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ENERGY QUANTIZATION FOR APPROXIMATE H-SURFACES
AND APPLICATIONS

SHENZHOU ZHENG

Abstract. We consider weakly convergent sequences of approximate H-surface
maps defined in the plane with their tension fields bounded in Lp for p > 4/3,

and establish an energy quantization that accounts for the loss of their energies

by the sum of energies over finitely many nontrivial bubbles maps on R2. As
a direct consequence, we establish the energy identity at finite singular time

to their H-surface flows.

1. Introduction

The main aim of this study is to discuss the energy quantization of weakly
convergent sequences for the weak solutions of approximate H-surface maps. Similar
to approximate harmonic or biharmonic maps with the controlled tension or bi-
tension fields [9, 17, 15, 21, 22], we consider energy quantization of approximate
H-surface maps not only its own interest but also an important application to H-
surface flows. In fact, As a direct consequence we will show energy identity to so
called H-surface flows.

Let Ω ⊂ R2 be a bounded smooth domain, and H : R3 → R be a given bounded
measurable function; i.e., H(·) ∈ L∞(R3). First we recall the notion of approximate
H-surface maps.

Definition 1.1. A map u ∈ W 1,2(Ω,R3) is called an approximate H-surfaces, if
there exists a tension field τ ∈ Lploc(Ω,R3), p ≥ 1 such that

τ(u) = ∆u− 2H(u)ux ∧ uy, in Ω. (1.1)

In particular, if τ ≡ 0, then the map u satisfies

∆u = 2H(u)ux ∧ uy, in Ω (1.2)

which is called a H-surface.

It is well-known that if u is a conformal representation of a surface S = u(Ω);
i. e.,

‖ux‖2 − ‖uy‖2 = ux · uy = 0,
then H(u) is the mean curvature of the surface S at the point u.
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Notice that H-surface is a critical point of the following energy functional in
W 1,2(Ω,R3).

JH(u) :=
∫

Ω

(
|∇u|2 +

4
3
Q(u)ux ∧ uy

)
(1.3)

with

Q(u) =
(∫ u1

0

H(s, u2, u3)ds,
∫ u2

0

H(u1, s, u3)ds,
∫ u3

0

H(u1, u2, s)ds
)
.

From the view of geometrical significance, the system (1.2) can be regarded to
be the minimization problem of the standard energy E(u,Ω) :=

∫
Ω
|∇v|2 with a

constraint of the prescribed volume V (v) := 1
3

∫
Ω
v · vx ∧ vy = Constant; that is,

min
v∈W 1,2(Ω,R3)

{∫
Ω

|∇v|2 : v = φ on ∂Ω, V (v) = C
}
, (1.4)

for any given φ ∈W 1,2(Ω), and here H is so-called Lagrangian multiplier.
Wente [20] and Hildebrandt [11] made fundamental contributions on the exis-

tence of solutions to the planar Plateau problem or surfaces with constant mean
curvature, respectively (see also Helein’s monograph [10]). Later, Brezis-Coron
[3] and Struwe [19] showed existence of multiple solutions of H-surface maps in a
bounded domain of R2 for given boundary data. As we knew, for variable H there
were many significant works by Rey [18], Bethuel-Rey [4], Caldiroli-Musina [7] and
Chen-Levine [6]. Meanwhile, the regularity and bubbling phenomena analysis to
so-called H-surface flows in W 1,2(Ω,R3) has been shown in various cases such as
H is a constant, H depends only on two variables, or H(u) is uniformly Lipschizt
continuous (see Brezis-Coron[2] and Hong-Hsu [12]). In addition, for the high di-
mensional case (n > 2), Mou-Yang [16] introduced H-systems in a bounded domain
of Rn and established the existence of multiple solutions of H-system for a constant
H and given boundary data. Furthermore, Duzaar-Grotowski [8] studied the exis-
tence of solutions of the H-system with a variable function H from a domain into
a higher dimensional compact Riemannian manifold. All in all, it is an important
observation that H-surface maps are invariant under the dilation transformations
in R2. Such a property leads to non-compactness of sequences of H-surfaces in R2,
which prompts studies by Brezis-Coron [3] concerning the failure of strong conver-
gence for weakly convergent H-surfaces. Roughly speaking, the results in [3] assert
that the failure of strong convergence occurs at finitely many concentration points
of its energy, where finitely many bubbles (i. e. any nontrivial solutions in R2) are
generated, and the total energies from these bubbles account for the total loss of
its energies during the process of convergence.

