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SOLVABILITY OF DEGENERATE ANISOTROPIC ELLIPTIC
SECOND-ORDER EQUATIONS WITH L1-DATA

ALEXANDER A. KOVALEVSKY, YULIYA S. GORBAN

Abstract. In this article, we study the Dirichlet problem for degenerate
anisotropic elliptic second-order equations with L1-right-hand sides on a bounded

open set of Rn (n > 2). These equations are described with a set of exponents

and of a set of weighted functions. The exponents characterize the rates of
growth of the coefficients of the equations with respect to the corresponding

derivatives of the unknown function, and the weighted functions characterize
degeneration or singularity of the coefficients of the equations with respect to

the spatial variable. We prove theorems on the existence of entropy solutions,

T -solutions, W -solutions, and weighted weak solutions of the problem under
consideration.

1. Introduction

In the previous twenty years, the investigations on the existence and properties
of solutions to nonlinear equations and variational inequalities with L1-data, or
measures as data, have been developed intensively. As is generally known, an
effective approach to the solvability of second-order equations in divergence form
with L1-right-hand sides was proposed in [6]. Then closely related research has
been developed for nondegenerate isotropic nonlinear second-order equations with
L1-data, and measures as data, involving entropy and renormalized solutions [2, 7,
8, 9, 10, 12, 16, 18, 19].

As for the solvability of nonlinear elliptic second-order equations with anisotropy
and degeneracy (with respect to the spatial variable), we note the following works.
The existence of a weak (distributional) solution to the Dirichlet problem for a
model nondegenerate anisotropic equation with right-hand side measure was es-
tablished in [11]. The existence of weak solutions for a class of nondegenerate
anisotropic equations with locally integrable data in Rn (n > 2) was proved in [4].
An analogous existence result concerning the Dirichlet problem for a system of non-
degenerate anisotropic equations with measure data was obtained in [5]. Moreover,
in [27], the existence of weak solutions to the Dirichlet problem for nondegenerate
anisotropic equations with right-hand sides from Lebesgues spaces close to L1 was
established. Solvability of the Dirichlet problem for degenerate isotropic equations
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with L1-data and measures as data was studied in [1, 3, 13, 15, 28]. We remark
that in [1, 13], the existence of entropy solutions to the given problem was proved in
the case of L1-data. In [3], the existence of a renormalized solution of the problem
for the same case was established. In [3, 15, 28], the existence of distributional
solutions of the problem was obtained in the case of right-hand side measures.

In this article, we study the Dirichlet problem for a class of degenerate anisotropic
elliptic second-order equations with L1-right-hand sides in a bounded open set Ω
of Rn (n > 2). This class is described by a set of exponents q1, . . . , qn and of
a set of weighted functions ν1, . . . , νn. The exponents qi characterize the rates
of growth of the coefficients of the equations with respect to the corresponding
derivatives of unknown function. The functions νi characterize degeneration or
singularity of the coefficients of the equations with respect to the spatial variable.
This is the most general situation in comparison with the above-mentioned works:
the nondegenerate isotropic case means that νi ≡ 1 and qi = q1, i = 1, . . . , n, the
nondegenerate anisotropic case means that νi ≡ 1, i = 1, . . . , n, and qi, i = 1, . . . , n,
are generally different, and the degenerate isotropic case means that νi = ν1, i =
1, . . . , n, as in [3, 13, 15, 28] or νi, i = 1, . . . , n, are generally different as in [1] but
qi = q1, i = 1, . . . , n.

Our initial assumptions on the exponents qi and the functions νi are as fol-
lows: qi ∈ (1, n), νi : Ω → R, νi > 0 in Ω, νi > 0 a.e. in Ω, νi ∈ L1

loc(Ω) and
(1/νi)1/(qi−1) ∈ L1(Ω). Considering such kinds of solutions to the given problem as
entropy solutions, T -solutions, W -solutions and weighted weak solutions, we prove
the corresponding existence results. In so doing, the theorem on the existence and
uniqueness of an entropy solution does not require additional conditions on qi and
νi, while the existence of other kinds of solutions is established under additional
conditions on the numbers qi and the exponents of increased summability (that
should be assumed) of functions 1/νi and νi.

In this connection, we observe that in the nondegenerate anisotropic case our
additional conditions for the existence of W -solutions are equivalent to a two-sided
bound for qi which coincides with that given in [4, 5]. Moreover, we note that,
unlike the present article, in [13], the existence of entropy solutions was proved
under the assumption that the involved weighted function belongs to an appropriate
Muckenhoupt class. We also remark that in the case where qi = q1 and νi = ν1,
i = 1, . . . , n, our conditions for the existence of T -solutions are reduced to such
requirements on the summability of the functions 1/ν1 and ν1 as in [28]. At last,
we observe that in [1], in the case where the functions νi, i = 1, . . . , n, are generally
different and qi = q1, i = 1, . . . , n, the existence of entropy solutions was established
under some implicit hypotheses on ν1, . . . , νn.

This article is organized as follows. In Section 2, we describe a weighted anisotro-
pic Sobolev space and a set of functions which are used in the sequel. In Section 3,
we formulate the problem in question, consider different kinds of its solutions and
give the statements of the main results. Section 4 is devoted to the proofs of these
results. Observe that the proofs are based on the use of some results of [20, 21, 22]
on the existence and properties of solutions of second-order variational inequalities
with L1-right-hand sides and sufficiently general constraints. Finally, in Section 5,
we consider particular cases concerning the exponents qi and the weighted functions
νi, and give examples where conditions of the main theorems are satisfied.
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For completeness we note that an extensive bibliography on the existence and
properties of solutions of second-order variational inequalities with L1-data and
measure data one can find in [22].

