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HYERS-ULAM STABILITY OF LINEAR SECOND-ORDER
DIFFERENTIAL EQUATIONS IN COMPLEX BANACH SPACES

YONGJIN LI, JINGHAO HUANG

Abstract. We prove the Hyers-Ulam stability of linear second-order differen-
tial equations in complex Banach spaces. That is, if y is an approximate solu-

tion of the differential equation y′′ +αy′(t)+βy = 0 or y′′ +αy′(t)+βy = f(t),
then there exists an exact solution of the differential equation near to y.

1. Introduction and preliminaries

In 1940, Ulam [21] gave a wide-ranging talk about a series of important unsolved
problems. Among those was the question concerning the stability of group homo-
morphisms. Hyers [3] solved the problem for the case of approximately additive
mappings between Banach spaces. Since then, the stability problems of functional
equations have been extensively investigated by several mathematicians [4, 16, 17].

Assume that Y is a normed space and I is an open subset of R. Suppose that
ai : I → K and h : I → Y are continuous functions and K is either R of C, for any
function f : I → Y satisfying the differential inequality

‖an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x)‖ ≤ ε

for all x ∈ I and for some ε ≥ 0. We say that

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x) = 0

satisfies the Hyers-Ulam stability, if there exists a solution f0 : I → Y of the above
differential equation and ‖f(x) − f0(x)‖ ≤ K(ε) for any x ∈ I, where K(ε) is an
expression of ε only.

If the above statement is also true when we replace ε and K(ε) by ϕ(t) and Φ(ε),
where ϕ,Φ : I → [0,∞) are functions not depending on f and f0 explicitly, then
we say that the corresponding differential equation has the Hyers-Ulam-Rassias
stability (or generalized Hyers-Ulam stability).

Ob loza may be the first author to investigate the Hyers-Ulam stability of differ-
ential equations (see [14, 15]). Then, Alsina and Ger prove the Hyers-Ulam stability
of y′(t)− y(t) = 0 [1]. The above result of Alsina and Get has been generalized by
Miura, Takahasi and Choda [13], by Miura [10], and also by Takahasi, Miura and
Miyajima [19].
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While [12], Miura et al [5] also proved the Hyers-Ulam stability of linear differ-
ential equations of first order y′(t) + g(t)y(t) = 0 and ϕ(t)y′(t) = y(t).

Furthermore, the result of Hyers-Ulam stability for first-order linear differential
equations has been generalized in (see [6, 7, 12, 20, 22]).

In the meantime, Yongjin Li et al [9] do some work in linear differential equations
of second order in the form of y′′(t)+αy′(t)+βy(t) = 0 and y′′(t)+αy′(t)+βy(t) =
f(t) under the assumption that the characteristic equation λ2 + αλ + β = 0 has
two different positive roots. And the Hyers-Ulam stability for second-order linear
differential equations in the form of y′′(t) + β(x)y = 0 with boundary conditions
was investigated in [2].

The aim of this article is to study the Hyers-Ulam-Rassias stability of the fol-
lowing linear differential equations of second order in complex Banach spaces:

y′′(t) + αy′(t) + βy(t) = 0 (1.1)

and
y′′(t) + αy′(t) + βy(t) = f(t) (1.2)

2. Main Results

In the following theorems, we will prove the Hyers-Ulam-Rassias stability of
linear differential equations of second order.

Before stating the main theorem, we need the following lemma. For the sake of
convenience, all the integrals and derivations will be viewed as existing and <(ω)
denotes the real part of complex number ω.