Based on the above observation, our main purpose is to extend the results from
[3, 18, 12] to the context of suitable approximate H-surface maps due to its more
flexible applications. More precisely, we have

Theorem 1.2. Let Ω ⊂ R2 be a bounded smooth domain. Suppose that {uk}∞k=1 ⊂
W 1,2(Ω,R3) ∩ L∞(Ω,R3) is a sequence of approximate H-surface satisfying

∆uk = 2H(uk)ukx ∧ uky + fk (1.5)

with H(·) ∈ L∞(R3) and fk(x) ∈ Lp(Ω) with p > 4/3. Let

sup
k∈N

(
‖∇uk‖L2(Ω) + ‖H(uk)‖L∞(R3) + ‖fk‖Lp(Ω)

)
≤M < +∞. (1.6)
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Then there exist finite points {x1, x2, . . . , xL} and an approximate H-surface u ∈
W 1,2(Ω,R3) so that

∆u = 2H(u)ux ∧ uy + f, in Ω, (1.7)
where uk ⇀ u in W 1,2 and fk ⇀ f in Lp. Moreover, we have:

(1) uk → u strongly in W 1,2
loc ∩ C0

loc(Ω \ {x1, x2, . . . , xL},R3).
(2) There exist Li ∈ N and bubbles {ωij}Lij=1, which are nontrivial H-surface

systems from R2 to S2, such that

lim
k→∞

∫
Bri (xi)

|∇uk|2dx =
∫
Bri (xi)

|∇u|2dx+
Li∑
j=1

∫
R2
|∇ωij |2 (1.8)

where
ri =

1
2

min
1≤j≤L,j 6=i

{|xi − xj |, d(xi, ∂Ω)}.

Similar to initially Lin-Wang’s argument to deal with harmonic maps [15], our
main idea is to show no concentration of energy in the neck. More precisely, that
is done while establishing there is no concentration of angular energy in the neck
region; then controlling the radial energy in the neck region by angular energy and
Lp-norm of its tension field with p > 4/3 through so called Pohozaev argument [15]
[21]. During using control the radial energy by the angular hessian energy and Lp-
norm of its tension fields by Pohozaev argument in the neck region, the assumption
p > 4/3 seems to be necessary to validate the Pohozaev argument, since we need
∆uk · (x · ∇uk) ∈ L1 and fk · (x · ∇uk) ∈ L1.

A typical application of Theorem 1.2 is to study asymptotic behavior at finite
time for H-surface flows in the plane. We can directly obtain identity energy at
finite time to H-surface flows with initial data u0 as follows.

ut = ∆u− 2H(u)ux ∧ uy, (x, t) ∈ Ω× (0,+∞)

u|t=0 = u0, x ∈ Ω

u|∂Ω = u0|∂Ω, t > 0, x ∈ ∂Ω
(1.9)

where u0 ∈ W 1,2(Ω) and H ∈ L∞(R3). In particular, note that any t-independent
solution u : Ω→ R3 of (1.9) is a H-surface system.

We are inspired by Hong-Hsu’s energy inequality in [12, Theorem 3.7]: for ar-
bitrary u0 ∈ C2(Ω,R3) satisfying ‖u0‖L∞‖H‖L∞ < 1, there exists a time T0 > 0
such that

‖ut‖L2(Ω×(0,T0)) ≤ JH [u0], (1.10)
where JH is represented by (1.3). Then we also consider that, for a finite singular
time T0 < +∞, energy identity accounting for the δ mass by finite many bubbles.
This observation can be proved by applying the rescaled maps to conformal in-
variance of H-surface flows. Then, from the energy inequality (1.10) there exists a
sequence tk ↑ T0 such that uk := u(·, tk) ∈W 1,2(Ω,R3) satisfies

(i) τ2(uk) := ‖ut(tk)‖L2 → 0; and
(ii) uk satisfies in the distribution sense

∆uk = 2H(uk)ukx ∧ uky + τ2(uk). (1.11)

Therefore, from Theorem 1.2 we derive that an energy identity of the weak limit
of H-surface flows are connected together without any neck region. In particular,
the image of un converges pointwise to the image of the limit bubble tree maps,
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which is similar to harmonic map flows ( [9] [17] [15]). More precisely, we have the
following theorem.

Theorem 1.3. For some T0 < +∞, let u ∈ C2+α,1+α
loc (Ω× (0, T0)) be a solution to

(1.9) with ‖u0‖L∞(Ω)‖H‖L∞(Ω) < 1, where T0 is a singular time. Then there exist
a finite many bubbles ωi, i = 1, . . . , L such that

lim
t→T0

E(u(·, t),Ω) = E(u(·, T0),Ω) +
L∑
j=1

E(ωi,S2), (1.12)

where E(·,S2) is the energy of finite many bubbles on the unit sphere S2.

