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ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR
DIFFERENTIAL EQUATIONS WITH IMPULSES

XUEZHU LI, JINRONG WANG

Abstract. In this article, we present Ulam-Hyers-Rassias and Ulam-Hyers

stability results for semilinear differential equations with impulses on a com-
pact interval. An example is also provided to illustrate our results.

1. Introduction

Many researchers paid attention to the stability properties of all kinds of equa-
tions since Ulam [23] raised the famous stability problem of functional equations
(Ulam problem) in 1940. Such problems have been taken up by Hyers [8], Rassias
[17] and other mathematicians. Recently, the study of this area has the grown
to be one of the most important subjects in the mathematical analysis area. For
the advanced contribution on Ulam problem, we refer the reader to András and
Kolumbán [1], András and Mészáros [2], Burger et al [4], Cădariu [5], Cimpean and
Popa [6], Hyers [9], Hegyi and Jung [7], Jung [10, 11], Lungu and Popa [12], Miura
et al [13, 14], Ob loza [15, 16], Rassias [18, 19], Rus [20, 21], Takahasi et al [22] and
Wang et al [24].

However, Ulam-Hyers-Rassias stability of semilinear differential equations with
impulses have not been studied. Motivated by recent works [21, 24], we investigate
Ulam-Hyers-Rassias stability of the following semilinear differential equations with
impulses

x′(t) = λx(t) + f(t, x(t)), t ∈ J ′ := J \ {t1, . . . , tm}, J := [0, T ],

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,
(1.1)

where 0 < T < +∞, λ > 0, f : J × R → R is continuous, Ik : R → R and tk
satisfy 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆x(tk) := x(t+k ) − x(t−k ), x(t+k ) =
limε→0+ x(tk + ε) and x(t−k ) = limε→0− x(tk + ε) represent the right and left limits
of x(t) at t = tk.

We will adopt the concepts in Wang et al [24] and introduce four types of Ulam
stabilities (see Definitions 3.1–3.4): Ulam-Hyers stability, generalized Ulam-Hyers
stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stabil-
ity for the equation (1.1). Next, we present the Ulam-Hyers-Rassias stability results
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for the equation (1.1) on a compact interval by virtue of an integral inequality of
Gronwall type for piecewise continuous functions (see Lemma 2.2).

2. Preliminaries

In this section, we introduce some notation, and preliminary facts. Throughout
this paper, let C(J,R) be the Banach space of all continuous functions from J into
R with the norm ‖x‖C := sup{|x(t)| : t ∈ J} for x ∈ C(J,R). We also introduce the
Banach space PC(J,R) := {x : J → R : x ∈ C((tk, tk+1],R), k = 0, . . . ,m and there
exist x(t−k ) and x(t+k ), k = 1, . . . ,m, with x(t−k ) = x(tk)} with the norm ‖x‖PC :=
sup{|x(t)| : t ∈ J}. Denote PC1(J,R) := {x ∈ PC(J,R) : x′ ∈ PC(J,R)}. Set
‖x‖PC1 := max{‖x‖PC , ‖x′‖PC}. It can be seen that endowed with the norm
‖ · ‖PC1 , PC1(J,R) is also a Banach space.

Definition 2.1. By a PC1-solution of the impulsive Cauchy problem

x′(t) = λx(t) + f(t, x(t)), t ∈ J ′,
∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = x0, x0 ∈ R,
(2.1)

we mean the function x ∈ PC1(J,R) that satisfies

x(t) = eλtx0 +
∫ t

0

eλ(t−s)f(s, x(s))ds+
∑

0<tk<t

eλ(t−tk)Ik(x(t−k )), t ∈ J.

Bainov and Hristova [3] studied the following integral inequality of Gronwall
type for piecewise continuous functions which can be used in the sequel.

Lemma 2.2. Let for t ≥ t0 ≥ 0 the following inequality hold

x(t) ≤ a(t) +
∫ t

t0

g(t, s)x(s)ds+
∑

t0<tk<t

βk(t)x(tk), (2.2)

where βk(t)(k ∈ N) are nondecreasing functions for t ≥ t0, a ∈ PC([t0,∞),R+), a
is nondecreasing and g(t, s) is a continuous nonnegative function for t, s ≥ t0 and
nondecreasing with respect to t for any fixed s ≥ t0. Then, for t ≥ t0, the following
inequality is valid:

x(t) ≤ a(t)
∏

t0<tk<t

(1 + βk(t)) exp
(∫ t

t0

g(t, s)ds
)
.

