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THE FORM OF THE SPECTRAL FUNCTION ASSOCIATED
WITH STURM-LIOUVILLE PROBLEMS FOR SMALL VALUES

OF THE SPECTRAL PARAMETER

B. J. HARRIS

Abstract. We study the linear second-order differential equation

−y′′ + q(x)y = λy

where, amongst other conditions, q ∈ L1[0,∞). We obtain a convergent series
expansion for the spectral function which is valid for small values of λ. We

also derive an asymptotic representation.

1. Introduction

We consider the linear, second-order differential equation

−y′′ + q(x)y = λy for x ∈ [0,∞), (1.1)

y(0) = 0 (1.2)

in the case where q is a real-valued member of L1[0,∞). It is well known, see for
example [5] that under these circumstances the spectral function ρ0(λ) associated
with (1.1), (1.2) is such that ρ′0(λ) exists and is continuous on (0,∞). In recent years
many papers have investigated the form of ρ0(λ) for large values of λ. In particular
we mention the asymptotic results in [1, 2] and the explicit representations derived
in [3, 4, 6] which are valid for all λ ≥ Λ0 where Λ0 is computable. In [4] the condition
q ∈ L1[0,∞) was relaxed to the requirement that q be of Wigner-von Neumann
type or be slowly decreasing. The situation for small values of λ is somewhat
more complicated as the form of the derived series will show. In particular the
conditions on q and the form of the series representation are in terms of the solution
of a particular Riccati equation. A necessary condition for the existence of such a
solution on (0,∞) is the finiteness of

∫∞
0

(1 + t)2q(t) dt. It follows that the results
require q to be small at infinity. A consequence of our main result is a representation
of limλ→0+ ρ′0(λ). We also, in §4, show that the convergent series may be truncated
and an asymptotic representation obtained.
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2. Results

We assume the existence of a solution, v0(x), of the Riccati equation

v′0 = q(x)− v2
0 (2.1)

which is defined on [0,∞) and satisfies

lim
x→∞

xv0(x) = 0. (2.2)

We further assume that
(1 + t)|v0(t)| ∈ L1[0,∞). (2.3)

Under these conditions it will be shown that there exists a sequence of functions
{vn(x, λ)} defined recursively as follows:

v1(x, λ) := 2iλ1/2

∫ ∞
x

e2iλ
1/2(t−x)−2

R t
x
v0(s) dsv0(t) dt (2.4)

and

vn(x, λ) :=
∫ ∞
x

e2iλ
1/2(t−x)−2

R t
x
v0(s) ds

(
v2
n−1 + 2vn−1

n−2∑
m=1

vm

)
dt. (2.5)

Theorem 2.1. Under conditions (2.1)–(2.3) there exists Λ > 0 so that for λ ∈
(0,Λ)

ρ′0(λ) =
1
π

{
λ1/2 + Im

∞∑
n=1

vn(0, λ)
}
. (2.6)

In particular
lim
λ→0+

ρ′0(λ) = 0. (2.7)

Example 2.2. If q(x) := −e−x(1 − e−x) then it is easy to see that v0(x) = e−x

satisfies (2.1), (2.2), and (2.3) and limλ→0+ ρ′0(λ) = 0.

Remark 2.3. If v0 satisfies (2.1) then

(1 + t)2v′0(t) = (1 + t)2q(t)− (1 + t)2v0(t)2

and an integration by parts and (2.2) gives

−v0(0)− 2
∫ ∞

0

(1 + t)v0(t) dt =
∫ ∞

0

(1 + t)2q(t) dt−
∫ ∞

0

(1 + t)2v0(t)2.

The boundedness of
∫∞
0

(1 + t)2q(t) dt now follows from 2.1–(2.3).

Remark 2.4. It is shown below that the requirements (2.1)–(2.3) ensure that v0(x)
is real-valued.

3. Proof of Theorem 2.1

Following the analysis employed in [5], we seek a solution of the Riccati equation

v′ = −λ+ q − v2 (3.1)

which satisfies
lim
x→∞

v(x, λ) = iλ1/2. (3.2)

Then, from [5, (4.4)],

ρ′0(λ) =
1
π

Im{v(λ)}. (3.3)



EJDE-2013/17 THE FORM OF THE SPECTRAL FUNCTION 3

We try for a solution of (3.1) a series of the form

v(x, λ) = iλ1/2 + v0(x) +
∞∑
n=1

vn(x, λ). (3.4)

If term by term differentiation of the terms of the series of (3.4) is justified, substi-
tution of (3.4) into (3.1) leads to a choice of the {vn} such that

v′1 + (2iλ1/2 + v0)v1 = −2iλ1/2v0 (3.5)

and for n = 2, 3, . . .,

v′n + 2(iλ1/2 + v0)vn = −v2
n−1 − 2vn−1

n−2∑
m=1

vm. (3.6)

It is straightforward to check that the functions defined in (2.4) and (2.5) satisfy
(3.5) and (3.6). We now bound the {vn} and show that the series

∑
v′n is absolutely

uniformly convergent on compact subsets of [0,∞) which is sufficient to justify the
term by term differentiation.