As far as the solvability of nonlinear elliptic high-order equations with anisotropy,
degeneracy and L1-data is concerned, we refer the reader for instance to [23, 24, 25,
26] where classes of elliptic equations of fourth and higher order with coefficients,
satisfying appropriate strengthened coercivity conditions, were considered.

In [14], a class of nondegenerate anisotropic nonlinear elliptic equations of arbi-
trary even order with L1-data was considered, and the solvability of the Dirichlet
problem in the corresponding energy space was established. However, this was
made under a condition on the involved parameters which provides the imbedding
of the energy space into the space of bounded functions.

2. Preliminaries

Let n ∈ N, n > 2, Ω be a bounded open set of Rn, and let for every i ∈ {1, . . . , n}
we have qi ∈ (1, n). We set q = {qi : i = 1, . . . , n}.

For i ∈ {1, . . . , n}, let νi be nonnegative functions on Ω such that νi > 0 a.e. in
Ω,

νi ∈ L1
loc(Ω),

( 1
νi

)1/(qi−1)

∈ L1(Ω). (2.1)

We set ν = {νi : i = 1, . . . , n}. We denote by W 1,q(ν,Ω) the set of all functions
u ∈ L1(Ω) such that for every i ∈ {1, . . . , n} there exists the weak derivative Diu
and νi|Diu|qi ∈ L1(Ω).

Let ‖ · ‖1,q,ν be the mapping from W 1,q(ν,Ω) into R such that for every function
u ∈W 1,q(ν,Ω),

‖u‖1,q,ν =
∫

Ω

|u|dx+
n∑
i=1

(∫
Ω

νi|Diu|qidx
)1/qi

.

The mapping ‖ · ‖1,q,ν is a norm in W 1,q(ν,Ω), and, in view of the second inclusion
of (2.1), the set W 1,q(ν,Ω) is a Banach space with respect to the norm ‖ · ‖1,q,ν .
Moreover, by the first inclusion of (2.1), we have C∞0 (Ω) ⊂W 1,q(ν,Ω).

We denote by W̊ 1,q(ν,Ω) the closure of the set C∞0 (Ω) in the space W 1,q(ν,Ω).
Obviously, the set W̊ 1,q(ν,Ω) is a Banach space with respect to the norm induced
by the norm ‖ · ‖1,q,ν . We observe that C1

0 (Ω) ⊂ W̊ 1,q(ν,Ω).
Further, for every k > 0, let Tk : R→ R be the function such that

Tk(s) =

{
s if |s| 6 k,
k sign s if |s| > k.

By analogy with known results for nonweighted Sobolev spaces (see for instance
[17, Chapter 2]) we have: if u ∈ W̊ 1,q(ν,Ω) and k > 0, then Tk(u) ∈ W̊ 1,q(ν,Ω)
and for every i ∈ {1, . . . , n}, DiTk(u) = Diu · 1{|u|<k} a.e. in Ω.

We denote by T̊ 1,q(ν,Ω) the set of all functions u : Ω → R such that for every
k > 0, Tk(u) ∈ W̊ 1,q(ν,Ω). Clearly, W̊ 1,q(ν,Ω) ⊂ T̊ 1,q(ν,Ω). For every u : Ω → R
and for every x ∈ Ω we set

k(u, x) = min{l ∈ N : |u(x)| 6 l}.
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Definition 2.1. Let u ∈ T̊ 1,q(ν,Ω) and i ∈ {1, . . . , n}. Then δiu : Ω → R is the
function such that for every x ∈ Ω, δiu(x) = DiTk(u,x)(u)(x).

Definition 2.2. If u ∈ T̊ 1,q(ν,Ω), then δu : Ω→ Rn is the mapping such that for
every x ∈ Ω and for every i ∈ {1, . . . , n}, (δu(x))i = δiu(x).

Now we give several propositions which will be used in the next sections.

Proposition 2.3. Let u ∈ T̊ 1,q(ν,Ω) and i ∈ {1, . . . , n}. Then for every k > 0 we
have DiTk(u) = δiu · 1{|u|<k} a.e. in Ω.

The proof of this proposition is analogous to the proof of the corresponding result
given in [18] for the nonweighted case.

Proposition 2.4. Let u ∈ T̊ 1,q(ν,Ω) and w ∈ W̊ 1,q(ν,Ω)∩L∞(Ω). Then u−w ∈
T̊ 1,q(ν,Ω), and for every i ∈ {1, . . . , n} and for every k > 0 we have

DiTk(u− w) = δiu−Diw a.e. in {|u− w| < k}.

Proposition 2.5. Let u ∈ T̊ 1,q(ν,Ω) and |δu| ∈ L1(Ω). Then u ∈ W̊ 1,1(Ω) and
for every i ∈ {1, . . . , n} we have Diu = δiu a.e. in Ω.

The proofs of the two propositions above can be found in [20].

