0,n)
has a convergent subsequence in L2(O) provided tn → ∞ and eαz(θ−tnω)v0,n ∈
D(τ − tn, θ−tnω).

Proof. Thanks to tn → ∞ and eαz(θ−tnω)v0,n ∈ D(τ − tn, θ−tnω), it follows from
Lemma 4.1 that there exist c = c(τ, ω) > 0 and N = N(τ, ω,D) > 0 such that for
all n ≥ N ,

‖v(τ − 1, τ − tn, θ−τω, v0,n)‖ ≤ c(τ, ω). (4.20)
Note that

v(τ, τ − tn, θ−τω, v0,n) = v(τ, τ − 1, θ−τω, v(τ − 1, τ − tn, θ−τω, v0,n)). (4.21)

Then the precompactness of {v(τ, τ−tn, θ−τω, v0,n)} follows from (4.20)-(4.21) and
Lemma 3.3 immediately. �

5. Existence of Random Attractors

In this section, we prove the existence of D-pullback attractor for the stochastic
problem (3.1)-(3.3). We first construct a D-pullback absorbing set for the corre-
sponding cocycle based on the uniform estimates derived in the previous section.

Lemma 5.1. Suppose (3.4)-(3.7) and (3.64) hold. Then the continuous cocycle Φ
associated with problem (3.1)-(3.3) has a closed measurable D-pullback absorbing
set Kα = {Kα(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D which is given by

Kα(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ e2αz(ω)R(τ, ω, α)}, (5.1)

where R(τ, ω, α) is the number given by (4.16)

Proof. Replacing ω by θ−τω in (3.12) we obtain

u(τ, τ − t, θ−τω, uτ−t) = eαz(ω)v(τ, τ − t, θ−τω, vτ−t) with uτ−t = eαz(θ−tω)vτ−t.
(5.2)

Therefore, for every uτ−t ∈ D(τ − t, θ−tω), we have eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω).
This along with (4.15) shows that there is T = T (τ, ω,D) > 0 such that for all
t ≥ T , the solution v of problem (3.13)-(3.15) satisfies

‖v(τ, τ − t, θ−τω, vτ−t)‖2 ≤ R(τ, ω, α), (5.3)

where R(τ, ω, α) is given by (4.16). By (5.2) and (5.3) we obtain, for all t ≥ T ,

‖u(τ, τ − t, θ−τω, uτ−t)‖2 ≤ e2αz(ω)R(τ, ω, α). (5.4)

By (3.54) and (5.4) we find that, for all t ≥ T ,

Φ(t, τ−t, θ−tω,D(τ−t, θ−tω)) = u(τ, τ−t, θ−τω,D(τ−t, θ−tω)) ⊆ Kα(τ, ω), (5.5)

where Kα(τ, ω) is given by (5.1). Note that

e
R s
0 h(r,ω)dr−2αz(θsω)‖Kα(τ + s, θsω)‖2 = e

R s
0 h(r,ω)dr)R(τ + s, θsω, α). (5.6)

It follows from (4.17) and (5.6) that

lim
s→−∞

e
R s
0 h(r,ω)dr−2αz(θsω)‖Kα(τ + s, θsω)‖2 = 0,

and hence by (3.63) we have Kα = {Kα(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. By (4.16), it
is evident that R(τ, ω, α) is measurable in ω ∈ Ω and so is the set-valued function
Kα(τ, ω). This along with (5.5) concludes the proof. �



18 B. WANG, B. GUO EJDE-2013/191

Next, we prove the D-pullback asymptotic compactness of solutions of problem
(3.1)-(3.3).

Lemma 5.2. Suppose (3.4)-(3.7) and (3.64) hold. Then for every τ ∈ R, ω ∈ Ω
and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, the sequence Φ(tn, τ − tn, θ−tnω, u0,n) is
precompact in L2(O) provided tn →∞ and u0,n ∈ D(τ − tn, θ−tnω).

