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GLOBAL PROPERTIES AND MULTIPLE SOLUTIONS FOR
BOUNDARY-VALUE PROBLEMS OF IMPULSIVE

DIFFERENTIAL EQUATIONS

JING WANG, BAOQIANG YAN

Abstract. This article presents global properties and existence of multi-

ple solutions for a class of boundary value problems of impulsive differential

equations. We first show that the spectral properties of the linearization of
these problems are similar to the well-know properties of the standard Sturm-

Liouville problems. These spectral properties are then used to prove two

Rabinowitz-type global bifurcation theorems. Finally, we use the global bi-
furcation theorems to obtain multiple solutions for the above problems having

specified nodal properties.

1. Introduction

In this article, we study the global properties for the boundary-value problem

−x′′(t) = λf(t, x), t ∈ (0, 1), t 6= 1
2
,

∆x|t= 1
2

= λβx(
1
2

),

∆x′|t= 1
2

= −λβx′(1
2
− 0),

x(0) = x(1) = 0,

(1.1)

where λ 6= 0, β 6= 0, ∆x|t= 1
2

= x( 1
2 + 0) − x( 1

2 ), ∆x′|t= 1
2

= x′( 1
2 + 0) − x′( 1

2 − 0),
and f : [0, 1]× R→ R is continuous.

The theory of impulsive differential equations has been a significant development
in recent years and played a very important role in modern applied mathematical
models of real processes rising in phenomena studied in physics, population dy-
namics, chemical technology, biotechnology and economics (see [4, 6, 7, 11, 26, 27]).
There have appeared numerous papers on impulsive differential equations and many
of them are committed to study the existence of solutions for boundary value
problems of second order impulsive differential equations. The general methods
to solve these problems include topological degree theory (see [12, 23, 30]), the
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method of upper and lower solutions (see [9, 10, 13]) and variational method (see
[3, 20, 21, 23, 27, 28, 31]).

In natural sciences, there are various concrete problems involving bifurcation
phenomena, for example, Taylor vortices [2] and catastrophic shifts in ecosystems
[25]. Rabinowitz [21] established the global bifurcation theorem from the trivial
solution and in [22] the bifurcation from infinity was studied. In recent years,
this theory has been successfully applied to Sturm-Liouville problems for ordinary
differential equations, integral equations and partial differential equations (see [15,
16, 17, 20]). In [14], using bifurcation techniques, Liu and O’Regan studied the
existence of multiple solutions for the second order impulsive differential equation

x′′(t) + ra(t)f(t, x(t)) = 0, t ∈ (0, 1), t 6= ti,

∆x|t=ti = αix(ti − 0), i = 1, 2, . . . , k,

x(0) = x(1) = 0,
(1.2)

in which they convert (1.2) into

y′′(t) +
r∏

0<ti<t
(1 + αi)

a(t)f(t,
∏

0<ti<t

(1 + αi)y(t)) = 0, t ∈ (0, 1),

y(0) = y(1) = 0.
(1.3)

The aim of this conversion is to prove the existence of multiple solutions for above
problems by using the properties of the eigenvalues and eigenfunctions of the linear
equations corresponding to (1.3). In this article, without using this conversion, in
section 2, we study the properties of the eigenvalues and eigenfunctions of the linear
equations corresponding to (1.1), in section 3, we investigate the global bifurcation
results and the existence of multiple solutions for BVP (1.1) and in section 4, we
give an example as the applications.

Let F : E −→ E1 where E and E1 are real Banach spaces and F is continuous.
Suppose the equation F(U) = 0 possesses a simple curve of solutions Ψ given by
{U(t)|t ∈ [a, b]}. If for some τ ∈ (a, b),F possesses zeros not lying on Ψ in every
neighborhood of U(τ), then U(τ) is said to be a bifurcation point for F with respect
to the curve Ψ (see [21]).

A special family of such equations has the form

u = G(λ, u) (1.4)

where λ ∈ R, u ∈ E, a real Banach space with the norm ‖·‖ and G : E ≡ R×E → E
is compact and continuous. In addition, G(λ, u) = λLu + H(λ, u), where H(λ, u)
is o(‖u‖) for u near 0 uniformly on bounded λ intervals and L is a compact linear
map on E. A solution of (1.4) is a pair (λ, u) ∈ E . The known curve of solutions
Θ = {(λ, 0)|λ ∈ R} will henceforth be referred to as the trivial solutions. The
closure of the set of nontrivial solutions of (1.4) will be denoted by Σ. A component
of Σ is a maximal closed connected subset.