3. Statement of main results

Let c1, c2 > 0, g1, g2 ∈ L1(Ω), g1, g2 > 0 in Ω, and for every i ∈ {1, . . . , n}, let
ai : Ω × Rn → R be a Carathéodory functions. We suppose that for almost every
x ∈ Ω and for every ξ ∈ Rn,

n∑
i=1

(1/νi)1/(qi−1)(x)|ai(x, ξ)|qi/(qi−1) 6 c1

n∑
i=1

νi(x)|ξi|qi + g1(x), (3.1)

n∑
i=1

ai(x, ξ)ξi > c2
n∑
i=1

νi(x)|ξi|qi − g2(x). (3.2)

Moreover, we assume that for almost every x ∈ Ω and for every ξ, ξ′ ∈ Rn, ξ 6= ξ′,
n∑
i=1

[ai(x, ξ)− ai(x, ξ′)](ξi − ξ′i) > 0. (3.3)

Note that the following assertions hold: if u,w ∈ W̊ 1,q(ν,Ω) and i ∈ {1, . . . , n},
then

ai(x,∇u)Diw ∈ L1(Ω); (3.4)

if u ∈ T̊ 1,q(ν,Ω), w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω), k > 0, l > k + ‖w‖L∞(Ω) and i ∈
{1, . . . , n}, then

ai(x, δu)DiTk(u− w) = ai(x,∇Tl(u))DiTk(u− w) a.e. in Ω; (3.5)

if u ∈ T̊ 1,q(ν,Ω), w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω), k > 0 and i ∈ {1, . . . , n}, then

ai(x, δu)DiTk(u− w) ∈ L1(Ω). (3.6)

Assertion (3.4) is established with the use of (3.1). Assertion (3.5) is proved by
means of Propositions 2.3 and 2.4. Assertion (3.6) is derived from Proposition 2.4
and assertions (3.4) and (3.5).
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Let f ∈ L1(Ω), and consider the Dirichlet problem

−
n∑
i=1

∂

∂xi
ai(x,∇u) = f in Ω, (3.7)

u = 0 on ∂Ω. (3.8)

Definition 3.1. An entropy solution of problem (3.7), (3.8) is a function u ∈
T̊ 1,q(ν,Ω) such that for every function w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω) and for every
k > 1, ∫

Ω

{ n∑
i=1

ai(x, δu)DiTk(u− w)
}
dx 6

∫
Ω

f Tk(u− w)dx.

Theorem 3.2. There exists a unique entropy solution of problem (3.7), (3.8).

Definition 3.3. A T -solution of problem (3.7), (3.8) is a function u ∈ T̊ 1,q(ν,Ω)
such that:

(i) for every i ∈ {1, . . . , n}, ai(x, δu) ∈ L1(Ω);
(ii) for every function w ∈ C1

0 (Ω),∫
Ω

{ n∑
i=1

ai(x, δu)Diw
}
dx =

∫
Ω

fw dx.

The next theorem shows that under additional conditions on q and ν the en-
tropy solution of problem (3.7), (3.8) is a T -solution of the same problem. For the
statement of this and further results we need the following numbers depending on
the set q. We define

q =
( 1
n

n∑
i=1

1
qi

)−1

and for every m ∈ Rn such that mi > 0, i = 1, . . . , n, we set

pm = n
( n∑
i=1

1 +mi

miqi
− 1
)−1

.

Observe that if m ∈ Rn and for every i ∈ {1, . . . , n}, mi > 1/(qi − 1), then
pm > 1. Moreover, if m ∈ Rn and for every i ∈ {1, . . . , n} we have mi > 1/(qi − 1)
and 1/νi ∈ Lmi(Ω), then the space W̊ 1,q(ν,Ω) is continuously imbedded into the
space Lpm(Ω). This fact follows from [22, Proposition 2.8]. In turn, the mentioned
proposition was established with the use of an imbedding result for the non-weighted
anisotropic case [29].

Theorem 3.4. Suppose that there exist m,σ ∈ Rn such that the following condi-
tions are satisfied:

mi > 1/(qi − 1), 1/νi ∈ Lmi(Ω) ∀i ∈ {1, . . . , n}; (3.9)

σi > 0,
1
σi
< 1− (qi − 1)q

pm(q − 1)
, νi ∈ Lσi(Ω) ∀i ∈ {1, . . . , n}. (3.10)

Let u be the entropy solution of problem (3.7), (3.8). Then u is a T -solution of
problem (3.7), (3.8).

From Theorems 3.2 and 3.4 we deduce the following result.
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Corollary 3.5. Suppose that there exist m,σ ∈ Rn such that conditions (3.9) and
(3.10) are satisfied. Then there exists a T -solution of problem (3.7), (3.8).

As we see, T -solutions of the given problem belong to function set T̊ 1,q(ν,Ω),
and in general such solutions do not have weak derivatives. Now let us consider a
kind of solutions having weak derivatives.

Definition 3.6. A W -solution of problem (3.7), (3.8) is a function u ∈ W̊ 1,1(Ω)
such that:

(i) for every i ∈ {1, . . . , n}, ai(x,∇u) ∈ L1(Ω);
(ii) for every function w ∈ C1

0 (Ω),∫
Ω

{ n∑
i=1

ai(x,∇u)Diw
}
dx =

∫
Ω

fw dx.

Proposition 3.7. Let u ∈ T̊ 1,q(ν,Ω). Then u is a W -solution of problem (3.7),
(3.8) if and only if u is a T -solution of problem (3.7), (3.8) and |δu| ∈ L1(Ω).

For the proof of this result it suffices to use Propositions 2.3 and 2.5 along with
the fact that DiTk(w) = Diw · 1{|w|<k} a.e. in Ω if w ∈ W̊ 1,1(Ω), k > 0 and
i ∈ {1, . . . , n}.
Theorem 3.8. Suppose that there exist m,σ ∈ Rn with positive coordinates such
that the following conditions are satisfied:

q

pm(q − 1)
< qi − 1− 1

mi
, 1/νi ∈ Lmi(Ω) ∀i ∈ {1, . . . , n}; (3.11)

1
σi
< 1− (qi − 1)q

pm(q − 1)
, νi ∈ Lσi(Ω) ∀i ∈ {1, . . . , n}. (3.12)

Let u be the entropy solution of problem (3.7), (3.8). Then u is a W -solution of
problem (3.7), (3.8).