Proof. Let v0,n = e−αz(θ−tnω)u0,n for n ∈ N. Since u0,n ∈ D(τ − tn, θ−tnω),
we have eαz(θ−tnω)v0,n ∈ D(τ − tn, θ−tnω). By Lemma 4.3 we find that the se-
quence v(τ, τ − tn, θ−τω, v0,n) has a convergent subsequence in L2(O), and so is
the sequence u(τ, τ − tn, θ−τω, u0,n) by (5.2). Therefore, by (3.54), the sequence
Φ(tn, τ − tn, θ−tnω, u0,n) is precompact in L2(O) as desired. �

We are now in a position to present the existence of D-pullback attractors for
(3.1)-(3.3).

Theorem 5.3. Suppose (3.4)-(3.7) and (3.64) hold. Then the cocycle Φ for problem
(3.1)-(3.3) has a unique D-pullback attractor Aα = {Aα(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D
in L2(O). In addition, for each τ ∈ R and ω ∈ Ω,

Aα(τ, ω) = Ω(K, τ, ω) = ∪B∈DΩ(B, τ, ω)

= {ψ(0, τ, ω) : ψ is a D−complete orbit of Φ}
= {ξ(τ, ω) : ξ is a D−complete quasi-solution of Φ},

where K is a D-pullback absorbing set of Φ.

Proof. This result follows directly from Lemmas 5.1, 5.2 and Proposition 2.4. �

For the periodicity of the D-pullback attractor Aα, we have the following result.

Theorem 5.4. Let (3.4)–(3.7) hold. Suppose that f1(t, x, s) and f2(t, x, s) are T -
periodic in t ∈ R for each fixed x ∈ O and s ∈ R. If g ∈ L2

loc(R, L2(O)) and
ψ1 ∈ L1

loc(R, L1(O)) are also T -periodic, then problem (3.1)-(3.3) has a unique D-
pullback attractor Aα in L2(O) such that Aα(τ + T, ω) = Aα(τ, ω) for all τ ∈ R
and ω ∈ Ω.

Proof. Since g ∈ L2
loc(R, L2(O)) and ψ1 ∈ L1

loc(R, L1(O)) are both T -periodic, one
may check that condition (3.64) is fulfilled in this case. Therefore, by Theorem
5.3, problem (3.1)-(3.3) has a unique D-pullback attractor Aα in L2(O). By the
T -periodicity of f1, f2 and g, we find that the cocycle Φ is also T -periodic; more
precisely, for any u0 ∈ L2(O), t ∈ R+, τ ∈ R and ω ∈ Ω,

Φ(t, τ + T, ω, u0) = u(t+ τ + T, τ + T, θ−τ−Tω, u0)

= u(t+ τ, τ, θ−τω, u0)

= Φ(t, τ, ω, u0).

On the other hand, by the T -periodicity of g and ψ1, we obtain from (4.16) that
R(τ + T, ω, α) = R(τ, ω, α) for all τ ∈ R and ω ∈ Ω, and hence, by (5.1), the D-
pullback absorbing set Kα is T -periodic. Thus, the periodicity of Aα follows from
Proposition 2.4 immediately. �
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6. Upper semicontinuity of attractors

In this section, we establish the upper semicontinuity of random attractors of
problem (3.1)-(3.3) as α→ 0. Hereafter, we assume δ is a fixed number such that

0 < δ <
1
2
βp. (6.1)

Note that limα→0E(e±α(p−2)|z(ω)|) = 1 and limα→0E(α|z(ω)|) = 0. By (6.1) we
find that there exists α0 ∈ (0, 1) such that for all α ∈ [0, α0],

δ <
1
2
βpE(eα(p−2)z(ω)), δ <

1
2
βpE(e−α(p−2)|z(ω)|)− 2αE(|z(ω)|). (6.2)

Therefore, condition (3.60) is fulfilled for any α ∈ [0, α0]. Throughout this section,
we always assume α ∈ [0, α0] and write the the cocycle associated with (3.1)-(3.3) as
Φα. By (3.4)-(3.7) and (6.2), it follows from Theorem 5.3 that for every α ∈ (0, α0],
Φα has a unique D-pullback attractor Aα ∈ D in L2(O). Moreover, the family
Kα = {Kα(τ, ω) : τ ∈ R, ω ∈ Ω} given by (5.1) is a D-pullback absorbing set of
Φα. Given r ∈ R and ω ∈ Ω, denote by

h̃(r, ω) =
1
2
βpe−α0(p−2)|z(θrω)| − 2α0|z(θrω)|. (6.3)