If there exists µ ∈ R and 0 6= v ∈ E such that v = µLv, µ is said to be a real
characteristic value of L. The set of real characteristic values of L will be denoted
by σ(L). The multiplicity of µ ∈ σ(L) is the dimension of ∪∞j=1N((µL−I)j) where I
is the identity map on E and N(P ) denotes the null space of P . Since L is compact,
µ is of finite multiplicity. It is well known that if µ ∈ R, a necessary condition for
(µ, 0) to be a bifurcation point of (1.4) with respect to Θ is that µ ∈ σ(L).
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Lemma 1.1 ([21]). If µ ∈ σ(L) is simple, then Σ contains a component Cµ which
can be decomposed into two subcontinua C+

µ , C
−
µ such that for some neighborhood

B of (µ, 0),
(λ, u) ∈ C+

µ (C−µ ) ∩B, and (λ, u) 6= (µ, 0)
implies (λ, u) = (λ, αv + w) where α > 0(α < 0) and |λ− µ| = o(1), ‖w‖ = o(|α|),
at α = 0. Moreover, each of C+

µ , C
−
µ either

(1) meets infinity in Σ , or
(2) meets (µ̂, 0) where µ 6= µ̂ ∈ σ(L), or
(3) contains a pair of points (λ, u), (λ,−µ), u 6= 0.

Lemma 1.2 ([22]). Assume that L is compact and linear, H(λ, u) is continuous
on R × E, H(λ, u) = o(‖u‖) at u = ∞ uniformly on bounded λ intervals, and
‖u‖2H(λ, u

‖u‖2 ) is compact. If µ ∈ σ(L) is of odd multiplicity, then Σ possesses an
unbounded component Dµ which meets (µ,∞). Moreover if Λ ⊂ R is an interval
such that Λ ∩ σ(L) = µ and M is a neighborhood of (µ,∞) whose projection on R
lies in Λ and whose projection on E is bounded away from 0, then either

(1) Dµ\M is bounded in R×E in which case Dµ\M meets Θ = {(λ, 0)|λ ∈ R}
or

(2) Dµ \M is unbounded.
If (2) occurs and Dµ \M has a bounded projection on R, then Dµ \M meets (µ,∞)
where µ 6= µ̂ ∈ σ(L).

Lemma 1.3 ([22]). Suppose the assumptions of Lemma 1.2 hold. If µ ∈ σ(L) is
simple, then Dµ can be decomposed into two subcontinua D+

µ , D−µ and there exists a
neighborhood O ⊂M of (µ,∞) such that (λ, u) ∈ D+

µ (D−µ )∩O, and (λ, u) 6= (µ,∞)
implies (λ, u) = (λ, αv + w) where α > 0(α < 0) and |λ− µ| = o(1), ‖w‖ = o(|α|),
at |α| =∞.

2. Preliminaries

Let PC[0, 1] = {x : [0, 1] → R : x(t) is continuous at t 6= 1
2 , and left continuous

at t = 1
2 , and x( 1

2 + 0) = limt→ 1
2
+ x(t) exists } with the norm

‖x‖ = sup
t∈[0,1]

|x(t)|.

Let PC ′[0, 1] = {x ∈ PC[0, 1] : x′(t) is continuous at t 6= 1
2 , and x′( 1

2 − 0) =
limt→ 1

2
− x′(t), and x′( 1

2 + 0) = limt→ 1
2
+ x′(t) exist } with the norm

‖x‖1 = max{ sup
t∈[0,1]

|x(t)|, sup
t∈[0,1]

|x′(t)|}.

Let E = {x ∈ PC ′[0, 1] : x(0) = x(1) = 0}. It is well known that E is a Banach
space with the norm ‖ · ‖1.

Let S+
k denote the set of functions in E which have exactly k − 1 simple nodal

zeros in (0, 1) and are positive near t = 0. (By a nodal zero we mean the function
changes sign at the zeros and at at a simple nodal zero, the derivative of the function
is nonzero.) And set S−k = −S+

k , Sk = S+
k ∪ S

−
k . They are disjoint in E. Finally,

let Φ±k = R× S±k and Φk = R× Sk.
For the rest of the paper, we always assume the initial-value problem

−x′′(t) = λf(t, x), t ∈ (0, 1), t 6= 1
2
,
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∆x|t= 1
2

= λβx(
1
2

),

∆x′|t= 1
2

= −λβx′(1
2
− 0),

x(t0) = x′(t0) = 0,

has the unique trivial solution x ≡ 0 on [0, 1] for any t0 ∈ [0, 1].

Lemma 2.1 ([8]). x(t) ∈ PC[J,R] ∩ C2[J ′,R] is the solution of (1.1) equivalent
to x(t) ∈ PC ′[J,R] is the solution of the integral equation

x(t) =

{
λ

∫ 1

0
G(t, s)f(s, x(s))ds− λβt[x( 1

2 )− 1
2x
′( 1

2 − 0)], t ∈ [0, 1
2 ],

λ
∫ 1

0
G(t, s)f(s, x(s))ds+ λβ(1− t)[x( 1

2 ) + 1
2x
′( 1

2 − 0)], t ∈ ( 1
2 , 1],

where J = [0, 1], J ′ = J \ { 1
2},

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1.