From Theorems 3.2 and 3.8 we infer the following result.

Corollary 3.9. Suppose that there exist m,σ ∈ Rn with positive coordinates such
that conditions (3.11) and (3.12) are satisfied. Then there exists a W -solution of
problem (3.7), (3.8).

Now we consider another kind of solutions (in the sense of an integral identity)
whose existence requires less additional conditions as compared with W -solutions.

We denote by V̊ 1,q(ν,Ω) the set of all functions w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω) such
that for every i ∈ {1, . . . , n}, ν1/qi

i Diw ∈ L∞(Ω). Obviously, the set V̊ 1,q(ν,Ω)
is nonempty. Moreover, if for every i ∈ {1, . . . , n} we have νi ∈ L∞loc(Ω), then
C1

0 (Ω) ⊂ V̊ 1,q(ν,Ω).

Definition 3.10. A weighted weak solution of problem (3.7), (3.8) is a function
u ∈ T̊ 1,q(ν,Ω) such that:

(i) for every i ∈ {1, . . . , n}, ν1/qi

i δiu ∈ L1(Ω);
(ii) for every i ∈ {1, . . . , n}, (1/νi)1/qiai(x, δu) ∈ L1(Ω);
(iii) for every function w ∈ V̊ 1,q(ν,Ω),∫

Ω

{ n∑
i=1

ai(x, δu)Diw
}
dx =

∫
Ω

fw dx.
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Observe that if for every i ∈ {1, . . . , n}, 1/νi ∈ L∞(Ω), and u is a weighted
weak solution of problem (3.7), (3.8), then u ∈ W̊ 1,1(Ω). Moreover, if for every
i ∈ {1, . . . , n}, νi ≡ 1, and u is a weighted weak solution of problem (3.7), (3.8),
then u is a W -solution of the same problem. These facts are easily established with
the use of Proposition 2.5.

Theorem 3.11. Suppose that there exists m ∈ Rn such that the following condi-
tions are satisfied:

mi > 1/(qi − 1), 1/νi ∈ Lmi(Ω) ∀i ∈ {1, . . . , n}; (3.13)

pm >
q

q − 1
max

{ 1
qi − 1

, qi − 1
}
∀i ∈ {1, . . . , n}. (3.14)

Let u be the entropy solution of problem (3.7), (3.8). Then u is a weighted weak
solution of problem (3.7), (3.8).

From Theorems 3.2 and 3.11 we obtain the following result.

Corollary 3.12. Suppose that there exists m ∈ Rn such that conditions (3.13) and
(3.14) are satisfied. Then there exists a weighted weak solution of problem (3.7),
(3.8).

From Theorems 3.4, 3.8 and 3.11 we deduce the following result.

Corollary 3.13. Suppose that there exist m,σ ∈ Rn with positive coordinates such
that conditions (3.11) and (3.12) are satisfied. Then the entropy solution of problem
(3.7), (3.8) is also a T -solution, a W -solution and a weighted weak solution of the
same problem.

4. Proofs

4.1. Basis for the proofs. Here we give two results which were established in
[20, 21, 22]. They form a basis for the proof of the theorems stated in the previous
section.

Theorem 4.1. Let V be a closed convex set in W̊ 1,q(ν,Ω) satisfying the conditions:

V ∩ L∞(Ω) 6= ∅, (4.1)

if u,w ∈ V and k > 0, then u− Tk(u− w) ∈ V . (4.2)

Then there exists a unique function u ∈ T̊ 1,q(ν,Ω) such that the following assertions
hold:

(i) for every w ∈ V ∩L∞(Ω) and for every k > 1 we have w− Tk(w− u) ∈ V ;
(ii) if w ∈ V ∩ L∞(Ω), k > 1 and l = k + ‖w‖L∞(Ω), then∫

Ω

{ n∑
i=1

ai(x,∇Tl(u))DiTk(u− w)
}
dx 6

∫
Ω

f Tk(u− w)dx.

We note that conditions (3.2) and (3.3) are essential in the proof of the given
theorem.

Proposition 4.2. Let m ∈ Rn, and let condition (3.9) be satisfied. Let V be
a closed convex set in W̊ 1,q(ν,Ω) satisfying conditions (4.1) and (4.2). Let u ∈
T̊ 1,q(ν,Ω), and let assertions (i) and (ii) of Theorem 4.1 hold. Then for every
i ∈ {1, . . . , n} and for every λ, 0 < λ < qipm(q−1)

pm(q−1)+q , we have ν1/qi

i δiu ∈ Lλ(Ω).
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4.2. Proof of Theorem 3.2. Applying Theorem 4.1 for the case where V =
W̊ 1,q(ν,Ω), we obtain that there exists a unique function u ∈ T̊ 1,q(ν,Ω) such that
the following assertion holds: if w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω), k > 1 and l = k +
‖w‖L∞(Ω), then∫

Ω

{ n∑
i=1

ai(x,∇Tl(u))DiTk(u− w)
}
dx 6

∫
Ω

f Tk(u− w)dx.

This and assertion (3.5) imply that u is the unique entropy solution of problem
(3.7), (3.8). The proof is complete.

4.3. Proof of Theorem 3.4. First of all, taking into account Proposition 2.4 and
assertion (3.5), from Proposition 4.2 we deduce the following result.

Proposition 4.3. Let m ∈ Rn, and let condition (3.9) be satisfied. Let u be the
entropy solution of problem (3.7), (3.8). Then for every i ∈ {1, . . . , n} and for
every λ, 0 < λ < qipm(q−1)

pm(q−1)+q , we have ν1/qi

i δiu ∈ Lλ(Ω).

