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MAXIMUM NUMBER OF LIMIT CYCLES FOR GENERALIZED
LIÉNARD DIFFERENTIAL EQUATIONS

SABRINA BADI, AMAR MAKHLOUF

Abstract. Applying the averaging theory of first and second order to a class

of generalized polynomial Liénard differential equations, we improve the known

lower bounds for the maximum number of limit cycles that this class can
exhibit.

1. Introduction and statement of the main results

One of the main problems in the theory of ordinary differential equations is the
study of their limit cycles, their existence, their number and their stability. A limit
cycle of a differential equation is a periodic orbit in the set of all isolated periodic
orbits of the differential equation. These last years hundreds of papers studied the
limit cycles of planar polynomial differential systems. The Second part of the 16th
Hilbert’s problem [13] is related with the least upper bound on the number of limit
cycles of polynomial vector fields having a fixed degree. The generalized polynomial
Liénard differential equation

ẍ+ f(x)ẋ+ g(x) = 0. (1.1)

was introduced in [17]. Here the dot denotes differentiation with respect to the
time t, and f(x) and g(x) are polynomials in the variable x of degrees n and m
respectively. The Liénard equation, which is often taken as the typical example of
nonlinear self-excited vibration problem, can be used to model resistor-inductor-
capacitor circuits with nonlinear circuit elements. It can also be used to model
certain mechanical systems which contain the nonlinear damping coefficients and
the restoring force or stiffness. Limit cycles usually arise at a Hopf bifurcation in
nonlinear systems with varying parameters. In mechanical systems, the varying
parameter is frequently a damping coefficient (see [1, 7]). Lots of papers discussed
the possible number of limit cycle of Liénard or generalized mixed Rayleigh-Liénard
oscillators. Ding and Leung [7] investigated the generalized mixed Rayleigh-Liénard
oscillator with highly nonlinear terms. They consider mainly the number of limit
cycle bifurcation diagrams of these systems. For the subclass of polynomial vector
fields (1.1) we have a simplified version of Hilbert’s problem, see [18, 26].

Many of the results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles which bifurcate from a single degenerate
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singular point, that are so called small amplitude limit cycles, see [19, 23]. We
denote by Ĥ(m,n) the maximum number of small amplitude limit cycles for systems
of the form (1.1). The values of Ĥ(m,n) give a lower bound for the maximum
number H(m,n) (i.e. the Hilbert number) of limit cycles that the differential
equation (1.1) with m and n fixed can have. For more information about the
Hilbert’s 16th problem and related topics see [14] and [15].

Now we shall describe briefly the main results about the limit cycles on Liénard
differential systems as it is described in [21].

• In 1928 Liénard [17] proved that if m = 1 and F (x) =
∫ x
0
f(s)ds is a

continuous odd function , which has a unique root at x = a and is monotone
increasing for x ≥ a, then equation (1.1) has a unique limit cycle.
• In 1973 Rychkov [24] proved that if m = 1 and F (x) =

∫ x
0
f(s)ds is an odd

polynomial of degree five, then equation (1.1) has at most two limit cycles.
• In 1977 Lins, de Melo and Pugh [18] proved that H(1, 1) = 0 and H(1, 2) =

1.
• In 1990, 1996, Dumortier, Li and Rousseau in [10] and [8] proved that
H(3, 1) = 1.
• In 1998 Coppel [6] proved that H(2, 1) = 1.
• In 1997 Dumortier and Chengzhi [9] proved that H(2, 2) = 1.
• In 2010 Chengzhi Li and Llibre [16] proved that H(1, 3) = 1.

Blows, Lloyd [3] and Lynch [20, 22] have used inductive arguments in order to prove
the following results.

• If g is odd then Ĥ(m,n) = [n2 ].
• If f is even then Ĥ(m,n) = n, whatever g is.
• If f is odd then Ĥ(m, 2n+ 1) = [ (m−2)

2 ] + n.
• If g(x) = x+ ge(x), where ge is even then Ĥ(2m, 2) = m.