Lemma 2.2. If a > 0, then the linear boundary-value problem

−u′′(t) = λau(t), t ∈ (0, 1), t 6= 1
2
,

∆u|t= 1
2

= λβu(
1
2

),

∆u′|t= 1
2

= −λβu′(1
2
− 0),

u(0) = u(1) = 0,

(2.1)

possess an increasing sequence of eigenvalues

0 < λ1 < λ2 < · · · < λk < . . . , lim
k→+∞

λk = +∞.

And eigenfunction uk corresponding to λk has exactly k − 1 nodal zeros on (0, 1).

Proof. Let u(t) be the solution of (2.1). We consider the three following cases:
Case (i) λ = 0. Then u(t) can be written as

u(t) =

{
c1t+ c2, t ∈ [0, 1

2 ],
c3t+ c4, t ∈ ( 1

2 , 1].

From (2.1), we have

c2 = 0,

−1
2
c1 − c2 +

1
2
c3 + c4 = 0,

−c1 + c3 = 0,
c3 + c4 = 0,

which implies c1 = c2 = c3 = c4 = 0. Then u(t) ≡ 0. Thus λ = 0 is not the
eigenvalue of (2.1).
Case (ii) λ < 0. Then u(t) can be written as

u(t) =

{
c1e
√
−λat + c2e

−
√
−λat, t ∈ [0, 1

2 ],
c3e
√
−λat + c4e

−
√
−λat, t ∈ ( 1

2 , 1].
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From (2.1), we have

c1 + c2 = 0,

(1 + λβ)e
√
−λa
2 c1 + (1 + λβ)e−

√
−λa
2 c2 − e

√
−λa
2 c3 − e−

√
−λa
2 c4 = 0,

(1− λβ)e
√
−λa
2 c1 − (1− λβ)e−

√
−λa
2 c2 − e

√
−λa
2 c3 + e−

√
−λa
2 c4 = 0,

e
√
−λac3 + e−

√
−λac4 = 0,

which implies c1 = c2 = c3 = c4 = 0. Then u(t) ≡ 0. Thus λ < 0 is not the
eigenvalue of (2.1).
Case (iii) λ > 0. Then u(t) can be written as

u(t) =

{
c1 cos(

√
λat) + c2 sin(

√
λat), t ∈ [0, 1

2 ],
c3 cos(

√
λat) + c4 sin(

√
λat), t ∈ ( 1

2 , 1].

From (2.1) we know c1 = 0 and

cos(

√
λa

2
)c3 + sin(

√
λa

2
)c4 − (1 + λβ) sin(

√
λa

2
)c2 = 0,

− sin(

√
λa

2
)c3 + cos(

√
λa

2
)c4 − (1− λβ) cos(

√
λa

2
)c2 = 0,

cos(
√
λa)c3 + sin(

√
λa)c4 = 0.

The determinant of the coefficient matrix det = sin
√
λa. Letting det = 0, we have

λk = k2π2

a , k = 1, 2, . . . . Then

c3 = 0, c4 = (1 + β(−1)k+1 k
2π2

a
)c2,

which implies λk = k2π2

a is the eigenvalues of (2.1), and

0 < λ1 < λ2 < · · · < λk < . . . , lim
k→+∞

λk = +∞.

The eigenfunction corresponding to λk is

uk(t) =

{
sin(kπt), t ∈ [0, 1

2 ],
(1 + β(−1)k+1 k2π2

a ) sin(kπt), t ∈ ( 1
2 , 1].

Now we prove that uk has exactly k− 1 nodal zeros on (0, 1). Actually, if k is odd,
then uk(t) has k−1

2 zeros on (0, 1
2 ], uk(t) has k−1

2 zeros on ( 1
2 , 1), and if k is even,

then uk(t) has k
2 zeros on (0, 1

2 ], uk(t) has k−2
2 zeros on ( 1

2 , 1). Thus uk(t) = 0 has
k − 1 zeros on (0, 1). Using the fact

u′k(t) =

{
kπ cos(kπt), t ∈ [0, 1

2 ),
(1 + β(−1)k+1 k2π2

a )kπ cos(kπt), t ∈ ( 1
2 , 1],

we see that uk(t) has exactly k−1 nodal zeros on (0, 1). The proof is complete. �

Lemma 2.3. For each k ≥ 1 the algebraic multiplicity of eigenvalue λk is equal to
1.