Now, suppose that there exist m,σ ∈ Rn such that conditions (3.9) and (3.10)
are satisfied, and let u be the entropy solution of problem (3.7), (3.8).

Let us show that for every i ∈ {1, . . . , n}, ai(x, δu) ∈ L1(Ω). In fact, let i ∈
{1, . . . , n}. By (3.1), we have

|ai(x, δu)| 6 (c1+1)
n∑
j=1

ν
1/qi

i |ν1/qj

j δju|qj(qi−1)/qi+ν1/qi

i g
(qi−1)/qi

1 a.e. in Ω. (4.3)

Using Young’s inequality with the exponents qi and qi/(qi − 1), we obtain that
ν

1/qi

i g
(qi−1)/qi

1 6 νi + g1. Hence, taking into account that g1 ∈ L1(Ω) and, by
condition (3.10), νi ∈ L1(Ω), we infer that

ν
1/qi

i g
(qi−1)/qi

1 ∈ L1(Ω). (4.4)

Next, we fix j ∈ {1, . . . , n} and set

λij =
σi(qi − 1)qj
σiqi − 1

.

Using Young’s inequality with the exponents σiqi and σiqi/(σiqi − 1), we obtain

ν
1/qi

i |ν1/qj

j δju|qj(qi−1)/qi 6 νσi
i + |ν1/qj

j δju|λij . (4.5)

Observe that, by condition (3.10), we have

νi ∈ Lσi(Ω), (4.6)

λij <
qjpm(q − 1)
pm(q − 1) + q

.

Since condition (3.9) is satisfied, from the latter inequality and Proposition 4.3 it
follows that ν1/qj

j δju ∈ Lλij (Ω). This inclusion along with (4.6) and (4.5) implies
that for every j ∈ {1, . . . , n},

ν
1/qi

i |ν1/qj

j δju|qj(qi−1)/qi ∈ L1(Ω). (4.7)

From (4.3), (4.4) and (4.7) we deduce that for every i ∈ {1, . . . , n}, ai(x, δu) ∈
L1(Ω).
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Further, we fix w ∈ C1
0 (Ω) and for every h ∈ N we set wh = Th(u)−w. Now let

us fix k > ‖w‖L∞(Ω) + 1, and let h ∈ N. Since u is the entropy solution of problem
(3.7), (3.8) and wh ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω), by Definition 3.1, we have∫

Ω

{ n∑
i=1

ai(x, δu)DiTk(u− wh)
}
dx 6

∫
Ω

f Tk(u− wh)dx. (4.8)

From Propositions 2.3 and 2.4, it follows that for every i ∈ {1, . . . , n},

DiTk(u− wh) = (δiu · 1{|u|>h} +Diw) · 1{|u−wh|<k} a.e. in Ω.

Using this fact and (3.2), we obtain∫
Ω

{ n∑
i=1

ai(x, δu)DiTk(u− wh)
}
dx

>
∫
{|u−wh|<k}

{ n∑
i=1

ai(x, δu)Diw
}
dx−

∫
{|u|>h}

g2dx.

This and (4.8) imply that for every h ∈ N,∫
{|u−wh|<k}

{ n∑
i=1

ai(x, δu)Diw
}
dx 6

∫
Ω

f Tk(u− wh)dx+
∫
{|u|>h}

g2dx. (4.9)

Observe that for every h ∈ N, meas(Ω \ {|u − wh| < k}) 6 meas{|u| > h}. Then,
taking into account that meas{|u| > h} → 0 as h→ +∞ and the functions g2 and
ai(x, δu)Diw, i = 1, . . . , n, are summable in Ω, we obtain∫

{|u−wh|<k}

{ n∑
i=1

ai(x, δu)Diw
}
dx→

∫
Ω

{ n∑
i=1

ai(x, δu)Diw
}
dx, (4.10)∫

{|u|>h}
g2dx→ 0. (4.11)

Finally, since u−wh → w in Ω and k > ‖w‖L∞(Ω), we have Tk(u−wh)→ w in Ω.
Hence, applying Dominated Convergence Theorem, we obtain∫

Ω

f Tk(u− wh)dx→
∫

Ω

fw dx. (4.12)

From (4.9)–(4.12) we infer that∫
Ω

{ n∑
i=1

ai(x, δu)Diw
}
dx 6

∫
Ω

fw dx.

Therefore, for every w ∈ C1
0 (Ω),∫

Ω

{ n∑
i=1

ai(x, δu)Diw
}
dx =

∫
Ω

fw dx.

This completes the proof of Theorem 3.4.
We remark that the idea of using the functions wh = Th(u) − w in the above

proof is taken from [6, Corollary 4.3].
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4.4. Proof of Theorem 3.8. Suppose that there exist m,σ ∈ Rn with positive
coordinates such that conditions (3.11) and (3.12) are satisfied, and let u be the
entropy solution of problem (3.7), (3.8). Let us show that |δu| ∈ L1(Ω). In fact,
let i ∈ {1, . . . , n}. Clearly,

|δiu| = (1/νi)1/qi |ν1/qi

i δiu| a.e. in Ω. (4.13)

Using Young’s inequality with the exponents miqi and miqi/(miqi − 1), we obtain

(1/νi)1/qi |ν1/qi

i δiu| 6 (1/νi)mi + |ν1/qi

i δiu|miqi/(miqi−1) . (4.14)

By condition (3.11), we have 1/νi ∈ Lmi(Ω) and

miqi
miqi − 1

<
qipm(q − 1)
pm(q − 1) + q

.