Lemma 2.1. Let X be a complex Banach space and let I = (a, b) be an open
interval, where a, b ∈ R are arbitrarily given with −∞ < a < b < +∞. Assume
that g is an arbitrarily complex number, h : I → C is continuous and integrable
on I. Moreover, suppose ϕ : I → [0,∞) is an integrable function on I. If a
continuously differentiable function y : I → X satisfies the differential inequality

‖y′(t) + gy(t) + h(t)‖ ≤ ϕ(t) (2.1)

for all t ∈ I, then there exists a unique x ∈ X such that

‖y(t)− e−
R t

a
gdu(x−

∫ t

a

e
R v

a
gduh(v)dv)‖ ≤ e−<(

R t
a
gdu)

∫ b

t

ϕ(v)e<(
R v

a
gdu)dv

Proof. For simplicity, we use the notation

z(t) := e
R t

a
gduy(t) +

∫ t

a

e
R v

a
gduh(v)dv

for each t ∈ I. By making use of this notation and by (2.1), we obtain

‖z(t)− z(s)‖ = ‖e
R t

a
gduy(t)− e

R s
a
gduy(s) +

∫ t

s

e
R v

a
gduh(v)dv‖

= ‖
∫ t

s

d

dv
(e

R v
a
gduy(v))dv +

∫ t

s

e
R v

a
gduh(v)dv‖

= ‖
∫ t

s

e
R v

a
gdu(y′(v) + gy(v) + h(v))dv‖

≤ |
∫ t

s

e<(
R v

a
gdu)ϕ(v)dv|
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for any s, t ∈ I.
Since g is a constant number, we know that e<(

R v
a
gdu) is boundary and continu-

ous. What is more, ϕ(v) is integrable and hence e<(
R v

a
gdu)ϕ(v) is integrable. Since

X is completed, there exists an x ∈ X such that z(s) converges to x as s→ b.
Thus, it follows from the above argument that for any t ∈ I,

‖y(t)− e−
R t

a
gdu(x−

∫ t

a

e
R v

a
gduh(v)dv)‖

= ‖e−
R t

a
gdu(z(t)− x)‖

≤ e−<(
R t

a
gdu)‖z(t)− z(s)‖+ e−<(

R t
a
gdu)‖z(s)− x‖

≤ e−<(
R t

a
gdu)|

∫ t

s

ϕ(v)e<(
R v

a
gdu)dv|+ e−<(

R t
a
gdu)‖z(s)− x‖

→ e−<(
R t

a
gdu)

∫ b

t

ϕ(v)e<(
R v

a
gdu)dv

as s→ b, since z(s)→ x as s→ b. Obviously, y0(t) = e−
R t

a
gdu(x−

∫ t
a
e

R v
a
gduh(v)dv)

is a solution of y′(t) + gy(t) + h(t) = 0.
It now remains to prove the uniqueness of x. Assume that x1 ∈ X also satisfies

(2.1) in place of x. Then, we have

‖e−
R t

a
gdu(x− x1)‖ ≤ 2e−<(

R t
a
gdu)

∫ b

t

ϕ(v)e<(
R v

a
gdu)dv

for any t ∈ I. It follows from the integrability hypotheses that

‖x− x1‖ ≤ 2
∫ b

t

e<(
R v

a
gdu)ϕ(v)dv → 0

as t→ b. This implies the uniqueness of x. �

Corollary 2.2. Let X be a complex Banach space and let I = (a, b) be an open
interval, where a, b ∈ R are arbitrarily given with −∞ < a < b < +∞. Assume that
g is an arbitrarily complex number, h : I → C is continuous and integrable on I.
Moreover, suppose ϕ : I → [0,∞) is an integrable function on I. If a continuously
differentiable function y : I → X satisfies the differential inequality

‖y′(t) + gy(t) + h(t)‖ ≤ ϕ(t) (2.2)

for all t ∈ I, then there exists a unique x ∈ X such that

‖y(t)− e−
R t

b
gdu(x−

∫ t

b

e
R v

b
gduh(v)dv)‖ ≤ e−<(

R t
b
gdu)

∫ t

a

ϕ(v)e<(
R v

b
gdu)dv

Proof. Let J = (−b,−a) and define h1(t) = h(−t), y1(t) = y(−t) and ϕ1(t) =
ϕ(−t), respectively. Using these definitions, we may transform the inequality (2.2)
into

‖y′1(t)− gy1(t)− h1(t)‖ ≤ ϕ1(t)
for each t ∈ J .