Christopher and Lynch [5] developed a new algebraic method for determining the
Liapunov quantities of system (1.1) and proved the following:

• Ĥ(m, 2) = [ (2m+1)
3 ],

• Ĥ(2, n) = [ (2n+1)
3 ],

• Ĥ(m, 3) = 2[ (3m+2)
8 ] for all 1 < m ≤ 50,

• Ĥ(3, n) = 2[ (3n+2)
8 ] for all 1 < n ≤ 50,

• Ĥ(4, k) = Ĥ(k, 4) for k = 6, 7, 8, 9 and Ĥ(5, 6) = Ĥ(6, 5).

In 1998, Gasull and Torregrosa [11] obtained upper bounds for Ĥ(7, 6), Ĥ(6, 7),
Ĥ(7, 7) and Ĥ(4, 20). In 2006, Yu and Han [28] proved that Ĥ(m,n) = Ĥ(n,m)
for n = 4, m = 10, 11, 12, 13; n = 5, m = 6, 7, 8, 9; n = 6, m = 5, 6. In 2009, Llibre,
Mereu and Teixeira [21] using the averaging theory studied the maximum number of
limit cycles H̃(m,n) which can bifurcate from the periodic orbits of a linear center
perturbed inside the class of generalized polynomial Liénard differential equations
of degrees m and n of the form

ẋ = y,

ẏ = −x−
∑
k≥1

εk(fkn(x)y + gkm(x)), (1.2)
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where for every k the polynomials gkm(x) and fkn(x) have degree m and n respec-
tively, and ε is a small parameter. In 2011, Badi and Makhlouf [2] using the
averaging theory studied the maximum number of limit cycles H̃(m,n) which can
bifurcate from the periodic orbits of a linear center perturbed inside the class of
generalized polynomial Liénard differential equations of degrees m and n as follows:

ẋ = y,

ẏ = −x−
∑
k≥1

εk(fkn(x, y)y + gkm(x)), (1.3)

where for every k the polynomial gkm(x) has degree m, the polynomial fkn(x, y) has
degree n on x and y and ε is a small parameter; i.e., the maximal number of medium
amplitude limit cycles which can bifurcate from the periodic orbits of the linear
center ẋ = y, ẏ = −x, perturbed as in (1.3). In fact in [2] the authors computed
lower estimations of H̃(m,n). More precisely they compute the maximum number
of limit cycles H̃k(m,n) which bifurcate from the periodic orbits of the linear center
ẋ = y, ẏ = −x, using the averaging theory of order k, for k = 1, 2. Of course
H̃k(m,n) ≤ H̃(m,n) ≤ H(m,n).

In this work using the averaging theory we study the maximum number of limit
cycles H̃(l,m, n) which can bifurcate from the periodic orbits of a linear center
perturbed inside the class of generalized polynomial Liénard differential equations
of degrees l, m and n of the form

ẋ = y +
∑
k≥1

εkhkl (x),

ẏ = −x−
∑
k≥1

εk(fkn(x, y)y + gkm(x)),
(1.4)

where for every k the polynomials hkl (x), gkm(x) and fkn(x, y) have degree l, m and
n respectively and ε is a small parameter, i.e. the maximal number of medium
amplitude limit cycles which can bifurcate from the periodic orbits of the linear
center ẋ = y, ẏ = −x, perturbed as in (1.4).

Let k be a positive integer. We define E(k) as the largest even integer less than
or equal to k, and O(k) as the largest odd integer less than or equal to k. The main
result that improve the mentioned previous results is the following.