As in (4.16), by (6.2) one can verify the following integrals are well defined:

L(τ, ω) = c

∫ 0

−∞
e

R s
0

eh(r,ω)dreα(p−2)|z(θsω)|ds

+ c

∫ 0

−∞
e

R s
0

eh(r,ω)dre2α|z(θsω)|ds

+ c

∫ 0

−∞
e

R s
0

eh(r,ω)dre
4α(p−1)
p−2 |z(θsω)|ds

+ 2
∫ 0

−∞
e

R s
0

eh(r,ω)dre2α|z(θsω)|‖ψ1(s+ τ)‖L1(O)ds

+
∫ 0

−∞
e

R s
0

eh(r,ω)dr‖g(s+ τ)‖2ds,

(6.4)

where c is the same constant as in (4.16). By (3.58) we find that h(r, ω) ≥ h̃(r, ω) for
all r ∈ R, ω ∈ Ω and α ∈ [0, α0]. Therefore, by (4.16) we have R(τ, ω, α) ≤ L(τ, ω)
for all α ∈ [0, α0], which along with (5.1) implies that for all τ ∈ R and ω ∈ Ω,

∪0<α≤α0 Aα(τ, ω) ⊆ ∪0<α≤α0Kα(τ, ω) ⊆ K(τ, ω), (6.5)

where K(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ e2α0|z(ω)|L(τ, ω)}.
We now consider (3.1) with α = 0. In this case we have
∂u

∂t
− div

(
|∇u|p−2∇u

)
= f1(t, x, u) + f2(t, x, u) + g(t, x), t > τ, x ∈ O, (6.6)

which is supplemented with

u|∂O = 0, u(τ, ·) = uτ . (6.7)

We will use Φ0 to denote the cocycle generated by (6.6)-(6.7) in L2(O). Let D0 be
the collection given by

D0 = {D = {D(τ) ⊆ L2(O) : τ ∈ R} : lim
s→−∞

e
1
2βps‖D(τ + s)‖2 = 0, ∀τ ∈ R}.
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It is evident that the results in the previous sections also hold true for α = 0.
Particularly, Φ0 has a unique D0-pullback attractor A0 = {A0(τ), τ ∈ R} ∈ D0

in L2(O) and has a D0-pullback absorbing set K0 = {K0(τ) : τ ∈ R} with K0(τ)
given by

K0(τ) = {u ∈ L2(O) : ‖u‖2 ≤ R0(τ)}, (6.8)

where R0(τ) is defined by

R0(τ) =
6c
βp

+
∫ 0

−∞
e

1
2βps(‖g(s+ τ)‖2 + 2‖ψ1(s+ τ)‖L1(O))ds, (6.9)

and c is as in (4.16). By (4.16), (5.1) and (6.8)-(6.9) we obtain for all τ ∈ R and
ω ∈ Ω,

lim sup
α→0

‖Kα(τ, ω)‖ ≤ ‖K0(τ)‖. (6.10)

Next, we establish the convergence of solutions of problem (3.1)-(3.3) as α→ 0,
for which the following condition is needed: there exists ψ6 ∈ L∞loc(R, L∞(O)) such
that for all t, s ∈ R and x ∈ O,

|∂f1
∂s

(t, x, s)| ≤ ψ6(t, x)
(
1 + |s|q−2

)
. (6.11)

Lemma 6.1. Let (3.4)-(3.7) and (6.11) hold. If uα and u are the solutions of
(3.1)-(3.3) and (6.6)-(6.7) with initial data uα,τ and uτ , respectively, then for every
τ ∈ R, ω ∈ Ω, T > 0 and ε ∈ [0, 1], there exists α1 = α1(τ, ω, T, ε) > 0 such that
for all α ≤ α1 and t ∈ [τ, τ + T ],

‖uα(t, τ, ω, uα,τ )− u(t, τ, uτ )‖2

≤ c1ec2(t−τ)‖uα,τ − uτ‖2

+ c1εe
c2(t−τ)

(
1 + ‖uτ‖2 + ‖uα,τ‖2 +

∫ t

τ

(‖ψ1(s)‖L1(O) + ‖g(s)‖2)ds
)
,

(6.12)

where c1 and c2 are positive constants independent of ε and α.