Hence, we can now use Lemma 2.1 to conclude that there exists a unique x ∈ X
such that

‖y1(t)− e
R t
−b
gdu(x+

∫ t

−b
e−

R v
−b
gduh1(v)dv)‖
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≤ e<(
R t
−b
gdu)

∫ −a
t

ϕ1(v)e−<(
R v
−b
gdu)dv

for any t ∈ J . Indeed, we can transform the above inequality into

‖y(t)− e−
R t

b
gdu(x−

∫ t

b

e
R v

b
gduh(v)dv)‖ ≤ e−<(

R t
b
gdu)

∫ t

a

ϕ(v)e<(
R v

b
gdu)dv

by some tedious substitutions. �

In the following theorems, we investigate the Hyers-Ulam-Rassias of (1.1) and
(1.2).

Theorem 2.3. Let ϕ : I → [0,∞) be an integrable function on I. Assume that α, β
are complex numbers. If a twice continuously differentiable function y(t) satisfies
the inequality

‖y′′(t) + αy′(t) + βy(t)‖ ≤ ϕ(t) (2.3)
Then (1.1) has the Hyers-Ulam-Rassias stability.

Proof. Let λ1 and λ2 be the roots of the characteristic equation λ2 + αλ+ β = 0.
Define g(t) = y′(t)− λ1y(t), thus

|g′(t)− λ2g(t)| = |y′′(t)− λ1y
′(t)− λ2(y′(t)− λ1y(t))|

= |y′′(t)− αy′(t) + βy(t)|

Hence, we have |g′(t)− λ2g(t)| ≤ ϕ(t). By using Lemma 2.1, there exists a unique
x1 ∈ X such that

‖g(t)− x1e
tλ2−aλ2‖ ≤ e<(tλ2−aλ2)

∫ b

t

e−<(
R v

a
λ2du)ϕ(v)dv

where x1 = limt→b g(t)e−λ2t+λ2a and x1e
tλ2−aλ2 satisfies g′(t)− λ2g(t) = 0.

Since g(t) = y′(t)− λ1y(t), we have

‖y′(t)− λ1y(t)− x1e
tλ2−aλ2‖ ≤ e<(tλ2−aλ2)

∫ b

t

e−<(
R v

a
λ2du)ϕ(v)dv

For simplicity, we define ψ(t) = e<(tλ2−aλ2)
∫ b
t
e−<(

R v
a
λ2du)ϕ(v)dv, thus

‖y′(t)− λ1y(t)− x1e
tλ2−aλ2‖ ≤ ψ(t)

By using Lemma 2.1 again, there exists a unique x2 ∈ X such that

‖y(t)− e
R t

a
λ1du(x2 +

∫ t

a

e−
R v

a
λ1dux1e

vλ2−aλ2dv)‖

≤ e<(
R t

a
λ1du)

∫ b

t

ψ(v)e<(
R v

a
−λ1du)dv

where x2 = limt→b(e−
R t

a
λ1duy(t)−

∫ t
a
e−

R v
a
λ1du ·x1 · e

R v
a
λ2dudv). Furthermore, it is

easy to prove that e
R t

a
λ1du(x2+

∫ t
a
e−

R v
a
λ1dux1e

vλ2−aλ2dv) is a solution of (1.1). �

Theorem 2.4. Let ϕ : I → [0,∞) is an integrable function on I. Assume that α, β
are complex numbers, and f : I → X is continuous and integrable on I. If a twice
continuously differentiable function y(t) satisfies the inequality

‖y′′(t) + αy′(t) + βy(t)− f(t)‖ ≤ ϕ(t) (2.4)

Then (1.2) has the Hyers-Ulam-Rassias stability.



EJDE-2013/184 HYERS-ULAM STABILITY 5

Proof. Let λ1 and λ2 be the roots of the characteristic equation λ2 + αλ+ β = 0.
Define g(t) = y′(t)− λ1y(t), thus

|g′(t)− λ2g(t)| = |y′′(t)− λ1y
′(t)− λ2(y′(t)− λ1y(t))| = |y′′(t)− αy′(t) + βy(t)|.