Proof. Define the operator K : PC ′[0, 1]→ PC ′[0, 1] as follows:

(Kx)(t) =

{∫ 1

0
G(t, s)ax(s)ds− βt[x( 1

2 )− 1
2x
′( 1

2 − 0)], t ∈ [0, 1
2 ],∫ 1

0
G(t, s)ax(s)ds+ β(1− t)[x( 1

2 ) + 1
2x
′( 1

2 − 0)], t ∈ ( 1
2 , 1].
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We need to prove only that ker(I − λkK)2 ⊂ ker(I − λkK). For any y ∈ ker(I −
λkK)2, we have (I − λkK)2y = 0, so (I − λkK)y ∈ ker(I − λkK).

Let β̄k = 1 + β(−1)k+1λk. From Lemma 2.2, there exists a γ satisfying

(I − λkK)y = γ sin(
√
λkat), t ∈ [0,

1
2

],

(I − λkK)y = γβ̄k sin(
√
λkat), t ∈ (

1
2
, 1];

that is, y satisfies

y′′ + λkay = −γλka sin(
√
λkat), t ∈ [0,

1
2

),

y′′ + λkay = −γλkaβ̄k sin(
√
λkat), t ∈ (

1
2
, 1],

and y(0) = y(1) = 0. Now we prove γ = 0. Actually, the general solution of the
above differential equation is of the form

y(t) = c1 cos(
√
λkat) + c2 sin(

√
λkat)−

γ

2
sin(

√
λkat)

+
γ
√
λkat

2
cos(

√
λkat), t ∈ [0,

1
2

],

y(t) = c1 cos(
√
λkat) + c2 sin(

√
λkat)−

γβ̄k
4

sin(
√
λkat) +

γβ̄k
4

sin(
√
λka

−
√
λkat) +

γ
√
λkaβ̄kt

2
cos(

√
λkat)−

γ
√
λkaβ̄k
4

cos(
√
λkat), t ∈ (

1
2
, 1].

From y(0) = y(1) = 0, we have c1 = 0 and

c2 sin(
√
λka)− γβ̄k

4
sin(

√
λka) +

γ
√
λkaβ̄k
2

cos(
√
λka)− γ

√
λkaβ̄k
4

cos(
√
λka) = 0.

By Lemma 2.2, λk = k2π2/a satisfies sin(
√
λka) = 0, cos(

√
λka) 6= 0 which implies

γ = 0.
Thus y ∈ ker(I − λkK). Therefore ker(I − λkK)2 ⊂ ker(I − λkK). The proof is

complete. �

Lemma 2.4. For any positive integer k, Sk, S+
k and S−k are open in E.

Proof. We prove only that Sk is open in E. Let t1, t2, . . . , tk−1 ∈ (0, 1) are k − 1
simple nodal zeros on (0, 1) of u(t) ∈ Sk.

Suppose u′(tj) = cj > 0. Then there exists δj > 0 which satisfies for any
t ∈ [tj− δj , tj + δj ], u′(t) is continuous, u′(t) > cj

2 , u(tj− δj) < 0 and u(tj + δj) > 0.
Letting ϕ ∈ E and ‖ϕ− u‖1 ≤ σ, where

σ = min
{cj

2
,
u(tj + δj)

2
,−u(tj − δj)

2
,−1

2
max

t∈[tj−1+δj−1,tj−δj ]
u(t),

1
2

max
t∈[tj+δj ,tj+1−δj+1]

u(t)
}
,

we have

ϕ′(t) = ϕ′(t)− u′(t) + u′(t) ≥ −σ +
cj
2
> 0, t ∈ [tj − δj , tj + δj ],

ϕ(tj + δj) > u(tj + δj)− σ > 0,

ϕ(tj − δj) < u(tj − δj) + σ < 0.
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Since ϕ(t) is continuous on [tj − δj , tj + δj ], there exists unique t∗j ∈ [tj − δj , tj + δj ]
which satisfies ϕ(t∗j ) = 0, ϕ′(t∗j ) > 0.

Since for any t ∈ [tj−1 + δj−1, tj − δj ], u(t) < 0, and for any t ∈ [tj + δj , tj+1 −
δj+1], u(t) > 0, one has ϕ(t) < u(t) + σ < 0 for any t ∈ [tj−1 + δj−1, tj − δj ]
and ϕ(t) > u(t) + σ > 0 for any t ∈ [tj + δj , tj+1 − δj+1]. Therefore for any
t ∈ [tj−1 + δj−1, tj+1 − δj+1], ϕ(t) has the unique simple zero t∗j .

If u′(tj) = cj < 0, we can get for any t ∈ [tj−1 + δj−1, tj+1 − δj+1], ϕ(t) has the
unique simple zero t∗j by the same method as above also. Because u(t) has exactly
k− 1 simple zeros on (0, 1), ϕ(t) has exactly k− 1 simple zeros on (0, 1). Therefore
ϕ(t) ∈ Sk, which implies Sk are open in E.