3. Basic concepts and remarks

Here, we adopt the concepts in Wang et al [24] and introduce Ulam’s type sta-
bility concepts for the equation (1.1).

Let ε > 0, ψ ≥ 0 and ϕ ∈ PC(J,R+) is nondecreasing. We consider the set of
inequalities

|y′(t)− λy(t)− f(t, y(t))| ≤ ε, t ∈ J ′,
|∆y(tk)− Ik(y(t−k ))| ≤ ε, k = 1, 2, . . . ,m;

(3.1)

the set of inequalities

|y′(t)− λy(t)− f(t, y(t))| ≤ ϕ(t), t ∈ J ′,
|∆y(tk)− Ik(y(t−k ))| ≤ ψ, k = 1, 2, . . . ,m;

(3.2)
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and the set of inequalities

|y′(t)− λy(t)− f(t, y(t))| ≤ εϕ(t), t ∈ J ′,
|∆y(tk)− Ik(y(t−k ))| ≤ εψ, k = 1, 2, . . . ,m.

(3.3)

Definition 3.1. Equation (1.1) is Ulam-Hyers stable if there exists a real number
cf,m > 0 such that for each ε > 0 and for each solution y ∈ PC1(J,R) of the
inequality (3.1) there exists a solution x ∈ PC1(J,R) of the equation (1.1) with

|y(t)− x(t)| ≤ cf,mε, t ∈ J.

Definition 3.2. Equation (1.1) is generalized Ulam-Hyers stable if there exists
θf,m ∈ C(R+,R+), θf,m(0) = 0 such that for each solution y ∈ PC1(J,R) of the
inequality (3.1) there exists a solution x ∈ PC1(J,R) of the equation (1.1) with

|y(t)− x(t)| ≤ θf,m(ε), t ∈ J.

Definition 3.3. Equation (1.1) is Ulam-Hyers-Rassias stable with respect to (ϕ,ψ)
if there exists cf,m,ϕ > 0 such that for each ε > 0 and for each solution y ∈
PC1(J,R) of the inequality (3.3) there exists a solution x ∈ PC1(J,R) of the
equation (1.1) with

|y(t)− x(t)| ≤ cf,m,ϕε(ϕ(t) + ψ), t ∈ J.

Definition 3.4. The equation (1.1) is generalized Ulam-Hyers-Rassias stable with
respect to (ϕ,ψ) if there exists cf,m,ϕ > 0 such that for each solution y ∈ PC1(J,R)
of the inequality (3.2) there exists a solution x ∈ PC1(J,R) of the equation (1.1)
with

|y(t)− x(t)| ≤ cf,m,ϕ(ϕ(t) + ψ), t ∈ J.

Remark 3.5. It is clear that: (i) Definition 3.1 implies Definition 3.2; (ii) Definition
3.3 implies Definition 3.4; (iii) Definition 3.3 for ϕ(t) = ψ = 1 implies Definition
3.1.

Remark 3.6. A function y ∈ PC1(J,R) is a solution of the inequality (3.1) if and
only if there is g ∈ PC(J,R) and a sequence gk, k = 1, 2, . . . ,m (which depend on
y) such that

(i) |g(t)| ≤ εϕ(t), t ∈ J and |gk| ≤ εψ, k = 1, 2, . . . ,m;
(ii) y′(t) = f(t, y(t)) + g(t), t ∈ J ′;

(iii) ∆y(tk) = Ik(y(t−k )) + gk, k = 1, 2, . . . ,m.

One can have similar remarks for inequalities (3.2) and (3.1).

Remark 3.7. If y ∈ PC1(J,R) is a solution of the inequality (3.3) then y is a
solution of the integral inequality∣∣∣y(t)− eλty(0)−

k∑
i=1

eλ(t−ti)Ii(y(t−i ))−
∫ t

0

eλ(t−s)f(s, y(s))ds
∣∣∣

≤ eλtmεψ + ε

∫ t

0

eλ(t−s)ϕ(s)ds, t ∈ J.

(3.4)

In fact, by Remark 3.6 we have

y′(t) = f(t, y(t)) + g(t), t ∈ J ′,
∆y(tk) = Ik(y(t−k )) + gk, k = 1, 2, . . . ,m.

(3.5)
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Clearly, the solution of (3.5) is given by

y(t) = eλty(0) +
k∑
i=1

eλ(t−ti)Ii(y(t−i )) +
k∑
i=1

eλ(t−ti)gi

+
∫ t

0

eλ(t−s)f(s, y(s))ds+
∫ t

0

eλ(t−s)g(s)ds, t ∈ (tk, tk+1].