The article is organized as follows. In §2, we establish a locally Höler continuity
of weak solutions and the higher integrability of their first and second order deriva-
tives, strong convergence and blow-up analysis to any approximate H-surface maps
with the smallness energy condition and its tension field in Lp for some p > 1. In
§3, we prove main Theorem 1.2 by establishing that there is no concentration of
angular energy in the neck region; and then controlling the radial energy in the
neck region by angular energy and Lp-norm of its tension field with p > 4/3 by the
Pohozaev argument. In §4, As a consequence of the main Theorem, we set up the
energy identity at finite singular time T0 < +∞ to sequences of H-surface flows.

2. A priori estimates of approximate H-surfaces

This section is mainly devoted to a locally Hölder continuity of weak solutions
and the higher integrality of the first and second-order derivatives under the small-
ness energy. To this end, we need to use Riesz potential estimates in the Morrey
spaces due to Adams [1]. For an open set U ⊂ Rn, 1 ≤ p < +∞, 0 < λ ≤ n, the
Morrey space Mp,λ(U) is defined by

Mp,λ(U) =
{
f ∈ Lp(U) : ‖f‖p

Mp,λ = sup
Br⊂U

rλ−n
∫
Br

|f |p < +∞
}
. (2.1)

Note that the weak Lp space is denote by Lp,∗(Ω): for any t > 0, which satisfies

‖f‖pLp,∗(Ω) := sup
t>0

tp|{x ∈ Ω||f(x)| > t}| <∞.

Therefore, the weak Morrey space Mp,λ
∗ (Ω) is defined to be the set of functions

f ∈ Lp∗(Ω) satisfying

‖f‖p
Mp,λ
∗ (Ω)

:= sup
x∈Ω,0<ρ≤d

{ρλ−n‖f‖p
Lp∗(Ω∩Bρ(x))

} <∞ (2.2)

with 0 ≤ λ ≤ n and d = diam(Ω). Let Iβ(f) be the Riesz potential of order β
(0 < β ≤ n) defined by

Iβ(f)(x) :=
∫

Rn

f(y)
|x− y|n−β

dy, x ∈ Rn. (2.3)

Then we have the following Riesz potential estimates between Morrey spaces due
to Adams [1].

Lemma 2.1. (1) For any β > 0, 0 < λ ≤ n, 1 < p < λ
β , if f ∈Mp,λ(Rn), then

Iβ(f) ∈M p̃,λ(Rn), where p̃ = λp
λ−pβ . Moreover,

‖Iβ(f)‖M p̃,λ(Rn) ≤ C‖f‖Mp,λ(Rn). (2.4)
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(2) For 0 < β < λ ≤ n, if f ∈M1,λ(Rn), then Iβ(f) ∈M
λ

λ−β ,λ
∗ (Rn). Moreover,

‖Iβ(f)‖
M

λ
λ−β ,λ
∗ (Rn)

≤ C‖f‖M1,λ(Rn). (2.5)

In terms of conformal invariance of the H-surface maps, we can do it in the unit
disc B1 in order to obtain so called ε0-strong convergence for uniformly bounded
sequences. First, we establish the higher integrability of the first and second-order
derivatives to approximate H-surface maps (1.5).

Lemma 2.2. Suppose uk ∈ W 1,2(B1,R3) is a sequence of approximate H-surface
maps; i.e.,

∆uk = 2H(uk)ukx ∧ uky + fk, x ∈ B1, (2.6)

where H ∈ L∞(R3) and fk ∈ Lp(B1, R
3) with any 1 < p < 2. If, for some

sufficiently small constant ε0, such that∫
B1

|∇uk|2dx ≤ ε2
0. (2.7)

Then:
(1) we have u ∈ Cα(B1/2,R3) for α ∈ (0, 1− 1

p ) and

[uk]Cα(B1/2) ≤ C
(
ε0 + ‖fk‖Lp(B1)

)
. (2.8)

(2) For any p′ ∈ (2, 2p
2−p ), we have u ∈W 1,p′(B1/2) and

‖∇uk‖Lp′ (B1/2) ≤ C
(
ε0 + ‖fk‖Lp(B1)

)
. (2.9)

(3) Furthermore, uk ∈W 2,p(B1/2) and

‖∇2uk‖Lp(B1/2) ≤ C
(
ε2

0 + ‖fk‖Lp(B1)

)
. (2.10)

Proof. (1) Observe that

∆Gk1 = 2H(uk)ukx ∧ uky , in B1

Gk1 = 0, on ∂B1.
(2.11)

and
∆Gk2 = fk, in B1

Gk2 = 0, on ∂B1.
(2.12)