Theorem 1.1. If for every k = 1, 2 the polynomials hkl (x), gkm(x) and fkn(x, y)
have degree l, m and n respectively, with l,m, n ≥ 1, then for |ε| sufficiently small,
the maximum number of medium limit cycles of the polynomial Liénard differential
systems (1.4) bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x,
using the averaging theory

(a) of first order

H̃1(l,m, n) =
[max{O(l), O(n+ 1)} − 1

2

]
= max

{[ l − 1
2
]
,
[n

2
]}

(b) of second order

H̃2(l,m, n) =
[(

max
{
O(n) +O(m) + 1, O(n) + E(l) + 1, E(m) + E(l),

2O(n) + 2, O(l), O(n+ 1)
}
− 1
)
/2
]
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Of course if H(l,m, n) is the Hilbert number for our polynomial Liénard differ-
ential systems (1.4), then H̃k(l,m, n) 6= H(l,m, n) for k = 1, 2; i.e. the numbers
H̃k(l,m, n) provide lower bounds for the Hilbert numbers of systems (1.4).

This paper is structured as follows. In section 2 we present a summary of the
results on the averaging theory that we we shall need in this paper. In sections 3
and 4 we prove statements (a) and (b) of Theorem 1 respectively.

2. The averaging theory of first and second order

In the proof of our main result we use the averaging theory as it is presented in
[4]. Consider the differential system

x′(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε), (2.1)

where F1, F2 : R×D → Rn, R : R×D × (−εf , εf )→ Rn are continuous functions,
T -periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses (i) and (ii) hold.

(i) F1(t, .) ∈ C1(D) for all t ∈ R, F1, F2, R,DxF1 are locally Lipschitz with
respect to x, and R is differentiable with respect to ε. We define

F10(z) =
1
T

∫ T

0

F1(s, z)ds,

F20(z) =
1
T

∫ T

0

[
DzF1(s, z)y1(s, z) + F2(s, z)

]
ds,

where

y1(s, z) =
∫ s

0

F1(t, z)dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0}, there
exists aε ∈ V such that F10(aε)+εF20(aε) = 0 and dB(F10+εF20, V, aε) 6= 0.

Then, for |ε| > 0 sufficiently small there exists a T -periodic solution ϕ(., ε) of the
system (2.1) such that ϕ(0, ε) = aε.

The expression dB(F10 + εF20, V, aε) 6= 0 means that the Brouwer degree of the
function F10+εF20 : V → Rn at the fixed point aε is not zero. A sufficient condition
for the inequality to be true is that the Jacobian of the function F10 + εF20 at aε is
not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly the zeros of
F10 for ε sufficiently small. In this case the previous result provides the averaging
theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10+εF20

are mainly the zeros of F20 for ε sufficiently small. In this case the previous result
provides the averaging theory of second order. For more information about the
averaging theory see [25, 27].

3. Proof of statement (a) of Theorem 1

We shall need the first order averaging theory to prove statement (a) of Theorem
1. In order to apply the first order averaging method we write system (1.4) with
k = 1, in polar coordinates (r, θ) where x = rcos(θ), y = rsin(θ), r > 0. In this
way system (1.4) is written in the standard form for applying the averaging theory.
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If we write f1
n(x, y) =

∑n
i+j=0 aijx

iyj , g1
m(x) =

∑m
i=0 bix

i and h1
l (x) =

∑l
i=0 cix

i

then system (1.4) becomes

ṙ = ε
[ l∑
i=0

cir
i cosi+1(θ)− r sin2(θ)

n∑
i+j=0

aijr
i+j cosi(θ) sinj(θ)

− sin(θ)
m∑
i=0

bir
icosi(θ)

]
+O(ε2),

θ̇ = −1− ε

r

[
r cos(θ) sin(θ)

n∑
i+j=0

aijr
i+j cosi(θ)sinj(θ)

+ cos(θ)
m∑
i=0

bir
i cosi(θ) + sin(θ)

l∑
i=0

cir
i cosi(θ)

]
+O(ε2).

(3.1)

Now taking θ as the new independent variable, this system becomes

dr

dθ
= −ε

( l∑
i=0

cir
i cosi+1(θ)− r sin2(θ)

n∑
i+j=0

aijr
i+j cosi(θ) sinj(θ)

− sin(θ)
m∑
i=0

bir
i cosi(θ)

)
+O(ε2)

= εF1(θ, r) +O(ε2).