This along with Proposition 4.3 and (4.13) and (4.14) implies that |δiu| ∈ L1(Ω),
i = 1, . . . , n. Hence, |δu| ∈ L1(Ω). Then, taking into account that conditions (3.9)
and (3.10) are satisfied and using Theorem 3.4 and Proposition 3.7, we obtain that
u is a W -solution of problem (3.7), (3.8). The proof is complete.

4.5. An integral identity for the entropy solution. According to Theorem
3.4, under conditions (3.9) and (3.10) the entropy solution of problem (3.7), (3.8)
is a solution in the sense of an integral identity for functions in C1

0 (Ω). In this
subsection, for every function u ∈ T̊ 1,q(ν,Ω) we introduce a function setM(u) and
show that if u is the entropy solution of the problem under consideration, then
u satisfies the corresponding integral identity for functions in M(u). This result,
having a self-contained interest, will be used in the proof of Theorem 3.11.

For every function u ∈ T̊ 1,q(ν,Ω) we set

M(u) = {w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω) : ai(x, δu)Diw ∈ L1(Ω), i = 1, . . . , n}.

Clearly, if u ∈ T̊ 1,q(ν,Ω), then the set M(u) is non-empty.

Proposition 4.4. Let u be the entropy solution of problem (3.7), (3.8). Then for
every w ∈M(u), ∫

Ω

{ n∑
i=1

ai(x, δu)Diw
}
dx =

∫
Ω

fw dx.

Proof. We fix w ∈ M(u) and for every h ∈ N we set wh = Th(u) − w. Then
we fix k > ‖w‖L∞(Ω) + 1, and let h ∈ N. Since u is the entropy solution of
problem (3.7), (3.8) and wh ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω), by Definition 3.1, inequality
(4.8) holds. Then, arguing as in the proof of Theorem 3.4, for every h ∈ N we
obtain inequality (4.9). At the same time limit relations (4.10)–(4.12) hold. We
only note that now the convergence in (4.10) is justified by the fact that for every
i ∈ {1, . . . , n}, ai(x, δu)Diw ∈ L1(Ω), which holds due to the inclusion w ∈ M(u).
From (4.9)–(4.12) we derive the required result. The proposition is proved. �

Corollary 4.5. Let u be the entropy solution of problem (3.7), (3.8). Then for
every function w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω) and for every k > 0,∫

Ω

{ n∑
i=1

ai(x, δu)DiTk(u− w)
}
dx =

∫
Ω

f Tk(u− w)dx.
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Proof. Let w ∈ W̊ 1,q(ν,Ω) ∩ L∞(Ω) and k > 0. By Proposition 2.4 and assertion
(3.6), we have Tk(u − w) ∈ M(u). Then from Proposition 4.4 we deduce the
required equality. �

4.6. Proof of Theorem 3.11. Suppose that there exists m ∈ Rn such that con-
ditions (3.13) and (3.14) are satisfied, and let u be the entropy solution of problem
(3.7), (3.8).

Let i ∈ {1, . . . , n}. By condition (3.14), we have pm(q − 1) > q/(qi − 1) and
pm(q − 1) > q(qi − 1). Hence,

1 <
qipm(q − 1)
pm(q − 1) + q

,
qi − 1
qi

<
pm(q − 1)

pm(q − 1) + q
. (4.15)

Since condition (3.13) coincides with condition (3.9), in view of Proposition 4.3 and
inequalities (4.15), we have ν1/qi

i δiu ∈ L1(Ω) and

|ν1/qj

j δju|qj(qi−1)/qi ∈ L1(Ω) ∀j ∈ {1, . . . , n} .
Therefore, taking into account that, by (3.1),

(1/νi)1/qi |ai(x, δu)| 6 (c1 + 1)
n∑
j=1

|ν1/qj

j δju|qj(qi−1)/qi + g
(qi−1)/qi

1 a.e. in Ω,

we obtain the inclusion (1/νi)1/qiai(x, δu) ∈ L1(Ω).
Thus, u ∈ T̊ 1,q(ν,Ω) and properties (i) and (ii) of Definition 3.10 hold. At the

same time, property (ii) of this definition implies that V̊ 1,q(ν,Ω) ⊂ M(u). Then,
by Proposition 4.4, property (iii) of Definition 3.10 holds. Hence, u is a weighted
weak solution of problem (3.7), (3.8). This completes the proof.

5. Particular cases and examples

First of all we note that Definitions 3.1, 3.3 and 3.6 have the same form with the
definitions of the corresponding kinds of solutions studied in [6, 8, 9] in the case
of nondegenerate isotropic elliptic second-order equations with L1-data. It is easy
to see that in this case (qi = q1 and νi ≡ 1 for every i ∈ {1, . . . , n}) there exist
m,σ ∈ Rn, satisfying conditions (3.9) and (3.10), and the existence of m,σ ∈ Rn
with positive coordinates, satisfying conditions (3.11) and (3.12), is equivalent to
the requirement q1 > 2−1/n. Thus, the results of Section 3 on entropy, T - and W -
solutions of problem (3.7), (3.8) generalize the known results concerning solutions
of nondegenerate isotropic elliptic second-order equations with L1-right-hand sides.

In regard to the nondegenerate anisotropic case we state the following proposi-
tion.

Proposition 5.1. Let νi ≡ 1 for all i ∈ {1, . . . , n}. Then
(i) the existence of m,σ ∈ Rn satisfying conditions (3.9) and (3.10) is equiva-

lent to the requirement

qi <
(n− 1)q
n− q

∀i ∈ {1, . . . , n}; (5.1)

(ii) the existence of m,σ ∈ Rn with positive coordinates satisfying conditions
(3.11) and (3.12) is equivalent to the requirement

(n− 1)q
n(q − 1)

< qi <
(n− 1)q
n− q

∀i ∈ {1, . . . , n}; (5.2)
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(iii) the existence of m ∈ Rn satisfying conditions (3.13) and (3.14) is equivalent
to requirement (5.2).