Set hk = uk −Gk1 −Gk2 , we obtain

∆hk = 0, in B1

hk = uk, on ∂B1.
(2.13)

To estimate Gk1 , noting that ukx ∧ uky ∈ H1(B1) (Hardy spaces), by [10, Theorem
3.2.9], for 0 < θ < 1, we have

‖∇Gk1‖L2(Bθ) ≤ C‖2H(uk)ukx ∧ uky‖H1(B1). (2.14)

Due to the boundedness of H(uk) and Wente’s inequality (see [10, Theorem 3.1.2]),

‖∇Gk1‖L2(Bθ) ≤ C‖∇uk‖2L2(B1) ≤ Cε0‖∇uk‖L2(B1). (2.15)

For Gk2 , by Lp-theory of Laplace operator ∆ we get

‖∇2Gk2‖Lp(Bθ) ≤ C‖fk‖Lp(B1),



6 S. ZHENG EJDE-2013/177

it follows, from the Sobolev’s theorem, that

‖∇Gk2‖L2(Bθ) ≤ C‖∇2Gk2‖L1(Bθ)

≤ Cθ2(1− 1
p )‖∇2Gk2‖Lp(Bθ) ≤ Cθ2(1− 1

p )‖fk‖Lp(B1).
(2.16)

Moreover, in accordance with the standard estimates of harmonic functions, one
obtains

‖∇hk‖L2(Bθ) ≤ C‖∇uk‖L2(B1) ≤ Cε0. (2.17)

Now, we put all estimates (2.15),(2.16) and (2.17) together. It yields

‖∇uk‖L2(Bθ) ≤ Cε0‖∇uk‖L2(B1) + C(ε0 + θ2(1− 1
p ))‖fk‖Lp(B1). (2.18)

By iterating [13, Lemma 3.4], we obtain uk ∈ Cα(Bϑ) with 0 < α < 1− 1
p , 0 < ϑ < 1,

and ∫
Bϑ

|∇uk|2dx ≤ Cϑ2α. (2.19)

(2) To get a higher integrability, we assume that ũk and f̃k defined in R2 are ex-
tensions of uk and fk from B1 respectively, such that ‖∇ũk‖L2(R2) ≤ C‖∇ũk‖L2(B1)

and ‖f̃k‖Lp(R2) ≤ C‖f̃k‖Lp(B1). Let Γ(x) be the fundamental solution of Laplacian
operator ∆ in R2, then

ũk(x) =
∫

R2
Γ(x− y)∆ũk(y)dy.

Therefore, for x ∈ B1/2, we have

∇uk(x) =
∫

R2
∇G(x− y)

(
2H(ũk)ũkx ∧ ũky + f̃k

)
(y)dy

≤ C
(∣∣∣ ∫

R2
∇G(x− y)|∇ũk|2dy

∣∣∣+
∣∣∣ ∫

R2
∇G(x− y)|f̃k|dy

∣∣∣)
= I1(|∇ũk|2) + I1(|f̃k|).

(2.20)

Note that |∇ũ|2 ∈M1,2−2α(R2) and f̃k ∈ Lp(R2), by Lemma 2.4 it implies ∇uk ∈
Lp0,∗(B1/2) with 2 < p0 = min{ 2−α

1−α ,
2p

2−p} for any 1 < p < 2; and

‖∇uk‖Lp0,∗(B1/2) ≤ ‖I1(|∇ũk|2)‖Lp0,∗(B1/2) + ‖I1(|f̃k|)‖Lp0,∗(B1/2)

≤ C(‖∇ũk‖L2(R2) + ‖f̃k‖Lp(R2))

≤ C(‖∇uk‖L2(B1) + ‖fk‖Lp(B1))

(2.21)

Thanks to Lp0,∗(B1) ⊂ Lp′(B1) with 2 < p′ < p0, we obtain that ∇uk ∈ Lp′(B1/2),
and

‖∇uk‖Lp′ (B1/2) ≤ C(‖∇uk‖L2(B1) + ‖fk‖Lp(B1)). (2.22)

According to the assumption of smallness energy, it clearly yields (2.9).
(3) On the basis of Calderon-Zygmund’s Lp-theory and (2.6), we have

‖∇2uk‖Lp(B1/2) ≤ C‖∆uk‖Lp(B 3
4

)

≤ C
(
‖|∇uk|2‖Lp(B 3

4
) + ‖fk‖Lp(B 3

4
)

)
≤ C

(
‖∇uk‖L2(B 3

4
)‖∇uk‖Lp′ (B 3

4
) + ‖fk‖Lp(B1)

)
,

(2.23)
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with 2 < p′ < p0. Thanks to the smallness assumption (2.7) and the higher
integrability of derivative (2.9), we obtain uk ∈W 2,p(B1/2) and

‖∇2uk‖Lp(B1/2) ≤ C
(
ε0‖∇uk‖Lp′ (B 3

4
) + ‖fk‖Lp(B1)

)
≤ C

(
ε2

0 + ‖fk‖Lp(B1)

)
.