By the same argument, we can prove S+
k and S−k are open in E. The proof is

complete. �

3. Main results

In this section, we assume that

(H1) There exist two positive numbers f0 and f∞ such that f0 = lim|x|→0
f(t,x)
x

and f∞ = lim|x|→∞
f(t,x)
x both uniformly with respect to t ∈ [0, 1].

Let ζ, ξ ∈ C([0, 1]× R,R) be such that

f(t, x) = f0x+ ζ(t, x), f(t, x) = f∞x+ ξ(t, x). (3.1)

Clearly, if (H1) holds, we have

lim
|x|→0

ζ(t, x)
x

= 0, lim
|x|→∞

ξ(t, x)
x

= 0 (3.2)

both uniformly with respect to t ∈ [0, 1].
Now we define three operators L0, L∞, and A as follows:

(L0x)(t) =

{∫ 1

0
G(t, s)f0x(s)ds− βt[x( 1

2 )− 1
2x
′( 1

2 − 0)], t ∈ [0, 1
2 ],∫ 1

0
G(t, s)f0x(s)ds+ β(1− t)[x( 1

2 ) + 1
2x
′( 1

2 − 0)], t ∈ ( 1
2 , 1],

(3.3)

(L∞x)(t) =

{∫ 1

0
G(t, s)f∞x(s)ds− βt[x( 1

2 )− 1
2x
′( 1

2 − 0)], t ∈ [0, 1
2 ],∫ 1

0
G(t, s)f∞x(s)ds+ β(1− t)[x( 1

2 ) + 1
2x
′( 1

2 − 0)], t ∈ ( 1
2 , 1],

(3.4)
and

(Ax)(t) =

{∫ 1

0
G(t, s)f(s, x(s))ds− βt[x( 1

2 )− 1
2x
′( 1

2 − 0)], t ∈ [0, 1
2 ],∫ 1

0
G(t, s)f(s, x(s))ds+ β(1− t)[x( 1

2 ) + 1
2x
′( 1

2 − 0)], t ∈ ( 1
2 , 1].

(3.5)
Obviously, L0 and L∞ are compact and linear.

From Lemma 2.1, we know that x(t) is the solution of (1.1) if and only if x(t) is
the solution of

x = λAx. (3.6)

Let Γ = R × E. A solution of (3.6) is a pair (λ, x) ∈ Γ. The known curve of
solutions {(λ, 0)|λ ∈ R} will henceforth be referred to as the trivial solutions. The
closure of the set on nontrivial solutions of (3.6) will be denoted by Σ as in Lemma
1.1. Now we are ready to give our main results.
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Theorem 3.1. Let (H1) hold. In addition assume that for some k ∈ N, either

k2π2

f0
< λ <

k2π2

f∞
, or

k2π2

f∞
< λ <

k2π2

f0
.

Then problem (1.1) has at least two solutions x+
k and x−k , x+

k has exactly k−1 zeros
in (0,1) and is positive near t = 0, and x−k has exactly k − 1 zeros in (0, 1) and is
negative near t = 0.

Theorem 3.2. Let (H1) hold. Suppose that there exist two integer k > 0 and j ≥ 0
such that either

(i) (k+j)2π2

f0
< λ < k2π2

f∞
;

(ii) (k+j)2π2

f∞
< λ < k2π2

f0

Then problem (1.1) has at least 2(j + 1) solutions x+
k+i, x

−
k+i, i = 0, 1, . . . , j, x+

k+i

has exactly k + i − 1 zeros in (0, 1) and is positive near t = 0, x−k+i has exactly
k + i− 1 zeros in (0, 1) and are negative near t = 0.

To use the terminology of Rabinowitz [20, 21], we first give the following lemmas.

Lemma 3.3. Suppose that (H1) is satisfied. Then the operator A given in (3.5) is
Fréchet differentiable at x = θ, and A′(θ) = L0.

Proof. From (3.1), we obtain

‖Ax− L0x‖1

= max
{

sup
t∈[0,1]

|
∫ 1

0

G(t, s)f(s, x(s))ds−
∫ 1

0

G(t, s)f0x(s)ds|,

sup
t∈[0,1]

|
∫ 1

0

Gt(t, s)f(s, x(s))ds−
∫ 1

0

Gt(t, s)f0x(s)ds|
}

= max
{

sup
t∈[0,1]

|
∫ 1

0

G(t, s)ζ(s, x(s))ds|, sup
t∈[0,1]

|
∫ 1

0

Gt(t, s)ζ(s, x(s))ds|
}

≤ C
∫ 1

0

|ζ(s, x(s))|ds,

where C depends on bounds for G and Gt. Consequently, from (3.2),

lim
‖x‖1→0

‖Ax− L0x‖1
‖x‖1

≤ lim
‖x‖1→0

∫ 1

0
|ζ(s, x(s))|ds
‖x‖1

= 0, ∀x ∈ E.