Using the notation introduced in section 2 we have

F10(r) =
−1
2π

∫ 2π

0

( l∑
i=0

cir
i cosi+1(θ)− r sin2(θ)

n∑
i+j=0

aijr
i+j cosi(θ) sinj(θ)

− sin(θ)
m∑
i=0

bir
i cosi(θ)

)
dθ.

Since ∫ 2π

0

cosi+1(θ)dθ =

{
0 if i is even
αi 6= 0 if i is odd,

it follows that∫ 2π

0

cosi(θ) sinj+2(θ)dθ =

{
0 if i odd and j is odd
βij 6= 0 if i is even and j even,∫ 2π

0

sin(θ) cosi(θ)dθ = 0

for i = 0, 1, . . . , we have

F10(r) =
−1
2π

∫ 2π

0

( l∑
i=1, i odd

cir
i cosi+1(θ)

−
n∑

i+j=0, i even j even

aijr
i+j+1 cosi(θ) sinj+2(θ)

)
dθ.
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We define

M(l, n) =


max{l, n+ 1} if l is odd, n is even
max{l − 1, n+ 1} if l is even, n is even
max{l, n} if l is odd, n is odd
max{l − 1, n} if l is even, n is odd.

Therefore,
M(l, n) = max{O(l), O(n+ 1)}

and [M(l, n)− 1
2

]
=
[max{O(l), O(n+ 1)} − 1

2

]
= max

{[ l − 1
2

]
,
[n

2

]}
finally, we have

F10(r) =
M(l,n)∑

k=1, k odd

σkr
k,

with

σk =
−1
2π

∫ 2π

0

(
ck cosk+1(θ)− a(k−1−j)j cosk−1−j(θ) sinj+2(θ)

)
dθ,

where k ≥ 1 is an odd integer number and j ≥ 0 is an even one. Since F10(r) is
an odd function, it has at most [(M(l, n) − 1)/2] simple positive real roots. From
section 2 we obtain that for |ε| sufficiently small, the maximum number of limit
cycles of system (1.4) which can bifurcate from the periodic orbits of the linear
center ẋ = y, ẏ = −x using the averaging theory of first order is [(M(l, n)− 1)/2].
Hence statement (a) of Theorem 1 is proved.

4. Proof of statement (b) of Theorem 1

For proving statement (b) of Theorem 1 we shall use the second order averaging
theory. In this section we consider the differential systems

ẋ = y + εh1
l (x) + ε2h2

l (x) +O(ε3),

ẏ = −x− ε(f1
n(x, y)y + g1

m(x))− ε2(f2
n(x, y)y + g2

m(x)) +O(ε3).
(4.1)

where

h2
l (x) =

l∑
i=0

ĉix
i, f2

n(x, y) =
n∑

i+j=0

âijx
iyj , g2

m(x) =
m∑
i=0

b̂ix
i

Then system (4.1) in polar coordinates (r, θ), r > 0 becomes

ṙ = ε
xh1

l (x)− y2f1
n(x, y)− yg1

m(x)
r

+ ε2
xh2

l (x)− y2f2
n(x, y)− yg2

m(x)
r

+O(ε3),

θ̇ = −1− εxyf
1
n(x, y) + xg1

m(x) + yh1
l (x)

r2
− ε2xyf

2
n(x, y) + xg2

m(x) + yh2
l (x)

r2

+O(ε3).

Taking θ as the new independent variable, this system becomes

dr

dθ
= ε

xh1
l (x)− y2f1

n(x, y)− yg1
m(x)

r
− ε2

[xh2
l (x)− y2f2

n(x, y)− yg2
m(x)

r

− (xh1
l (x)− y2f1

n(x, y)− yg1
m(x))(xyf1

n(x, y) + xg1
m(x) + yh1

l (x))
r3

]
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− ε3
[ (xh1

l (x)− y2f1
n(x, y)− yg1

m(x))(xyf2
n(x, y) + xg2

m(x) + yh2
l (x))

r3

+
(xh2

l (x)− y2f2
n(x, y)− yg2

m(x))(xyf1
n(x, y) + xg1

m(x) + yh1
l (x))

r3

− (xh1
l (x)− y2f1

n(x, y)− yg1
m(x))(xyf1

n(x, y) + xg1
m(x) + yh1

l (x))2

r5

]
+O(ε4)

= εF1(θ, r) + ε2F2(θ, r) + ε3F3(θ, r) +O(ε4),

Now we determine the corresponding function

F20 =
1

2π

∫ 2π

0

[ d
dr
F1(θ, r).

