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THE FORM OF THE SPECTRAL FUNCTION ASSOCIATED
WITH STURM-LIOUVILLE PROBLEMS FOR SMALL VALUES
OF THE SPECTRAL PARAMETER

B. J. HARRIS

ABSTRACT. We study the linear second-order differential equation
-y +q(x)y =y
where, amongst other conditions, ¢ € L' [0, 00). We obtain a convergent series

expansion for the spectral function which is valid for small values of A. We
also derive an asymptotic representation.

1. INTRODUCTION

We consider the linear, second-order differential equation

—y" 4+ q(z)y = My for z € [0, 00), (1.1)
y(0) = 0 (12)

in the case where ¢ is a real-valued member of L[0,00). It is well known, see for
example [5] that under these circumstances the spectral function pg(\) associated
with (L.1)), is such that p{(\) exists and is continuous on (0, c0). In recent years
many papers have investigated the form of po(A) for large values of A. In particular
we mention the asymptotic results in [T}, 2] and the explicit representations derived
in [3L 4] [6] which are valid for all A > Ay where Ag is computable. In [4] the condition
q € L'[0,00) was relaxed to the requirement that ¢ be of Wigner-von Neumann
type or be slowly decreasing. The situation for small values of A\ is somewhat
more complicated as the form of the derived series will show. In particular the
conditions on ¢ and the form of the series representation are in terms of the solution
of a particular Riccati equation. A necessary condition for the existence of such a
solution on (0, 00) is the finiteness of [;~(1 4 t)?q(t) dt. It follows that the results
require g to be small at infinity. A consequence of our main result is a representation
of limy o+ pp(A). We also, in §4] show that the convergent series may be truncated
and an asymptotic representation obtained.
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2. RESULTS

We assume the existence of a solution, vg(z), of the Riccati equation

o) = gle) — 03 (2.1)
which is defined on [0, c0) and satisfies
lim zvg(z) = 0. (2.2)
We further assume that
(1 +t)|vo(t)| € L0, o). (2.3)

Under these conditions it will be shown that there exists a sequence of functions
{vn(z, \)} defined recursively as follows:

m@@»:%xm/ 222 =2 [ w0 () dsyy (1) iy (2.4)
and
o0 1/2 t n-2
vnl@, ) = / (2iN/?(t=2) =2 [} vo(s) ds (UEH + 20,1 Y Um) dt. (2.5)
x m=1

Theorem 2.1. Under conditions (2.1)—(2.3)) there exists A > 0 so that for X €
(0,7)

1 oo
ph(A) = ;{)\1/2 + Im;vn(o, AL (2.6)

In particular
Jim () = 0. (2.7)
Example 2.2. If g(z) := —e™*(1 — e~ %) then it is easy to see that vo(z) = e~

satisfies (2.1)), (2.2)), and (2.3) and limy_o+ pf(X) = 0.
Remark 2.3. If vy satisfies (2.1)) then
(1+0)%0h(t) = (L+1)*q(t) — (1 +1) w0 (1)
and an integration by parts and (2.2)) gives
—0(0) —2/ (1 +t)vo(t) dt:/ (1+t)%q(t) dt—/ (1 +t)%vo(t)>
0 0 0

The boundedness of [;°(1 + t)2¢(t) dt now follows from 1'

Remark 2.4. It is shown below that the requirements (2.1)—(2.3)) ensure that vg(z)
is real-valued.

3. PROOF OF THEOREM [2.1]

Following the analysis employed in [5], we seek a solution of the Riccati equation

v = A4 q—v? (3.1)
which satisfies
lim v(z, \) = ix'/2. (3.2)

Then, from [5] (4.4)],

ph(N) = ~ Tm{v(V)}. (3.3)
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We try for a solution of (3.1)) a series of the form

v(z, \) = iAY? + vg(z) + Z vp(x, A). (3.4)
If term by term differentiation of the terms of the series of (3.4)) is justified, substi-
tution of (3.4) into (3.1)) leads to a choice of the {v,} such that

V) 4 (20012 4 v)vy = —2iXY g (3.5)
and for n =2,3, ...,

n—2
Zfl — 2051 Z Um- (36)