This means that the operator A given in (3.5) is Fréchet differentiable at x = θ,
and A′(θ) = L0. The proof is complete. �

Lemma 3.4. Suppose that (H1) is satisfied. Then the operator A given in (3.5) is
Fréchet differentiable at x =∞, and A′(∞) = L∞.

Proof. For each ε > 0, by (3.2), there exists R > 0 such that

|ξ(t, x)| ≤ ε|x|, for |x| > R, t ∈ [0, 1].

Let M = max|x|≤R |ξ(t, x)|. Then we have

|ξ(t, x)| ≤ ε|x|+M, ∀x ∈ R, t ∈ [0, 1].
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Therefore, for any x ∈ E, t ∈ [0, 1],

‖Ax− L∞x‖1

= max
{

sup
t∈[0,1]

|
∫ 1

0

G(t, s)ξ(s, x(s))ds|, sup
t∈[0,1]

|
∫ 1

0

Gt(t, s)ξ(s, x(s))ds|
}

≤ C1

∫ 1

0

|ξ(s, x(s))|ds

≤ C1(M + ε

∫ 1

0

|x(s)|ds)

≤ C1(M + ε‖x‖1),

which implies

lim
‖x‖1→∞

‖Ax− L∞x‖1
‖x‖1

= 0,

where C1 depends on bounds for G and Gt. This means that the operator A
given in (3.5) is Fréchet differentiable at x = ∞, and A′(∞) = L∞. The proof is
complete. �

Under the condition (H1), (3.6) can be rewritten as

x = λL0x+H(λ, x), (3.7)

here H(λ, x) = λAx− λL0x, L0 is defined as (3.3). Clearly by Lemma 2.1, x(t) is
the solution of (2.1) if and only if x(t) is the solution of the equation

x = λL0x. (3.8)

Therefore, the results of Lemma 2.2 and Lemma 2.3 satisfy (3.8).
From Lemma 3.3, it can be seen that H(λ, x) is o(‖x‖1) for x near 0 uniformly

on bounded λ.

Lemma 3.5. For each integer k > 0 and each υ = +, or −, there exists a continua
Cυk of solutions of (3.6) in Φυk ∪ {(k

2π2

f0
, 0)}, which meets {(k

2π2

f0
, 0)} and ∞ in Σ.

Proof. By Lemma 2.2 and Lemma 2.3, we know that for each integer k > 0, k2π2

f0

is a simple characteristic value of operator L0. So with Lemma 3.3, (3.7) can be
considered as a bifurcation problem from the trivial solution. From Lemma 1.1 and
condition (H1) it follows that Σ contains a component Ck which can be decomposed
into two subcontinua C+

k , C−k such that for some neighborhood B of (k
2π2

f0
, 0),

(λ, x) ∈ C+
k (C−k ) ∩B, and (λ, x) 6= (

k2π2

f0
, 0),

implies (λ, x) = (λ, αuk + w), where α > 0(α < 0) and |λ − k2π2

f0
| = o(1), ‖w‖1 =

o(|α|) at α = 0.
Since Sk is open and uk ∈ Sk, we know

x

α
= uk +

w

α
∈ Sk,

for α 6= 0 sufficiently small. Then there exists δ0 > 0 such that for δ ∈ (0, δ0), we
have

(Ck \ {(
k2π2

f0
, 0)}) ∩Bδ ⊂ Φk,
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where Bδ is an open ball in Γ of radius δ centered at (k
2π2

f0
, 0). From the assumption

in section 2 and (3.8) we know Ck \ {(k
2π2

f0
, 0)} ∩ ∂Φk = ∅. Consequently, Ck lies

in Φk ∪ {(k
2π2

f0
, 0)}.

From the the same reasoning it can be seen that Cϑk lies in Φϑk∪{(k
2π2

f0
, 0)}(ϑ = +,

or −).
Next we show that the alternative (2) of Lemma 1.1 is impossible. Suppose, on

the contrary and without loss of generality that C+
k meets ( j

2π2

f0
, 0) with k 6= j and

j2π2

f0
∈ σ(L0). Then there exists a sequence (γm, zm) ∈ C+

k with γm → j2π2

f0
and

zm → 0 as m→ +∞. Notice that

zm = γmL0zm +H(γm, zm). (3.9)

Dividing this equation by ‖zm‖1 and noticing that L0 is compact on E and that
H(γm, zm) = o(‖zm‖1) as m→∞, we may assume without loss of generality that
zm
‖zm‖1 → z as m→∞. Thus by (3.9) it follows that

z =
j2π2

f0
L0z.