Proof. Let vα be the solution of (3.13)-(3.15) and ξ = vα − u. By (3.13) and (6.6)
we obtain

1
2
d

dt
‖ξ‖2 +

∫
O

(
eα(p−2)z(θtω)|∇vα|p−2∇vα − |∇u|p−2∇u

)
∇ξ dx

= αz(θtω)‖ξ‖2 + αz(θtω)(u, ξ)

+
∫
O

(
e−αz(θtω)f1

(
t, x, eαz(θtω)vα

)
− f1(t, x, u)

)
ξ dx

+
∫
O

(
e−αz(θtω)f2(t, x, eαz(θtω)vα)− f2(t, x, u)

)
ξ dx

+
(
e−αz(θtω) − 1

) ∫
O
g(t, x)ξ dx.

(6.13)
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For the second term on the left-hand side of (6.13) we have∫
O

(
eα(p−2)z(θtω)|∇vα|p−2∇vα − |∇u|p−2∇u

)
∇ξ dx

=
∫
O
eα(p−2)z(θtω)

(
|∇vα|p−2∇vα − |∇u|p−2∇u

)
∇ξ dx

+
∫
O

(
eα(p−2)z(θtω) − 1

)
|∇u|p−2∇u · ∇ξ dx.

(6.14)

From [16], we know that there is a positive number γ such that(
|∇vα|p−2∇vα − |∇u|p−2∇u

)
· (∇vα −∇u) ≥ γ|∇vα −∇u|p. (6.15)

On the other hand, since z(θtω) is continuous in t ∈ R, by Young’s inequality we find
that for every τ ∈ R, ω ∈ Ω, T > 0 and ε ∈ [0, 1), there exists α2 = α2(τ, ω, T, ε) > 0
such that for all α ∈ [0, α2] and t ∈ [τ, τ + T ],

|
∫
O

(
eα(p−2)z(θtω) − 1

)
|∇u|p−2∇u · ∇ξ dx|

≤ 1
2
γeα(p−2)z(θtω)

∫
O
|∇ξ|pdx+ ε

∫
O
|∇u|pdx.

(6.16)

It follows from (6.14)-(6.16) that for all α ∈ [0, α2] and t ∈ [τ, τ + T ],∫
O

(
eα(p−2)z(θtω)|∇vα|p−2∇vα − |∇u|p−2∇u

)
∇ξ dx

≥ 1
2
γeα(p−2)z(θtω)

∫
O
|∇ξ|pdx− ε

∫
O
|∇u|pdx.

(6.17)

For the nonlinearity f1 in (6.13), by (3.5)-(3.6) and (6.11), we have∫
O

(
e−αz(θtω)f1

(
t, x, eαz(θtω)vα

)
− f1(t, x, u)

)
ξ dx

=
∫
O
e−αz(θtω)

(
f1(t, x, eαz(θtω)vα)− f1(t, x, eαz(θtω)u)

)
ξ dx

+
∫
O

(
e−αz(θtω) − 1

)
f1(t, x, eαz(θtω)u)ξ dx

+
∫
O

(
f1(t, x, eαz(θtω)u)− f1(t, x, u)

)
ξ dx

=
∫
O
ξ2
∂f1
∂s

(t, x, s)dx+
(
e−αz(θtω) − 1

) ∫
O
f1(t, x, eαz(θtω)u)ξ dx

+
(
eαz(θtω) − 1

) ∫
O
ξu
∂f1
∂s

(t, x, s)dx

≤
∫
O
ξ2ψ4(t, x)dx+ c|e−αz(θtω) − 1|

∫
O

(
eα(q−1)z(θtω)|u|q−1|ξ|+ ψ3(t, x)|ξ|

)
dx

+ c|eαz(θtω) − 1|
∫
O
ψ6(t, x)