(2.24)

This completes the proof. �

It is well known that the energy concentration leads to both the failure of strong
convergence and the formation of singularity for sequences of approximate H-surface
maps. With the help of the higher integrability of the first and second derivatives for
weak solutions, we further consider the blow-up analysis and ε0-strong convergence
to a sequence of approximate H-surface maps (1.5).

Proof of Theorem 1.2 (1). Since uk ⇀ u weakly in W 1,2(Ω, R2), we have
that µk = |∇uk|2dx is a family of nonnegative Radon measures such that N =
supk µk(Ω) < ∞. Therefore, after taking possible subsequences, we may assume
that there is a nonnegative Radon measure µ such that µk → µ as convergence of
Radon measures. Moreover, by Fatou’s Lemma, we have that there is a nonnegative
Radon measure ν, called as the defect measure, such that µ = |∇u|2dx+ν. Denote
by Σ the support of ν. Then we have

Σ = ∩r>0

{
x ∈ Ω : lim inf

k

∫
Br(x)

|∇uk|2dy ≥ ε2
0

}
. (2.25)

Let Σ1 = {x1, x2, . . . , } be any discrete points of Σ, and {Bδ0(xi)}∞i=1 be mutually
disjoint balls for small δ0. Then we have

lim inf
k

∫
Br(xi)

|∇uk|2dy ≥ ε2
0, ∀ 1 ≤ i ≤ ∞.

Therefore, there exists a natural number K such that for k ≥ K we have∫
Br(xi)

|∇uk|2dy ≥ ε2
0, ∀ 1 ≤ i ≤ ∞.

Let H0 denote the 0-dimensional Hausdorff measure, then

ε2
0H0(Σ) ≤

∞∑
i=0

∫
Br(xi)

|∇uk|2dy

= H0(Σ)
∫
∪∞i=0Br(xi)

|∇uk|2dy

≤
∫

Ω

|∇uk|2dy ≤ N <∞;

(2.26)

this implies H0(Σ) ≤ L := N
ε20

. By a compact embedding: W 1,p′(B1,R3) ↪→
W 1,2(B1,R3)(p′ > 2) due to Lemma 2.2, therefore, for any compact subset K ⊂
Ω\Σ it follows from a simple covering argument that ν(K) = 0 and uk → u strongly
in W 1,2(K,R3). Moreover, for any x0 ∈ K there is a r0 > 0 such that

lim
k

∫
Br0 (x0)

|∇uk|2 ≤ ε2
0.
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By the standard diagonal process we can extract a subsequence of uk, still denoted
as itself, such that uk → u in W 1,2(Ω\{x1, . . . , xL},R3)∩C0(Ω\{x1, . . . , xL}),R3).
Hence, it is easy to see that the expression (1.8) holds with “=” replaced by “≥”.

To prove “≤” of (1.8), we need to show that the L2-norm of ∇uk over any neck
region is arbitrarily small. This will mainly be done in the next sections. Therefore,
we will return to the proof of Theorem 1.2 (2) in the next section.

3. No concentration of energy in the neck region

In this section, we show that there is no concentration of ‖∇uk‖L2 in the neck
region. This will be done in two steps: the first step is to show that there is no
angular energy concentration in the neck region by comparing with radial harmonic
functions over dyadic annulus. The second step is to control the radial component
of energy by the angular component of energy by way of the Pohozaev argument.

Proof of Theorem 1.2 (2). Without loss of generality, we suppose that {uk} ⊂
W 1,2(B1,R3) is a sequence of approximate H-surface maps with

sup
k∈N

(
‖∇uk‖L2(B1) + ‖H(uk)‖L∞(R3) + ‖fk‖Lp(B1)

)
≤M, (3.1)

which satisfy uk ⇀ u in W 1,2(B1), fk ⇀ f in Lp(B1), and uk → u in W 1,2
loc (B1\{0})

but not in W 1,2(B1). In according of Ding and Tian [9], we may assume that the
total number of bubbles generated at 0 is L = 1. Then, for any ε > 0, there is
rk ↓ 0, R > 1 large enough and 0 < δ < ε such that for k sufficiently large there
holds ∫