∫ θ

0

F1(φ, r)dφ+ F2(θ, r)
]
dθ.

For this we put F10 ≡ 0 which is equivalent to

ci = 0 for i odd, and
aij = 0 for i even and j even

First, we have

d

dr
F1(θ, r) = −

l∑
i=2, even

icir
i−1 cosi+1(θ)

+
n∑

i+j=2, i odd or j odd

(i+ j + 1)aijri+j cosi(θ) sinj+2(θ)

+
m∑
i=1

ibir
i−1 cosi(θ) sin(θ),

and∫ θ

0

F1(φ, r)dφ = −
l∑

i=0, i even

cir
i

∫ θ

0

cosi+1(φ)dφ

+
n∑

i+j=1, i odd or j odd

aijr
i+j+1

∫ θ

0

cosi(φ) sinj+2(φ)dφ

+
m∑
i=0

bir
i

∫ θ

0

cosi(φ)sin(φ)dφ

= −
l∑

i=0, i even

cir
iAi+1(θ) +

n∑
i+j=1, i odd or j odd

aijr
i+j+1Ai,(j+2)(θ)

+
m∑
i=0

bir
i
(1− cosi+1(θ)

i+ 1

)
.

where

Ai(θ) =
∫ θ

0

cosi(φ)dφ

=
i−2∑

k=1, k odd

(i− k)!
i!

(i− k)2.(i− (k − 2)))2 . . . (i− 1)2

(i− k)2
sin(θ) cosi−k(θ)
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+
(i− 1)2(i− 3)2 . . . (2)2

i!
sin(θ),

Ap,(2n+1)

=
∫ θ

0

cosp(φ) sin2n+1(φ)dφ

=
cosp+1(θ)
2n+ p+ 1

{
sin2n +

n∑
k=1

2kn(n− 1) . . . (n− k + 1) sin2n−2k(θ)
(2n+ p− 1)(2n+ p− 3) . . . (2n+ p− 2k + 1)

}
,

Ap,(2n)

=
∫ θ

0

cosp(φ)sin2n(φ)dφ

=
−cosp+1(θ)

2n+ p

{
sin2n−1 +

n−1∑
k=1

(2n− 1)(2n− 3) . . . (2n− 2k + 1) sin2n−2k−1(θ)
(2n+ p− 2)(2n+ p− 4) . . . (2n+ p− 2k)

}
+

(2n− 1)!!
(2n+ p).(2n+ p− 2) . . . (p+ 2)

∫ θ

0

cosp(θ)dθ;

for more details see [12].
From the nine main products of d

drF1(θ, r)
∫ θ
0
F1(φ, r)dφ, only the following five

are not zero when we integrate them between 0 and 2π:

l∑
i=2, i even

m∑
k=0, k even

i

k + 1
cibkr

i+k−1 cosi+k+2(θ),

−
n∑

i+j=2,i even and j odd

l∑
k=0, k even

(i+ j + 1)aijckri+j+k cosi(θ) sinj+2(θ)Ak+1(θ),

+
n∑

i+j=2

n∑
k+h=1

(i+ j + 1)aijakhri+j+k+h cosi(θ) sinj+2(θ)Ai,(j+2),

where if i even j is odd, and if i odd j even, and the same for k and h, with i+ k
odd and j + h is odd too.