(
eα(q−2)z(θtω)|u|q−1|ξ|+ |u|q−1|ξ|+ |u||ξ|

)
dx,
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from which we find that there is α3 = α3(τ, ω, T, ε) ≤ α2 such that for all α ∈ [0, α3]
and t ∈ [τ, τ + T ],∫

O

(
e−αz(θtω)f1

(
t, x, eαz(θtω)vα

)
− f1(t, x, u)

)
ξ dx

≤ c‖ξ‖2 + cε+ cε

∫
O

(|u|q + |vα|q)dx.
(6.18)

Similarly, by (3.7), one can verify that there exists α4 = α4(τ, ω, T, ε) ≤ α3 such
that for all α ∈ [0, α4] and t ∈ [τ, τ + T ],∫

O

(
e−αz(θtω)f2

(
t, x, eαz(θtω)vα

)
− f2(t, x, u)

)
ξ dx

≤ c‖ξ‖2 + cε+ cε

∫
O
|u|qdx,

(6.19)

(
e−αz(θtω) − 1

) ∫
O
g(t, x)ξ dx ≤ ε‖ξ‖2 + ε‖g(t)‖2. (6.20)

By (6.13), (6.17) and (6.18)-(6.20) we obtain for all α ∈ [0, α4] and t ∈ [τ, τ + T ],

d

dt
‖ξ‖2 ≤ c1‖ξ‖2 + c2ε

(
1 + ‖∇u‖pp + ‖u‖qq + ‖vα‖qq + ‖g(t)‖2

)
. (6.21)

It follows from (6.21) that for all α ∈ [0, α4] and t ∈ [τ, τ + T ],

‖ξ(t)‖2 ≤ ec1(t−τ)‖ξ(τ)‖2 + c2εe
c1(t−τ)

×
∫ t

τ

(
1 + ‖vα(s, τ, ω, vα,τ )‖qq + ‖u‖qq + ‖∇u‖pp + ‖g(s)‖2

)
ds.

(6.22)

By (3.4) and (3.7) we obtain from (3.19) that, for all α ∈ [0, 1],

d

dt
‖vα(t)‖2 + 2eα(p−2)z(θtω)‖∇vα(t)‖pp + 2λeα(q−2)z(θtω)‖vα(t)‖qq
≤ c3‖vα‖2 + c4(‖ψ1(t)‖L1(O) + ‖g(t)‖2).

Solving this inequality, we obtain that for all α ∈ [0, 1] and t ∈ [τ, τ + T ],

‖vα(t, τ, ω, vα,τ )‖2 + 2
∫ t

τ

ec3(t−s)eα(p−2)z(θsω)‖∇vα(s)‖ppds

+ 2λ
∫ t

τ

ec3(t−s)eα(q−2)z(θsω)‖vα(s)‖qqds

≤ ec3(t−τ)‖vα,τ‖2 + c4

∫ t

τ

ec3(t−s)(‖ψ1(s)‖L1(O) + ‖g(s)‖2)ds.

(6.23)

By (6.23) we have, for all α ∈ [0, 1] and t ∈ [τ, τ + T ],

‖vα(t, τ, ω, vα,τ )‖2 +
∫ t

τ

(
‖∇vα(s, τ, ω, vα,τ )‖pp + ‖vα(s, τ, ω, vα,τ )‖qq

)
ds

≤ c5ec3(t−τ)‖vα,τ‖2 + c5e
c3(t−τ)

∫ t

τ

(‖ψ1(s)‖L1(O) + ‖g(s)‖2)ds.
(6.24)
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Note that (6.24) is also valid for α = 0, and hence we have, for all t ∈ [τ, τ + T ],∫ t

τ

(
‖∇u(s, τ, uτ )‖pp + ‖u(s, τ, uτ )‖qq

)
ds

≤ c5ec3(t−τ)‖uτ‖2 + c5e
c3(t−τ)

∫ t

τ

(‖ψ1(s)‖L1(O) + ‖g(s)‖2)ds.
(6.25)

By (6.22) and (6.24)-(6.25) we obtain for all α ∈ [0, α4] and t ∈ [τ, τ + T ],

‖vα(t, τ, ω, vα,τ )− u(t, τ, ω)‖2

≤ ec1(t−τ)‖vα,τ − uτ‖2

+ c6εe
c7(t−τ)

(
1 + ‖uτ‖2 + ‖vα,τ‖2 +

∫ t

τ

(‖ψ1(s)‖L1(O) + ‖g(s)‖2)ds
)
.