From this it follows that∣∣∣y(t)− eλty(0)−
k∑
i=1

eλ(t−ti)Ii(y(t−i ))−
∫ t

0

eλ(t−s)f(s, y(s))ds
∣∣∣

≤
m∑
i=1

eλ(t−ti)|gi|+
∫ t

0

eλ(t−s)|g(s)|ds

≤ eλtmεψ + ε

∫ t

0

eλ(t−s)ϕ(s)ds.

Clearly, one can give similar remarks for the solutions of the inequalities (3.2) and
(3.1).

4. Ulam-Hyers-Rassias stability results

We use the following assumptions:
(H1) f ∈ C(J × R,R).
(H2) There exists Lf (·) ∈ C(J,R+) such that

|f(t, u1)− f(t, u2)| ≤ Lf (t)|u1 − u2|, for each t ∈ J and all u1, u2 ∈ R.

(H3) There exists ρk > 0 such that |Ik(u1) − Ik(u2)| ≤ ρk|u1 − u2| for each
u1, u2 ∈ R and k = 1, 2, . . . ,m.

(H4) Let ϕ ∈ C(J,R+) be a nondecreasing function. There exists cϕ > 0 such
that ∫ t

0

ϕ(s)ds ≤ cϕϕ(t), for each t ∈ J.

Now, we are ready to state the following Ulam-Hyers-Rassias stable result.

Theorem 4.1. Assume that (H1)–(H4) are satisfied. Then (1.1) is Ulam-Hyers-
Rassias stable with respect to (ϕ,ψ).

Proof. Let y ∈ PC1(J,R) be a solution of the inequality (3.3). Denote by x the
unique solution of the impulsive Cauchy problem

x′(t) = λx(t) + f(t, x(t)), t ∈ J ′,
∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = y(0).

(4.1)

Then we have

x(t) =


eλty(0) +

∫ t
0
eλ(t−s)f(s, x(s))ds, for t ∈ [0, t1],

eλty(0) + eλ(t−t1)I1(x(t−1 )) +
∫ t
0
eλ(t−s)f(s, x(s))ds, for t ∈ (t1, t2],

. . .

eλty(0) +
∑m
k=1 e

λ(t−tk)Ik(x(t−k )) +
∫ t
0
eλ(t−s)f(s, x(s))ds, for t ∈ (tm, T ].
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By (3.4), for each t ∈ (tk, tk+1], we have∣∣∣y(t)− eλty(0)−
k∑
i=1

eλ(t−ti)Ii(y(t−i ))−
∫ t

0

eλ(t−s)f(s, y(s))ds
∣∣∣

≤ eλtmεψ + ε

∫ t

0

eλ(t−s)ϕ(s)ds

≤ εeλT (m+ cϕ)[ψ + ϕ(t)].

Hence for each t ∈ (tk, tk+1], it follows that

|y(t)− x(t)|

≤
∣∣∣y(t)− eλty(0)−

k∑
i=1

eλ(t−ti)Ii(y(t−i ))−
∫ t

0

eλ(t−s)f(s, y(s))ds
∣∣∣

+
k∑
i=1

eλ(t−ti)|Ii(y(t−i ))− Ii(x(t−i ))|+
∫ t

0

eλ(t−s)|f(s, y(s))− f(s, x(s))|ds

≤ εeλT (m+ cϕ)[ψ + ϕ(t)] +
∫ t

0

eλ(t−s)Lf (s)|y(s)− x(s)|ds

+ eλT
k∑
i=1

ρi|y(t−i )− x(t−i )|.

By Lemma 2.2, we obtain

|y(t)− x(t)| ≤ εeλT (m+ cϕ)[ψ + ϕ(t)]
( ∏

0<tk<t

(1 + ρke
λt)e

R t
0 e

λ(t−s)Lf (s)ds
)

≤ cf,m,ϕε(ϕ(t) + ψ), t ∈ J,
where

cf,m,ϕ := eλT (m+ cϕ)
m∏
k=1

(1 + ρke
λT )ee

λT
R T
0 Lf (s)ds > 0.

Thus, (1.1) is Ulam-Hyers-Rassias stable with respect to (ϕ,ψ). The proof is com-
plete. �

Next, we replace (H3) by
(H3*) There exist nondecreasing functions ρk ∈ C(R+,R+), with ρk(0) = 0 such

that
|Ik(u1)− Ik(u2)| ≤ ρk(|u1 − u2|),

for each u1, u2 ∈ R and k = 1, 2, . . . ,m.
Next, we present the following Ulam-Hyers stable result.