Hence, we have |g′(t)− λ2g(t)− f(t)| ≤ ϕ(t). By using Lemma 2.1, there exists a
unique x1 ∈ X such that

‖g(t)− etλ2−aλ2(x1 +
∫ t

a

e−
R v

a
λ2duf(v)dv)‖ ≤ e<(tλ2−aλ2)

∫ b

t

e−<(
R v

a
λ2du)ϕ(v)dv

where x1 = limt→b(g(t)e−λ2t+λ2a −
∫ t
a
e−

R v
a
λ2duf(v)dv).

For simplicity, we define

φ(t) = etλ2−aλ2(x1 +
∫ t

a

e−
R v

a
λ2duf(v)dv),

ψ(t) = e<(tλ2−aλ2)

∫ b

t

e−<(
R v

a
λ2du)ϕ(v)dv

thus,
‖y′(t)− λ1y(t)− φ(t)‖ ≤ ψ(t)

By using Lemma 2.1 again, there exists a unique x2 ∈ X such that

‖y(t)− e
R t

a
λ1du(x2 +

∫ t

a

e−
R v

a
λ1du · φ(v)dv)‖ ≤ e<(

R t
a
λ1du)

∫ b

t

ψ(v)e<(
R v

a
−λ1du)dv

where

x2 = lim
t→b

(e−
R t

a
λ1duy(t)−

∫ t

a

e−
R v

a
λ1duφ(v)dv).

Furthermore, it is easy to show that e
R t

a
λ1du(x2 +

∫ t
a
e−

R v
a
λ1du ·φ(v)dv) is a solution

of (1.2). �

If α and β are real numbers, the approximating function will be a real function
even if the roots of the characteristic equation are complex numbers.

Corollary 2.5. Let ϕ : I → [0,∞) be an integrable function on I. Assume that
α, β are real numbers, y(t) satisfies the inequality

‖y′′(t) + αy′(t) + βy(t)‖ ≤ ϕ(t)

where y : I → X is a twice continuously differentiable function, X is a real Banach
space. Then (1.1) has the Hyers-Ulam-Rassias stability. Moreover, the approximat-
ing function is a real function.

Proof. What we have to do is just to verify that if the approximate function is real.
It is easy to know that when the roots are real, the corollary holds. Therefore, we
suppose that the roots of the characteristic equation are complex numbers. Let
r1 = p1 + ip2 and r2 = p1 − ip2 be the roots of the characteristic equation, and
limt→b y(t) = d1, limt→b y

′(t) = d2, so limt→b g(t) = d2 − r1 ∗ d1 (p1, p2, d1, d2 are
real numbers).

By some tedious calculations, we can know that the approximating function is
1
p2

[d1p2 cos(p2(b− t))+(−d2 +d1p1) sin(p2(b− t))](cosh(p1(b− t))−sinh(p1(b− t))).

which is a real function. This completes the proof of our corollary. �
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Corollary 2.6. Let ϕ : I → [0,∞) be an integrable function on I. Assume that
α, β are real numbers, y(t) satisfies the inequality

‖y′′(t) + αy′(t) + βy(t)− f(t)‖ ≤ ϕ(t)

where y : I → X is a twice continuously differentiable function and f : I → X is
continuous and integrable on I, X is a real Banach space. Then Eq(1.2) has the
Hyers-Ulam-Rassais stability. Furthermore, the approximating function is a real
function.

Remark 2.7. By using the corollary 2.2, we can get similar results with Theorem
2.3, Theorem 2.4, Corollary 2.5 and Corollary 2.6.

Example 2.8. Given y ∈ C2(1, 2), limt→2 y(t) = 2, limt→2 y
′(t) = 1, and y satisfies

the inequality |y′′(t)− 3y′(t) + 2y(t)| < t. By using Theorem 2.3, we have

|y(t)− (3et−2 − e2t−4)| ≤ 3
4
− 3et−2 +

5
4
e2t−4 +

1
2
t;

moreover, y0(t) = 3et−2 − e2t−4 satisfies limt→2 y0(t) = 2, limt→2 y
′
0(t) = 1 and

y′′0 − 3y′0 + 2y0 = 0.
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