B2ρ\Bρ
|∇uk|2 ≤ ε2, ∀1

2
Rrk ≤ ρ ≤ 2δ.

Let us consider it in two steps.
Step 1. Angular energy estimate in the neck region: From (1.6) and Lemma

2.2, it follows that for any α ∈ (0, 1 − 1
p ) and p′ ∈ (2, 2p

2−p ) with 1 < p < 2,
uk ∈ Cα ∩W 1,p′(B2ρ \Bρ) and

[uk]Cα(B2ρ\Bρ) + ‖∇uk‖Lp′ (B2ρ\Bρ) ≤ Cε, ∀1
2
Rrk ≤ ρ ≤ 2δ.

In the sequel, to deal with the boundary terms we need the following property by
Fubini’s theorem:

r

∫
∂Br

|∇uk|2 ≤ 8 sup
k

∫
B2r\Br

|∇uk|2 ≤ Cε2,

which holds for r = Rrk, δ. For convenience’s sake, we assume the above inequality
holds for all k ≥ 1.

For simplicity, we may assume δ
Rrk

is a positive integer. We make a dyadic
decomposition to the annulus 1

2Rrk ≤ |x| ≤ 2δ. Let Nk ∈ N be such that 2Nk =
[ δ
Rrk

], and set

Aik := B2i+1Rrk \B2iRrk , Bik := B2i+2Rrk \B2i−1Rrk , 1 ≤ i ≤ Nk − 1. (3.2)

Then, Bδ \ BRrk = ∪Nk−1
i=0 Aik and B2δ \ B 1

2Rrk
= ∪Nk−1

i=0 Bik. We now introduce a
radial harmonic function vk on the annulus B2δ\BRrk as follows. For 0 ≤ i ≤ Nk−1,
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vk(x) = vk(|x|) satisfies

∆vk = 0 in Aik,

vk(r) = −
∫
∂B2i+1Rrk

uk, if r = 2i+1Rrk,

vk(r) = −
∫
∂B2iRrk

uk, if r = 2iRrk;

(3.3)

where −
∫

denotes the average integral. By the standard estimate of harmonic func-
tions, we have vk ∈ Cα(Aik) ∩W 1,p′(Aik) for all 0 ≤ i ≤ Nk − 1; and[

vk
]
Cα(Aik)

≤ C
[
uk
]
Cα(Aik)

≤ Cε;

in particular,

oscAik(uk − vk) ≤ Cε, ∀0 ≤ i ≤ Nk − 1. (3.4)

Now we perform the estimate similar to Ding-Tian’s argument by [9] or Lin-Wang
[15] on harmonic maps. Applying the Green’s identity due to uk − vk ∈ W 2,p(Aik)
we get that for 0 ≤ i ≤ Nk − 1,∫
Aik

∆(uk−vk)(uk−vk) = −
∫
Aik
|∇(uk−vk)|2 +

∫
∂Aik

∂(uk − vk)
∂ν

(uk−vk). (3.5)

By summing over 0 ≤ i ≤ Nk − 1, we derive that∫
Bδ\BRrk

|∇(uk − vk)|2

= −
Nk−1∑
i=0

∫
Aik

∆(uk − vk)(uk − vk) +
(∫

∂Bδ

−
∫
∂BRrk

)∂(uk − vk)
∂ν

(uk − vk)

= −
Nk−1∑
i=0

∫
Aik

∆uk(uk − vk) +
(∫

∂Bδ

−
∫
∂BRrk

)∂uk
∂ν

(uk − vk),

(3.6)
where we used that ∆vk = 0 in Aik and

∫
∂Bρ

∂vk

∂ν (uk − vk) = 0 for ρ = δ and Rrk,
which is due to the radial form of vk and the boundary conditions: vk = −

∫
∂Bρ

uk.
Let us first check the estimates of the integral on the boundary in the right hand

side of (3.6). It follows from Hölder inequality and Fubini’s Theorem that

∣∣∣ ∫
∂Bδ

∂uk

∂ν
(uk − vk)

∣∣∣ ≤ ∫
∂Bδ

|∇uk||uk − vk|

≤ C max
∂Bδ
|uk − vk|

(
δ

∫
∂Bδ

|∇uk|2
)1/2

≤ Cε
(∫

B2δ\B 1
2 δ

|∇uk|2
)1/2

≤ Cε2.

(3.7)
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Similarly, ∣∣∣ ∫
∂BRrk

∂uk

∂ν
(uk − vk)

∣∣∣ ≤ max
∂BRrk

|uk − vk|
∫
∂BRrk

|∇uk|

≤ Cε
(
Rrk

∫
∂BRrk

|∇uk|2
)1/2

≤ Cε
(∫

B2Rrk\B 1
2Rrk

|∇uk|2
)1/2

≤ Cε2.