Lemma 3.1. Let
K := sup

0≤x≤t<∞

∣∣e−2
R t

x
v0(s) ds

∣∣ (3.7)

and suppose there exists a(x) which is a decreasing member of L1[0,∞) such that

|v1(x, λ)| ≤ λ1/2a(x) (3.8)

for x ∈ [0,∞) and λ ∈ [0,Λ] where Λ is so small that 10Kλ1/2
∫∞
0
a(t) dt ≤ 1 for

λ ∈ [0,Λ]. Then |vn(x, λ)| ≤ λ1/2a(x)
2n−1 for x ∈ [0, λ) and λ ∈ [0,Λ].

Proof. We use induction on n. When n = 1, the result follows from the hypothesis
(3.8). Suppose now the result is true for all subscripts up to the (n − 1)st. Then
from (2.4), (3.7), and the induction hypothesis:

|vn(x, λ)| ≤ K
∫ ∞
x

|vn−1|2 + 2|vn−1|
n−2∑
m=1

|vm| dt

≤ K
∫ ∞
x

λa(t)2

22n−4
+

2λa(t)2

2n−2

n−2∑
m=1

1
2m−1

dt

≤ λ1/2a(x)
2n−1

λ1/2
{ 1

2n−3
+ 8
}∫ ∞

0

a(t) dt

since a(·) is a decreasing function. The result now follows from the choice of Λ.
It may now be seen from the Lemma and (3.6) that the series

∑
v′n is absolutely

uniformly convergent which justifies the term by term differentiation. To complete
the proof of the theorem we observe that, since v0(·) ∈ L1[0,∞), there exists a K
which satisfies (3.7) and also, from (2.4), that

|v1(x, λ)| ≤ 2λ1/2K

∫ ∞
x

|v0(t)| dt.

We now choose a(x) := 2K
∫∞
x
|v0(t)| dt and note that∫ ∞

0

a(x) dx =
∫ ∞

0

2K
∫ ∞
x

|v0(t)| dt dx = 2K
∫ ∞

0

t|v0(t)| dt.
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The first part of the theorem now follows.
It remains to show that, under the assumptions (2.1)–(2.3), v0 is real-valued.

Suppose not; if v0(t) = u(t) + iw(t) then upon substitution into (2.1) and the
separation of real and imaginary parts we see that

w′ = −2uw

whence
w(t) = Ce−2

R t
0 u(s) ds

The requirement limt→∞ v0(t) = 0 then requires either C = 0 or limt→∞
∫ t
0
u(s) ds =

∞. But the latter case contradicts (2.3) which requires that (1 + t)v0(t) and hence
(1 + t)u(t) ∈ L1[0,∞), so the only possibility is that v0 is real-valued. �

4. An asymptotic expansion

The bounds derived in Lemma 3.1 lead to estimates for the {vn} which show that∑∞
n=1 vn(x, λ) is uniformly, absolutely convergent for x ∈ [0,∞) and 0 ≤ λ < Λ

for some Λ which is, in principle at least, computable. In terms of λ however
the bounds are all of order λ1/2. We now show that the terms of the series are
decreasing asymptotically with increasing powers of λ.

Lemma 4.1. With K as in (3.7) and with v1 satisfying (3.8) there exist sequences
of constants {Cn} and {Λn} so that for x ∈ [0,∞) and 0 ≤ λ ≤ Λn ≤ Λn−1

|vn(x, λ)| ≤ Cnλn/2a(x). (4.1)

Proof. We proceed by induction. From (2.5),

|v2(x, λ)| ≤
∫ ∞
x

e−2
R t

x
v0(s) ds|v1(t, λ)|2 dt

≤ λK
∫ ∞
x

a(t)2 dt ≤ λa(x)K
∫ ∞

0

a(t) dt

Suppose the result is true up to n ≥ 2, then from (2.5):

|vn+1(x, λ)| ≤ K
∫ ∞
x

|vn|2 + 2|vn|
n−1∑
m=1

|vm| dt

≤ K
∫ ∞
x

C2
nλ

na(t)2 + 2Cnλn/2a(t)
n−1∑
m=1

Cmλ
m/2a(t) dt

≤ Kλ
n+1

2 a(x)
{
C

n−1
2

n λ− 2Cn
n−1∑
m=1

Cmλ
m−1

2
}∫ ∞

0

a(t) dt

since the Λn form a decreasing sequence. The result now follows. �

In consequence of Lemma 4.1 we have that for every N ,

ρ′0(λ) =
1
π

{
λ1/2 + Im

N∑
n=1

vn(0, λ)
}

+O
(
λ

N+1
2

)
as λ→ 0+ and, in particular,

ρ′0(λ) =
λ1/2

π

{
1 + 2

∫ ∞
0

cos(2λ1/2t)e−2
R t
0 v0(s) dsv0(t) dt

}
+O(λ)

as λ→ 0+.
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