(6.26)

Note that

‖uα(t, τ, ω, uα,τ )− vα(t, τ, ω, vα,τ )‖ = |eαz(θtω) − 1|‖vα(t, τ, ω, vα,τ )‖. (6.27)

Then (6.24) and (6.26)-(6.27) conclude the proof. �

Lemma 6.2. Suppose (3.4)-(3.7), (3.64) and (6.11) hold. Let τ ∈ R and ω ∈ Ω be
fixed. If αn → 0 and un ∈ Aαn(τ, ω), then the sequence {un}∞n=1 has a convergent
subsequence in L2(O).

Proof. By un ∈ Aαn(τ, ω) and the invariance of Aαn we find that there exists
ũn ∈ Aαn(τ − 1, θ−1ω) such that

un = uαn(τ, τ − 1, θ−τω, ũn). (6.28)

Let vαn be the solution of (3.13) with α replaced by αn. Then we have

uαn(τ, τ − 1, θ−τω, ũn) = eαnz(ω)vαn(τ, τ − 1, θ−τω, ṽn) with ṽn = e−αnz(θ−1ω)ũn.
(6.29)

Since αn → 0, by (6.5), there exist c = c(τ, ω) > 0 and N = N(τ, ω) ≥ 1 such
that ‖ũn‖ ≤ c for all n ≥ N , which along with (6.29) shows that {ṽn}∞n=1 is
bounded in L2(O). Therefore, as in (3.53), one can prove that there exists v̄ ∈
L2((τ − 1, τ), L2(O)) such that, up to a subsequence,

vαn(s, τ − 1, θ−τω, ṽn)→ v̄(s) in L2(O) for almost all s ∈ (τ − 1, τ). (6.30)

By (3.12) and (6.30) we obtain

uαn(s, τ − 1, θ−τω, ũn)→ v̄(s) in L2(O) for almost all s ∈ (τ − 1, τ). (6.31)

Since αn → 0, by (6.31) and Lemma 6.1 we obtain, for almost all s ∈ (τ − 1, τ),

uαn (τ, s, θ−τω, uαn(s, τ − 1, θ−τω, ũn))→ u(τ, s, θ−τω, v̄(s)) in L2(O) (6.32)

where u is the solution of (6.6). By the cocycle property, we find that the left-hand
side of (6.32) is the same as uαn(τ, τ − 1, θ−τω, ũn). Thus, by (6.28) and (6.32) we
obtain, for almost all s ∈ (τ − 1, τ),

un = uαn(τ, τ − 1, θ−τω, ũn)→ u(τ, s, θ−τω, v̄(s)) in L2(O),

which completes the proof. �

We are now ready to present the upper semicontinuity of random attractors as
the intensity of noise approaches zero.
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Theorem 6.3. Suppose (3.4)-(3.7), (3.64) and (6.11) hold. Then for every τ ∈ R
and ω ∈ Ω,

lim
α→0

distL2(O)(Aα(τ, ω),A0(τ)) = 0. (6.33)

Proof. Given a sequence αn → 0 and u0,n → u0 in L2(O), it follows from Lemma
6.1 that, for every t ∈ R+, τ ∈ R and ω ∈ Ω,

Φαn(t, τ, ω, u0,n)→ Φ0(t, τ, u0) in L2(O). (6.34)

By (6.10), (6.34) and Lemma 6.2, we find that all conditions of Theorem 3.2 in [36]
are satisfied, and thus (6.33) follows immediately. �

Remark 6.4. In this paper, we discuss the random attractors of parabolic equation
of type (3.1) driven by linear multiplicative noise and non-autonomous deterministic
forcing g. It is interesting to consider the case when g is replaced by an additive
white noise. The attractors for such a system have been investigated recently in
[23]. Since the main objective of this paper is to deal with the nonlinearity f1 with
polynomial growth of any order, we do not consider the additive noise here for the
sake of simplicity, and leave this case for future investigation.
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