(3.8)

Next, we estimate the first term in the right hand side of (3.6). It yields∫
Aik

∆uk(uk − vk) =
∫
Aik

(H(uk)ukx ∧ uky + fk)(uk − vk)

≤ C sup
0≤i≤Nk−1

oscAik(uk − vk)
∫
Aik

(|uk|2 + |fk|)

≤ Cε
∫
Aik

(|uk|2 + |fk|)

(3.9)

Putting theses estimates of (3.7) (3.8) (3.9) into the inequality (3.6), then we con-
clude that∫

Bδ\BRrk
|∇(uk − vk)|2 ≤ Cε

∫
Bδ\BRrk

(|uk|2 + |fk|) + Cε2 ≤ Cε. (3.10)

Since vk is radial form and |∇uk|2 = |∂u
k

∂r |
2 + 1

r2 |
∂uk

∂θ |
2, it follows that for rRK ≤

R ≤ δ, ∫
Bδ\BRrk

1
r2

∣∣∣∂uk
∂θ

∣∣∣2 =
∫
Bδ\BRrk

1
r2

∣∣∣∂(uk − vk)
∂θ

∣∣∣2
≤
∫
Bδ\BRrk

|∇(uk − vk)|2 ≤ Cε,
(3.11)

where ∂uk

∂θ and ∂uk

∂r denote the tangential component and the radial component of
∇uk, respectively.

Step 2. Radial component of energy in the neck region: Now we are in a position
to employ the Pohozaev argument to control

∫
Bδ\BRrk

|∂u
k

∂r |
2 by

∫
Bδ\BRrk

1
r2 |

∂uk

∂θ |
2

and ‖fk‖Lp(Bδ). Observe that x · ∇uk ∈ Lp′(Bδ),∆uk ∈ Lp(Bδ) and fk ∈ Lp(Bδ)
with 2 < p′ < 2p

2−p for 1 < p < 2, we have that fk · (x · ∇uk) ∈ L1(Bδ) and
∆uk · (x ·∇uk) ∈ L1(Bδ) only if p > 4

3 . That is due to 2p
2−p >

p
p−1 at this point. On

the other hand, thanks to Equ.(1.5) it implies that (∆uk − fk) = H(uk)ukx ∧ uky ⊥
Tuk(x)S, a. e. x ∈ Bδ with S = uk(Bδ). Therefore, by multiplying (1.5) by x · ∇uk
and integrating it over Br, for 0 < r < δ, yields∫

Br

∆uk · (x · ∇uk) =
∫
Br

fk · (x · ∇uk).
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In terms of Green’s identity, we have∫
Br

∆uk · (x · ∇uk) = −
∫
Br

∇uk · ∇(x · ∇uk) +
∫
∂Br

(x · ∇uk)(∇uk · x
|x|

)

=
1
2

∫
Br

x · ∇(|∇uk|2)−
∫
Br

|∇uk|2 + r

∫
∂Br

∣∣∣∂uk
∂r

∣∣∣2
= −1

2
r

∫
∂Br

|∇uk|2 + r

∫
∂Br

∣∣∣∂uk
∂r

∣∣∣2.
(3.12)

Therefore,

r

∫
∂Br

∣∣∣∂uk
∂r

∣∣∣2 − 1
2
r

∫
∂Br

|∇uk|2 =
∫
Br

fk · (x · ∇uk).

It follows from |∇uk|2 = |∂u
k

∂r |
2 + 1

r2 |
∂uk

∂θ |
2 that∫

∂Br

∣∣∣∂uk
∂r

∣∣∣2 ≤ ∫
∂Br

r−2
∣∣∣∂uk
∂θ

∣∣∣2 + 2
∫
Br

∣∣∣fk∣∣∣∣∣∣∇uk∣∣∣. (3.13)

Integrating it over the interval [Rrk, δ], it follows from Hölder inequality and the
tangential estimate of (3.11) that for 0 < δ < ε there hold∫

Bδ\BRrk

∣∣∣∂uk
∂r

∣∣∣2 ≤ ∫
Bδ\BRrk

1
r2

∣∣∣∂uk
∂θ

∣∣∣2 + 2δ
∥∥∥fk∥∥∥

Lp(Bδ)

∥∥∥∇uk∥∥∥
Lp′ (Bδ)

≤ C(ε+ δ) ≤ Cε.
(3.14)

Putting (3.11) and (3.14) together, it yields∫
Bδ\BRrk

∣∣∣∇uk|2 =
∫
Bδ\BRrk

∣∣∣∂uk
∂r

∣∣∣2 +
∫
Bδ\BRrk

1
r2

∣∣∣∂uk
∂θ

∣∣∣2 ≤ Cε. (3.15)

This implies that there is no neck formation between any two bubbles. Hence the
proof of Theorem 1.2 is complete.