Since z 6= 0, by Lemma 2.2, z belongs to S+
j or S−j . Notice that ‖ zm

‖zm‖1 − z‖1 →
0, S+

j and S−j are open, so zm ∈ S+
j or S−j for m sufficiently large. This is a

contradiction with zm ∈ S+
k (m ≥ 1) and j 6= k. Hence alternative (2) is impossible.

Finally since S+
k and S−k are disjoint, thus Cυk does not contain a pair of points

(λ, x), (λ,−x), x 6= 0, which means alternative (3) of Lemma 1.1 is impossible.
Therefore alternative (1) of Lemma 1.1 holds. This implies that for each integer

k > 0, and each υ = + or −, there exists a continua Cυk of solutions of (3.6) in
Φυk ∪ {(k

2π2

f0
, 0)}, which meets {(k

2π2

f0
, 0)} and ∞ in Σ. The proof is complete. �

Lemma 3.6. For each integer k > 0 and each υ = +, or −, there exists a continua
Ĉυk of Σ in Φυk ∪ {(k

2π2

f∞
,∞)} coming from {(k

2π2

f∞
,∞)}, which meets {(k

2π2

f0
, 0)} or

has an unbounded projection on R.

Proof. Let T (λ, x) = λAx−λL∞x, where L∞ is defined as in (3.4). Then (3.6) can
be rewritten as

x = λL∞x+ T (λ, x). (3.10)
By Lemma 3.4, we know that T (λ, x) is o(‖x‖1) for x ∈ E near ∞ uniformly on
bounded λ intervals. Notice that L∞ is a compact linear map on E. By Lemma 2.2
and Lemma 2.3, we know that for each k > 0, k

2π2

f∞
is a simple characteristic value

of operator L∞. So with Lemma 3.4, (3.10) can be considered as a bifurcation
problem from infinity. A similar reasoning as in the proof of [22, Theorem 2.4]
shows that ‖x‖21T (λ, x

‖x‖21
) is compact. By Lemma 1.2 and Lemma 1.3, Σ contains

a component Dk which can be decomposed into two subcontinua D+
k , D

−
k which

meets (k
2π2

f∞
,∞).

Next we show that for a smaller neighborhood O ⊂ M of (k
2π2

f∞
,∞), (λ, x) ∈

Dk ∩ O and (λ, x) 6= (k
2π2

f∞
,∞) implies that x ∈ Sk. In fact, by Lemma 1.3 we

already know that there exists a neighborhood O ⊂ M of (k
2π2

f∞
,∞) satisfying

(λ, x) ∈ Dk ∩ O and (λ, x) 6= (k
2π2

f∞
,∞) implies (λ, x) = (λ, αuk + w) where α >
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0(α < 0) and |λ− k2π2

f∞
| = o(1), ‖w‖1 = o(|α|) at |α| =∞. Since Sk is open and w

α

is small compared to uk ∈ Sk near α = +∞, and therefore x = αuk +w ∈ Sk for α
near +∞. Therefore, Dk ∩ O ⊂ (R× Sk) ∪ (k

2π2

f∞
,∞).

From the same reasoning it can be seen that Dυ
k ∩ O ⊂ (R × Sυk ) ∪ (k

2π2

f∞
,∞),

where υ = +, or −.
Let Ĉ+

k denote the maximal subcontinuum of D+
k lying in R×S+

k . First suppose
Ĉ+
k \ O is bounded. Then there exists (λ, x) ∈ ∂Ĉ+

k with x ∈ ∂S+
k . Hence x has

a double zero. By the assumption in section 2 we know x ≡ 0. Thus there exists
a sequence (γm, zm) ∈ Ĉ+

k satisfying (3.10) with zm → x ≡ 0 as m → +∞. By
Lemma 1.2, like in the proof of Lemma 3.5, one can see that Ĉ+

k meets (k
2π2

f0
, 0).

Finally suppose Ĉ+
k \ O is unbounded. In this case we show Ĉ+

k \ O has an
unbounded projection on R. Suppose, on the contrary, that there exists a sequence
(µm, xm) ∈ Ĉ+

k \ O with µm → µ and ‖xm‖1 → +∞ as m → +∞. Let ym :=
xm
‖xm‖1 ,m ≥ 1. From the fact that

xm = µmL∞xm + T (µm, xm),

it follows that

ym = µmL∞ym +
T (µm, xm)
‖xm‖1

. (3.11)

Notice that L∞ is compact. We may assume that there exists y ∈ E with ‖y‖1 = 1
such that ‖ym − y‖1 → 0 as m→ +∞.

