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ASYMPTOTIC BEHAVIOR OF STOCHASTIC GILPIN-AYALA
MUTUALISM MODEL WITH JUMPS

XINHONG ZHANG, KE WANG

Abstract. This article concerns the study of stochastic Gilpin-Ayala mutu-

alism models with white noise and Poisson jumps. Firstly, an explicit solution

for one-dimensional Gilpin-Ayala mutualism model with jumps is obtained and
the asymptotic pathwise behavior is analyzed. Then, sufficient conditions for

the existence of global positive solutions, stochastically ultimate boundedness

and stochastic permanence are established for the n-dimensional model. As-
ymptotic pathwise behavior of n-dimensional Gilpin-Ayala mutualism model

with jumps is also discussed. Finally numerical examples are introduced to

illustrate the results developed.

1. Introduction

In nature, mutualism is a usual phenomena. Rhinos and tick birds are an example
of a mutualism relationship. Tick birds eat the ticks on a rhino while the rhino
loses annoying parasites, the relationship is positive for both the rhino and the tick
birds because they both get what they want. Therefore it is important to study
the mutualism models for multi-species. As is well known now, the most important
model among several cooperative models is the following Lotka-Volterra mutualism
system:

dxi(t) = xi(t)
[
ri −

d∑
j=1

aijxj(t)
]
dt, 1 ≤ i ≤ n,

where xi(t) is the population size of species i, ri is the intrinsic growth rate of species
i, aij (i 6= j) represents the effect of species j upon the growth rate of species i,
aii stands for the intraspecies interaction, aii > 0, aij < 0, i 6= j. There is an
extensive literature concerned this model, for example, [1, 9, 10, 13, 21, 24, 26, 28].
However, in the practical case, population systems are often subject to various
stochastic small perturbation. The growth rates, interaction coefficients and so on
may be influenced by environmental noise. In recent years, stochastic differential
equations have received much attention, many results have been derived to reveal
how environmental noise affects the population systems. In particular, Mao, Marion
and Renshaw [22] revealed that the environmental noise can suppress a potential
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population explosion. Suppose the growth rates are perturbed by white noise ri →
ri +

∑m
j=1 σijḂj(t), here Ḃj(t) is a white noise, i.e., (B1(t), . . . , Bm(t)) is an m-

dimensional Brownian motion defined on a complete probability space (Ω,F,P), σ2
ij

stands for the intensity of the noise. Then the stochastic Lotka-Volterra mutualism
system becomes

dxi(t) = xi(t)
[
(ri −

d∑
j=1

aijxj(t))dt+
m∑
j=1

σijdBj(t)
]
, 1 ≤ i ≤ n.

Various forms of cooperative Lotka-Volterra system have been extensively studied
and we here mention Hung [11], Cheng[6], Liu and Wang [19, 20] and the references
cited therein. The key method used in our paper is motivated by them.

Unfortunately, in the Lotka-Volterra model, the rate of change of the size of
each species is linear function of sizes of the interacting species [16, 7]. However
in complex ecosystem this is almost impossible. Therefore, to meet the practical
situations, in 1973, Gilpin and Ayala [8] provided a modification for Lotka-Volterra
model, called Gilpin-Ayala model. For various forms about the Gilpin-Ayala system
readers can see [5, 17, 29, 30] and references therein for details. But here are few
works about stochastic Gilpin-Ayala mutualism model.

On the other hand, the population systems may suffer sudden environmental
perturbations, that is, some jump type stochastic perturbations; e.g., earthquakes,
hurricanes, epidemics and so on [3, 4]. These phenomena can not be described by
stochastic integrals driven only by Brownian motion. So it is feasible to introduce
a jump process into the underlying population system. SDEs with jumps have
received considerable attention in the past few years. We here mention Applebaum
[2], Situ [27], Bao et al [3, 4]. Particularly, the books by Applebaum [2] and Situ
[27] are good references in this area. To the best of the authors knowledge, to
this day, n-dimensional Gilpin-Ayala mutualism model with jumps has not been
studied. Motivated by these, the following n-dimensional Gilpin-Ayala mutualism
model with jumps is considered in this article:

dxi(t) = xi(t−)
{[
ri − aiixθii (t−)−

d∑
j 6=i

aijxj(t−)
]
dt+

m∑
j=1

σijdBj(t)

+
∫

Y
γi(u)N(dt, du)

}
,

(1.1)

for 1 ≤ i ≤ n, where x(t−) is the left limit of x(t), θi ≥ 1 is the parameter to modify
the classical Lotka-Volterra model, γi(u) > −1 is a bounded function, i = 1, . . . , n,
N is a Poisson counting measure with characteristic measure ν on a measurable
subset Y of (0,∞) with ν(Y) < ∞, and Ñ(dt, du) := N(dt, du) − ν(du)dt. We
assume Brownian motion and N are independent.