4. Application to H-surface flows

As an application of Theorem 1.2, we will establish the energy identity at a finite
time singular point for the sequences of H-surface flows.

4.1. Proof of Theorem 1.3. Without loss of generality, suppose that Ω = B1

and (x0, T0) is the only singular point at t = T0. Let uk(x, t) = u(λkx; tk + λ2
kt),

then uk(x, t) still satisfies the same equation as (1.9), and by (1.10) we have∫ 2

−2

∫
B
λ
−1
k

∣∣∣∂uk
∂t

∣∣∣2 =
∫ tk+2λ2

k

tk−2λ2
k

∫
B1

∣∣∣∂u
∂t

∣∣∣2 → 0, as k →∞. (4.1)

By Fubini’s theorem, there exists ηk ∈ (−1,−1/2) such that∫
B
λ
−1
k

∣∣∣∂uk(·, ηk)
∂t

∣∣∣2 → 0,
∫
B
λ
−1
k
×(−2,2)

∣∣∣∂uk
∂t

∣∣∣2 → 0. (4.2)

Here, just similar to [12], then we have the following energy inequality: for any
0 < s ≤ τ < T and B2R(x) ⊂ Ω, x ∈ Ω, there holds

E(u(τ), BR(x)) ≤ 5E(u(s), B2R(x)) + C
τ − s
R2

JH(u0). (4.3)
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With the help of the energy inequality (4.3), it is known from [15, Lemma 4.1] that
there exists unique positive m such that, in the sense of Radon measure, we have

|∇u|2(x, t)dx→ mδx0 + |∇u|2(x, T0)dx, as t→ T0, (4.4)

at the only singular point at t = T0, where δx0 denotes Dirac δ-mass at x0. Also
from (4.3) it follows that∫

BR

∣∣∣∇uk(·, ηk)
∣∣∣2 ≥ ∫

B1

∣∣∣∇uk(·, T0)
∣∣∣2 − CR−2J0,

let R→∞, by (4.4) which implies

lim
R→∞

∫
BR

∣∣∣∇uk(·, ηk)
∣∣∣2 = m. (4.5)

Therefore, for each R > 0, we know from (4.5) that uk(·, ηk) ⇀ v weakly in
W 1,2(BR,R3). We claim that v is a constant map. Indeed, let |tk| ≤ 2λ2

k we
observe that∫

BR

∣∣∣uk(·, ηk)− uk(·,−tkλ−2
k )
∣∣∣2 ≤ 4

∫ 2

−2

∫
B
λ
−1
k

∣∣∣∂uk
∂t

∣∣∣2 → 0,

and ∫
BR

∣∣∣∇uk(·,−tkλ−2
k )
∣∣∣2 =

∫
BλkR

∣∣∣∇u∣∣∣2(·, T0)→ 0.

For each R > 0, now we apply Theorem 1.2 of approximate H-surfaces to uk(·, ηk)
on the ball BR to conclude that there exist finite number bubbles {ωi,R}LRi=1 such
that

lim
k→∞

∫
BR

∣∣∣∇uk∣∣∣2(·, ηk) =
LR∑
i=1

E(ωi,R,S2). (4.6)

Further, we know that 1 ≤ LR ≤
[
m
ε0

]
because there is a ε0 such that any bubble

ω : S2 → R3 satisfying E(ω,S2) ≥ ε0. Hence, there exists a d ∈
[
1, mε0

]
such that,

after possible a subsequence, LR = d and

m = lim
R↑∞

lim
k→∞

∫
BR

∣∣∣∇uk∣∣∣2(·, ηk) = lim
R↑∞

d∑
i=1

E(ωi,R,S2). (4.7)

Note that {ωi,R}di=1 have uniformly boundedness of energies, from Brezis-Coron [3]

one concludes that there exist Ni ∈
[
1, mε0

]
and Ni bubbles {ωi,j}Nij=1 such that

lim
R↑∞

E(ωi,R,S2) =
Ni∑
j=1

E(ωi,j ,S2). (4.8)

Now, putting all (4.6),(4.7) and (4.8) together, it follows that

m =
d∑
i=1

Ni∑
j=1

E(ωi,j ,S2).

The proof of Theorem 1.3 is complete.
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