Theorem 4.2. Assume that (H1), (H2) and (H3*) are satisfied. Then (1.1) is
generalized Ulam-Hyers stable.

Proof. From the proof in Theorem 4.1, we are led to the inequality

|v(t)| ≤ εeλT (m+ T ) + eλT
∫ t

0

Lf (s)|v(s)|ds

+ eλT
k∑
i=1

ρi(|v(t−i )|), t ∈ (tk, tk+1],
(4.2)
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where v(t) := y(t)− x(t).
Let Mk := supt∈[tk,tk+1]

{|v(t)|} for k = 0, . . . ,m. Then the inequality (4.2)
implies

|v(t)| ≤ (m+ T )eλT ε+ eλT
∫ t

0

Lf (s) |v(s)| ds+ eλT
k∑
i=1

ρi(Mi−1)

for t ∈ (tk, tk+1]. Using the standard Gronwall inequality we obtain

Mk ≤ eλT
(

(m+ T )ε+
k∑
i=1

ρi(Mi−1)
)
ee
λT

R T
0 Lf (s)ds. (4.3)

Setting

θ0(ε) = (m+ T )εee
λT

R T
0 Lf (s)ds,

θk(ε) =
(

(m+ T )ε+
k∑
i=1

ρi(eλT θi−1(ε))
)
ee
λT

R T
0 Lf (s)ds, k = 1, . . . ,m.

Obviously, the inequality (4.3) implies

Mk ≤ eλT θk(ε), k = 0, . . . ,m.

Let θf,m(ε) = max{eλT θk(ε) : k = 0, . . . ,m}. Hence

|v(t)| ≤ θf,m(ε).

Clearly θf,m ∈ C(R+,R+) and θf,m(0) = 0. Thus, the equation (1.1) is generalized
Ulam-Hyers stable. The proof is complete. �

5. Example

Let λ = 1, ϕ(t) = t, ψ = 1. We consider the linear impulsive ordinary differential
equation

x′(t) = x(t), t ∈ [0, 2] \ {1},

∆x(1) =
|x(1−)|

1 + |x(1−)|
,

(5.1)

and the inequalities

|y′(t)− y(t)| ≤ εt, t ∈ ([0, 2] \ {1},∣∣∆y(1)− |y(1−)|
1 + |y(1−)|

∣∣ ≤ ε, ε > 0.
(5.2)

Let y ∈ PC1([0, 2],R) be a solution of inequality (5.2). Then there exist g ∈
PC1([0, 2],R) and g1 ∈ R such that:

|g(t)| ≤ εt, t ∈ [0, 2], |g1| ≤ ε, (5.3)

y′(t) = y(t) + g(t), t ∈ [0, 2] \ {1}, (5.4)

∆y(1) =
|y(1−)|

1 + |y(1−)|
+ g1. (5.5)

Integrating (5.4) from 0 to t via (5.5), we have

y(t) = ety(0) + χ(1,2](t)et−1
( |y(1−)|

1 + |y(1−)|
+ g1

)
+
∫ t

0

et−sg(s)ds,

for the characteristic function χ(1,2](t) on (1, 2].
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Let us consider the solution x of (5.1) given by

x(t) = ety(0) + χ(1,2](t)et−1 |x(1−)|
1 + |x(1−)|

.

We have

|y(t)− x(t)| =
∣∣∣χ(1,2](t)et−1

( |y(1−)|
1 + |y(1−)|

− |x(1−)|
1 + |x(1−)|

+ g1

)
+
∫ t

0

et−sg(s)ds
∣∣∣

≤ et|y(1−)− x(1−)|+ et|g1|+ et
∫ t

0

|g(s)|ds

≤ et|y(1−)− x(1−)|+ etε+ εet
∫ t

0

sds

≤ et|y(1−)− x(1−)|+ etε+ εet
1
2
t2

≤ et|y(1−)− x(1−)|+ etε(1 + t), t ∈ [0, 2],

which gives
|y(t)− x(t)| ≤ e2(1 + e2)ε(t+ 1), t ∈ [0, 2].

Thus, (5.1) is Ulam-Hyers-Rassias stable with respect to (t, 1).
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[2] Sz. András, A. R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via

Picard operators, Appl. Math. Comput., 219(2013), 4853-4864.
[3] D. D. Bainov, S. G. Hristova; Integral inequalities of Gronwall type for piecewise continuous

functions, J. Appl. Math. Stoc. Anal., 10(1997), 89-94.

[4] M. Burger, N. Ozawa, A. Thom; On Ulam stability, Isr. J. Math., (2012), doi: 10.1007/s11856-
012-0050-z.
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