Letting m→ +∞ in (3.11) and noticing T (µm,xm)
‖xm‖1 → 0 as m→ +∞ one obtains

y = µL∞y. (3.12)

Since µ 6= 0 is an eigenvalue of operator L∞ and y 6= 0; that is, µ = i2π2

f∞
for

some i 6= k. Then by Lemma 2.2 y belongs to S+
i or S−i . Notice the fact that

‖ym − y‖1 → 0 as m → +∞. Thus xm ∈ S+
i or S−i for m sufficiently large since

S+
i or S−i are open. This is a contradiction with xm ∈ S+

k (m ≥ 1). Thus Ĉ+
k \ O

has an unbounded projection on R.
Similarly, the same argument works if + is replaced by − in the above cases.

The proof is complete. �

Proof of Theorem 3.1. Case 1. k2π2

f0
< λ < k2π2

f∞
. Consider (3.7) as a bifurcation

problem from the trivial solution. To obtain the desired results we need only to
show that

Cϑk ∩ ({λ} × E) 6= ∅, ϑ = +,−.
By Lemma 3.5 we know that Cϑk joins (k

2π2

f0
, 0) to infinity Φϑk . Therefore, there

exists a sequence (µn, xn) ∈ Cϑk such that

lim
n→∞

(µn + ‖xn‖1) =∞.

We note that µn > 0 for all n ∈ N since (λ, x) = (0, 0) is the unique solution of
(3.6) with λ = 0 in E and Cϑk ∩ ({0} × E) = ∅. If

lim
n→∞

µn =∞,

then
Cϑk ∩ ({λ} × E) 6= ∅.
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Assume that there exists M > 0, such that for all n ∈ N,

µn ∈ (0,M ].

In this case it follows that ‖xn‖1 →∞. We divide the equation

xn = µnL∞xn + T (µn, xn)

by ‖xn‖1 and set yn = xn
‖xn‖1 . Since yn is bounded in E, choosing a subsequence

and relabelling, if necessary, we see that yn → y for some y ∈ E with ‖y‖1 = 1, and

y = µL∞y

where µ = limn→∞ µn. From the proof of Lemma 3.6 one can see

µ =
k2π2

f∞
.

Thus Cϑk joins (k
2π2

f0
, 0) to (k

2π2

f∞
,∞) which implies

Cϑk ∩ ({λ} × E) 6= ∅.

Case 2. k2π2

f∞
< λ < k2π2

f0
. Consider (3.10) as a bifurcation problem from infinity.

As above we need only to prove that

Ĉϑk ∩ ({λ} × E) 6= ∅, ϑ = +,−.

From Lemma 3.6, we know that Ĉϑk comes from (k
2π2

f∞
,∞) meets (k

2π2

f0
, 0) or has

an unbounded projection on R.
If it meets (k

2π2

f0
, 0), then the connectedness of Ĉϑk and k2π2

f0
> λ guarantee that

Ĉϑk ∩ ({λ} × E) 6= ∅, ϑ = +,−.

If Ĉϑk has an unbounded projection on R, notice that (λ, x) = (0, 0) is the unique
solution of (3.6), so

Ĉϑk ∩ ({λ} × E) 6= ∅, ϑ = +,−.

The proof is complete. �

Proof of Theorem 3.2. Repeating the arguments used in the proof in Theorem 3.1,
we see that for each ϑ ∈ {+,−} and each i ∈ {1, 2, . . . , j}

(Cϑk+i ∪ Ĉϑk+i) ∩ ({λ} × E) 6= ∅.

�

Remark 3.7. From [5], we know if β = 0, we have also the same results as Theorem
3.1 and Theorem 3.2.

4. Applications

In this section, we give an example to illustrate the applications of Theorem 3.2.
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Example 4.1. Consider the second-order impulsive differential equation

x′′(t) + f(x(t)) = 0, t ∈ (0, 1), t 6= 1
2
,

∆x|x= 1
2

= x(
1
2

),

∆x′|x= 1
2

= −x′(1
2
− 0),

x(0) = x(1) = 0,

(4.1)

where f(x) = 100 sinx+ 5x.
It is not difficult to see that f here satisfies the assumption in section 2 and (H1)

with f0 = 105, f∞ = 5 and the eigenvalues of the boundary-value problem

x′′(t) + λx(t) = 0, t ∈ (0, 1), t 6= 1
2
,

∆x|x= 1
2

= λx(
1
2

),

∆x′|x= 1
2

= −λx′(1
2
− 0),

x(0) = x(1) = 0,

can be written as λk = k2π2, k = 1, 2, . . . . By calculation, we know that there exist
k = 1 and j = 2 such that

(k + j)2π2

f0
< 1 <

k2π2

f∞
.

Therefore, Theorem 3.2 guarantees that (4.1) has at least six nontrivial solutions.
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