It is stralghtforward to check that the functions defined in and ([2.5)) satisfy
and (B.6). We now bound the {v,,} and show that the series Z vl is absolutely
uniformly convergent on compact subsets of [0, o0) which is sufﬁcient to justify the
term by term differentiation.

v+ 2002 + vo)v, = —v

Lemma 3.1. Let
K:= sup |672f1’ ”0(5)d5| (3.7)

0<z<t<oo
and suppose there exists a(x) which is a decreasing member of L'[0,00) such that
o1 (2, A)] < AM2a(x) (3.8)
for x € [0,00) and X € [0,A] where A is so small that T0OKAY/? [ a(t)dt <1 for
A €[0,A]. Then |v,(z,N)] < >‘ v =) for 2 € [0,A) and A € [0, A].

Proof. We use induction on n. When n = 1, the result follows from the hypothesis
(3.-8). Suppose now the result is true for all subscripts up to the (n — 1)st. Then
from (2.4)), (3.7), and the induction hypothesis:

n—2

jon (e, A|<K/ s+ 2on-al 3 fom

alt)? | 2a(t)? =2 1
< K/ 22n 4 n—2 Z 2m—1 dt

m=1

N 8} [t

since a(-) is a decreasing function. The result now follows from the choice of A.

It may now be seen from the Lemma and that the series Y v/, is absolutely
uniformly convergent which justifies the term by term differentiation. To complete
the proof of the theorem we observe that, since vo(-) € L'[0, 00), there exists a K
which satisfies and also, from , that

)\/a

(o)
o1 (2, )] < 2)\1/2K/ oo ()] dt.

We now choose a(z) := 2K [ |vo(t)| dt and note that

/Oooa(x)dx:/o 2K/w vo(t)|dtd:r:2K/Ooot|uo(t)|dt'
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The first part of the theorem now follows.

It remains to show that, under the assumptions (2.1)—(2.3)), vy is real-valued.
Suppose not; if vo(t) = w(t) + dw(t) then upon substitution into (2.1) and the
separation of real and imaginary parts we see that

w' = —2uw
whence

w(t) — Ce2 Ji u(s)ds

The requirement lim;_ » vg(¢) = 0 then requires either C' = 0 or lim;_, o, fot u(s)ds =
oo. But the latter case contradicts ([2.3]) which requires that (1 + ¢)vg(¢) and hence
(1+t)u(t) € L'[0,00), so the only possibility is that vg is real-valued. O

4. AN ASYMPTOTIC EXPANSION

The bounds derived in Lemmalead to estimates for the {v,, } which show that
>°°°  vn(x, A) is uniformly, absolutely convergent for z € [0,00) and 0 < A < A

n=1
for some A which is, in principle at least, computable. In terms of A however

the bounds are all of order A/2. We now show that the terms of the series are
decreasing asymptotically with increasing powers of .

Lemma 4.1. With K as in (3.7) and with vy satisfying (3.8) there exist sequences
of constants {C,} and {A,} so that for x € [0,00) and 0 < A< A, <A,

[on (2, )| < CpA™2a(x). (4.1)
Proof. We proceed by induction. From ([2.5)),

(e, V)] < / eI sy (1 M)

<\K /Oo a(t)?dt < )\a(x)K/oo a(t) dt
T 0

Suppose the result is true up to n > 2, then from ([2.5):
n—1

(onsn (2, \)] gK/ [onl? + 20on 3 [t
T m=1

oS n—1
<K / C2N"a(t)? +2C, A" 2a(t) > ColN™2alt) dt
& m=1

1 n—1 o 00
< ENF a(@){CnT A=20, Y Cd™s }/ al(t) dt
m=1 0

since the A,, form a decreasing sequence. The result now follows. O

In consequence of Lemma [{.1 we have that for every N,

N
/ _ L A
po(N) = —{x +Imnzlvn(07>\)}+0(/\ 3 )
as A — 0% and, in particular,
1/2 00 .
po(N) = )\—{1 + 2/ cos(2A1/2t)e =2 Jo vo(s) sy (1) dt} +O0(N)
™ 0
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