We omit the proof of the proposition because of its simplicity. Observe that
requirement (5.2) coincides with the condition imposed on the corresponding expo-
nents in [4, 5] where only the nondegenerate case was considered.

Example 5.2. Let n > 3, 1 < α < n/2, α < β < n, and let qi = α if i = 1, . . . , n−1,
and qn = β. We have

α <
α(n− 2)
n− 1− α

< n.

It is easy to verify that requirement (5.1) is equivalent to the condition

β <
α(n− 2)
n− 1− α

, (5.3)

and if n > 4 and α > 2−1/n, then requirement (5.2) is also equivalent to condition
(5.3).

As far as the degenerate isotropic case is concerned, the following proposition
holds.

Proposition 5.3. For every i ∈ {1, . . . , n}, let qi = q1 and νi = ν1. Then

(i) the existence of m,σ ∈ Rn satisfying conditions (3.9) and (3.10) is equiv-
alent to the existence of t, s ∈ R such that t > 1/(q1 − 1), t > n/q1,
s > nt/(tq1 − n), 1/ν1 ∈ Lt(Ω) and ν1 ∈ Ls(Ω);

(ii) the existence of m,σ ∈ Rn with positive coordinates satisfying conditions
(3.11) and (3.12) is equivalent to the existence of t, s ∈ R such that t > n/q1,
1/t < q1 − 2 + 1/n, s > nt/(tq1 − n), 1/ν1 ∈ Lt(Ω) and ν1 ∈ Ls(Ω);

(iii) the existence of m ∈ Rn satisfying conditions (3.13) and (3.14) is equivalent
to the existence of t ∈ R such that t > 1/(q1 − 1), t > n/q1, 1/t < q1(q1 −
2 + 1/n) and 1/ν1 ∈ Lt(Ω).

Proof. Let m,σ ∈ Rn, and let conditions (3.9) and (3.10) be satisfied. Setting

t = max{mi : i = 1, . . . , n}, s = σ1, (5.4)

by conditions (3.9) and (3.10), we immediately have t > 1/(q1 − 1), 1/ν1 ∈ Lt(Ω)
and ν1 ∈ Ls(Ω). Moreover, since q = q1 and q1/pm > 1−q1/n+1/t, from condition
(3.10) we derive that t > n/q1 and s > nt/(tq1 − n). Conversely, let t, s ∈ R, and
let t > 1/(q1 − 1), t > n/q1, s > nt/(tq1 − n), 1/ν1 ∈ Lt(Ω) and ν1 ∈ Ls(Ω). Then,
taking m,σ ∈ Rn such that for every i ∈ {1, . . . , n}, mi = t and σi = s, without any
difficulties we obtain that conditions (3.9) and (3.10) are satisfied. Thus, assertion
(i) is valid.

Next, let m,σ ∈ Rn, for every i ∈ {1, . . . , n}, mi > 0 and σi > 0, and let
conditions (3.11) and (3.12) be satisfied. Using these conditions, for t, s ∈ R defined
by (5.4) we easily establish that t > n/q1, 1/t < q1 − 2 + 1/n, s > nt/(tq1 − n),
1/ν1 ∈ Lt(Ω) and ν1 ∈ Ls(Ω). Conversely, if we have t, s ∈ R with the given
properties, then, taking m,σ ∈ Rn such that for every i ∈ {1, . . . , n}, mi = t and
σi = s, we easily get that conditions (3.11) and (3.12) are satisfied. Thus, assertion
(ii) is valid.
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Finally, let m ∈ Rn, and let conditions (3.13) and (3.14) be satisfied. Setting
t = max{mi : i = 1, . . . , n}, we have

1− q1

n
+

1
t
6

q1

pm
. (5.5)

At the same time, from condition (3.13) we infer that t > 1/(q1 − 1) and 1/ν1 ∈
Lt(Ω), and from condition (3.14) we obtain that q1/pm < min{(q1 − 1)2, 1}. This
and (5.5) imply that t > n/q1 and 1/t < q1(q1− 2 + 1/n). Conversely, if t ∈ R, and
t > 1/(q1 − 1), t > n/q1, 1/t < q1(q1 − 2 + 1/n) and 1/ν1 ∈ Lt(Ω), then, taking
m ∈ Rn such that for every i ∈ {1, . . . , n}, mi = t, we easily get that conditions
(3.13) and (3.14) are satisfied. Thus, assertion (iii) is valid. This completes the
proof of the proposition. �

We remark that the conditions on t, s and ν1 in assertion (i) of Proposition 5.3
are of the same kind as in [28]. The following two examples concern the degenerate
anisotropic case.

Example 5.4. Let n > 3 and 1 < α < n− 1. We have α < α(n− 2)/(n− 1− α).
Let

α 6 β < min
{ α(n− 2)
n− 1− α

, n
}
. (5.6)

Since, by (5.6), β(n− 1−α) < α(n− 2), we have (β−α)/(β− 1) < α/(n− 1). Let

0 < γ < nmin
{ α

n− 1
− β − α
β − 1

, α− 1
}
. (5.7)

Since, by (5.7),
γ

n
+
β − α
β − 1

<
α

n− 1
,

we have

1− n− 1
α

(γ
n

+
β − α
β − 1

)
> 0.