+
n∑

i+j=2, i odd and j even

m∑
k=0, k even

(i+ j + 1)aijbkri+j+k cosi(θ)

× sinj+2(θ)(
1− cosk+1(θ)

k + 1
),

−
m∑

i=2, i even

l∑
k=0, k even

ibickr
i+k−1 cosi(θ) sin(θ)Ak+1(θ).

Then the last five sums are odd polynomial in the variable r of degree O(n) +E(l),
2O(n) + 1, O(n) + E(m),E(l) + E(m)− 1, respectively. Therefore,

1
2π

∫ 2π

0

[ d
dr
F1(θ, r)

∫ θ

0

F1(φ, r)dφ
]
dθ
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is an odd polynomial in the variable r and can contribute at most with[max{O(n) + E(l), 2O(n) + 1, O(n) + E(m), E(l) + E(m)− 1} − 1
2

]
simple positive real roots to the roots of F20(r).

Now we shall study the contribution of 1
2π

∫ 2π

0
F2(θ, r)dθ to F20(r). The first

part,
xh2

l (x)− y2f2
n(x, y)− yg2

m(x)
r

,

of F2(θ, r), contributes at the roots of F20(r) exactly as the function F1(θ, r) con-
tributes to F10(r); i.e. it contributes at most with[max{O(l), O(n+ 1)} − 1

2

]
simple positive roots to the roots of F20(r). Finally we shall study the contribution
of the second part

(xh1
l (x)− y2f1

n(x, y)− yg1
m(x))(xyf1

n(x, y) + xg1
m(x) + yh1

l (x))
r3

of F2(θ, r) to F20(r), which can be written as

1
r2

[ l∑
i=0, i even

cir
i cosi+1(θ)−

n∑
i+j=1, i odd or j odd

aijr
i+j+1 cosi(θ) sinj+2(θ)

−
m∑
i=0

bir
i cosi(θ) sin(θ)

]
,

[ n∑
i+j=1, i odd or j odd

aijr
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

bir
i cosi+1(θ)

+
l∑

i=0, i even

cir
i cosi(θ) sin(θ)

]
.

From the nine products between the different sums, seven ones will not be zero
after the integration with respect to θ between 0 and 2π, and two of these seven
are equal.

So the terms which will contribute to F20(r) are

1
r2

[ l∑
k=0, k even

n∑
i+j=1, i even and j odd

ckaijr
k+i+j+1 cosk+i+2(θ) sinj+1(θ)

+
l∑

k=0, k even

m∑
i=0, ieven

ckbir
k+i cosk+i+2(θ)

+
2n∑

i+j=1,k+h=1, i+ k odd and j + h odd

aijakhr
i+j+k+h+2 cosi+k+1(θ) sinj+h+3(θ)

+ 2
n∑

i+j=1, i odd and j even

m∑
k=0, k even

aijbkr
i+j+k+1 cosi+k+1(θ) sinj+2(θ)
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+
n∑

i+j=1,i even and j odd

l∑
k=0, k even

aijckr
i+j+k+1 cosi+k(θ) sinj+3(θ)

+
m∑

i=0, i even

l∑
k=0, k even

bickr
i+k cosi+k(θ) sin2(θ)

]
So the integral between 0 and 2π with respect to θ of this last expression is an
odd polynomial in the variable r of degree max{O(n) + O(m) + 1, O(n) + E(l) +
1, E(m) + E(l), 2O(n) + 2}. Consequently the contribution of the second part,

(xh1
l (x)− y2f1

n(x, y)− yg1
m(x))(xyf1

n(x, y) + xg1
m(x) + yh1

l (x))
r3

,

of F2(θ, r) to the zeros of F20(r) is at most with[{O(n) +O(m) + 1, O(n) + E(l) + 1, E(m) + E(l), 2O(n) + 2} − 1
2

]
simple positive real roots.

From the above results, we have that F20(r) has at most[{O(n) +O(m) + 1, O(n) + E(l) + 1, E(m) + E(l), 2O(n) + 2, O(l), O(n+ 1)} − 1
2

]
simple positive real roots. So, from the results of section 2 statement (b) of Theorem
1 is proved.
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