Let

0 < τ < nmin
{
β
[
1− n− 1

α

(γ
n

+
β − α
β − 1

)]
, β − 1

}
. (5.8)

Next, assume that Ω = {x ∈ Rn : |x| < 1}. Moreover, let qi = α and for every
x ∈ Ω, νi(x) = |x|γ if i = 1, . . . , n − 1, and let qn = β and for every x ∈ Ω,
νn(x) = |x|τ .

It is easy to see that for every i ∈ {1, . . . , n}, qi ∈ (1, n) and νi ∈ L1(Ω).
Besides, since in view of (5.7) and (5.8), γ < n(α− 1) and τ < n(β − 1), for every
i ∈ {1, . . . , n} we have (1/νi)1/(qi−1) ∈ L1(Ω).

Taking into account (5.7) and (5.8), we fix a positive number ε1 such that

ε1 6 min
{n(α− 1)

γ
− 1,

n(β − 1)
τ

− 1
}
, (5.9)

ε1

n

[
(n− 1)

γ

α
+
τ

β

]
< 1− τ

nβ
− n− 1

α

(γ
n

+
β − α
β − 1

)
. (5.10)

Now, define ε = 1 + ε1, and let m ∈ Rn be such that mi = n
γε if i = 1, . . . , n − 1,

and mn = n
τε .
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Using (5.9) and the inequality ε > 1, we establish that condition (3.9) is satisfied.
Moreover, using (5.10), we obtain

1
pm

=
1
n

( n∑
i=1

1 +mi

miqi
− 1
)

=
1
n

{n− 1
α

+
1
β

+
(n− 1)γ
nα

+
τ

nβ
+
ε1

n

[ (n− 1)γ
α

+
τ

β

]
− 1
}

<
1
n

{ 1
β

+
(n− 1)(α− 1)
α(β − 1)

}
=

q − 1
q(β − 1)

.

Hence

1− (β − 1)q
pm(q − 1)

> 0. (5.11)

Then, fixing β0 > 0 such that

1
β0

< 1− (β − 1)q
pm(q − 1)

and taking σ ∈ Rn such that for every i ∈ {1, . . . , n}, σi = β0, due to the inequality
α 6 β, we establish that condition (3.10) is satisfied.

Next, suppose additionally that n > 3 and α > 2. Obviously, α− 1 > 1/(β − 1),
and from (5.11) it follows that condition (3.14) is satisfied. Moreover, if additionally
we have

γ

n
< α− 1− 1

β − 1
,

τ

n
< α− 1− 1

β − 1
,

γ

n
ε1 < α− 1− 1

β − 1
− γ

n
,

τ

n
ε1 < α− 1− 1

β − 1
− τ

n
,

then for every i ∈ {1, . . . , n},
1

β − 1
< α− 1− 1

mi
,

and from (5.11) it follows that condition (3.11) is satisfied.

Example 5.5. Let n > 3 and (2n−3)/(n−1) < α < n−1. We have αn > 2(n−1)
and

max
{ α

αn− 2(n− 1)
, α
}
< min

{ α(n− 2)
n− 1− α

, n
}
.

Let

max
{ α

αn− 2(n− 1)
, α
}
< β < min

{ α(n− 2)
n− 1− α

, n
}
. (5.12)

We set

r = n
(n− 1

α
+

1
β

)−1

.

Since, by (5.12),
α

αn− 2(n− 1)
< β <

α(n− 2)
n− 1− α

,

we have (1
r
− 1
n

) r

r − 1
< min

{ 1
β − 1

, α− 1
}
. (5.13)
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Consequently, taking into account that α < β, we obtain(1
r
− 1
n

) (α− 1)r
r − 1

< 1.

We define σ∗ by
1
σ∗

= 1−
(1
r
− 1
n

) (α− 1)r
r − 1

and fix γ and τ such that n/σ∗ 6 γ < n and 0 < τ < n.
Next, assume that Ω = {x ∈ Rn : |x| < 1}. Moreover, let qi = α and for

every x ∈ Ω \ {0}, νi(x) = |x|−γ if i = 1, . . . , n − 1, and let qn = β and for every
x ∈ Ω\{0}, νn(x) = |x|−τ . It is easy to see that for every i ∈ {1, . . . , n}, qi ∈ (1, n),
νi ∈ L1(Ω) and (1/νi)1/(qi−1) ∈ L1(Ω). Besides, we have

q = r. (5.14)

Taking into account (5.13), we fix a number r1 such that
1
r
− 1
n
< r1 <

r − 1
r

min
{ 1
β − 1

, α− 1
}
, (5.15)

and then we fix a number t such that t > 1/(α− 1) and
1
tr
<
r − 1
r

min
{ 1
β − 1

, α− 1
}
− r1. (5.16)

Now let b ∈ Rn be such that bi = t, i = 1, . . . , n. For every i ∈ {1, . . . , n} we have
bi > 1/(qi − 1) and 1/νi ∈ Lbi(Ω). Moreover,

1
pb

=
1
r
− 1
n

+
1
tr
.

This equality along with (5.14)–(5.16) implies that
1
pb
<
q − 1
q

min
{ 1
β − 1

, α− 1
}
.

Hence it follows that for every i ∈ {1, . . . , n},

pb >
q

q − 1
max

{ 1
qi − 1

, qi − 1
}
.

Thus, we conclude that there exists m ∈ Rn such that conditions (3.13) and
(3.14) are satisfied. At the same time, since γσ∗ > n, we have ν1 /∈ Lσ∗(Ω). This
and (5.14) imply that there are no m,σ ∈ Rn such that both conditions (3.9) and
(3.10) are satisfied, and there are no m,σ ∈ Rn with positive coordinates such that
both conditions (3.11) and (3.12) are satisfied.
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