Throughout this article Rn+ := {x ∈ Rn : xi > 0 for i = 1, . . . , n}, Ā = (aij), ĀT

denotes the transpose of Ā. If x ∈ Rn, its norm is denoted by |x| = (
∑n
i=1 x

2
i )

1
2 . If

Q is a matrix, |Q| =
√

trace(QTQ) represents its trace norm. If Q = (qij)n×n is a
symmetric matrix, then λ+

max(Q) = supx∈Rn+,|x|=1 x
TQx. K is a positive constant

and may be different at different places. We impose the following assumptions:
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(A1) There is a positive constant κ such that∫
Y

(| ln(1 + γ(y))| ∨ | ln(1 + γ(y))|2)ν(dy) < κ.

(A2) There are positive constants p1, . . . , pn such that

−2τ := λ+
max(−P̄ Ā− ĀT P̄ ) < 0,

where P̄ = diag(p1, . . . , pn).

From Assumption (A2), it is easy to see that τ ≤ aiipi for i = 1, . . . , n.
The aim of our work is to study the properties of n-dimensional stochastic Gilpin-

Ayala mutualism model with jumps. The significance of this paper is mainly: (1)
Gilpin-Ayala system is more suitable for the real situations than Lotka-Volterra
system, but more complicated; (2) The white noise and Poisson jumps are taken
into account. The remaining part of this paper is organized as follows. In section 2,
we provide an explicit solution for one-dimensional Gilpin-Ayala model with jumps
and study its asymptotic pathwise behavior. In section 3, we show that (1.1) will
have a unique global positive solution under certain conditions. Section 4 and 5
deal with the asymptotic moment properties and asymptotic pathwise behavior of
the solution, respectively. In section 6, we show that the system is stochastically
permanent if the white noise and Poisson jumps satisfy our conditions. Finally we
introduce some simulation figures to illustrate our main results.

2. One-dimensional Gilpin-Ayala model

As the single population is the basic unit of the whole ecological system, the
establishment and theoretical analysis of the single population model can help us
to understand the overall structure of the complex model. So we firstly analyze
one-dimensional Gilpin-Ayala model with jumps.

Lemma 2.1 ([3]). Consider the following system of equations with jumps:

dYi(t) = Yi(t−)
[
(ai − biiYi(t−))dt+ σidB(t) +

∫
Y
ci(u)Ñ(dt, du)

]
,

where ai > 0, bii > 0, ci(u) > −1, B(t) is a one-dimensional Brownian motion.
Then for any initial value Yi(0) ∈ Rn+, this equation admits a unique positive solu-
tion Yi(t), t ≥ 0, which is global and admits the explicit formula

Yi(t) =
ϕi(t)

1
Yi(0) +

∫ t
0
biiϕi(s)ds

,

where

ϕi(t) := exp
(∫ t

0

[
ai −

1
2
σ2
i +

∫
Y
(ln(1 + ci(u))− ci(u))ν(du)

]
ds+

∫ t

0

σidB(s)

+
∫ t

0

∫
Y

ln(1 + ci(u))Ñ(dt, du)
)
.

Remark 2.2. In general, the intrinsic growth rate ai is positive, but the above
explicit solution holds for ai ≤ 0.
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The one-dimensional Gilpin-Ayala model with jumps is

dyi(t) = yi(t−)(ri − aiiyθii (t−))dt+ yi

m∑
j=1

σijdBj(t)

+
∫

Y
yi(t−)γi(u)N(dt, du), θi > 1,

yi(0) = xi(0).

(2.1)

Set zi = yθii , by Itô’s formula, we have

dzi(t) = zi(t−)
[
θiri +

θi(θi − 1)
2

m∑
j=1

σ2
ij +

∫
Y
((1 + γi(u))θi − 1)ν(du)

− θiaiizi(t−)
]
dt+ zi(t−)θi

m∑
j=1

σijdBj(t)

+
∫

Y
zi(t−)((1 + γi(u))θi − 1)Ñ(dt, du), θi > 1,

zi(0) = xθii (0).

(2.2)

From Lemma 2.1 and Remark 2.2, it follows that (2.2) has an explicit solution

zi(t) =
Φi(t)

1

x
θi
i (0)

+
∫ t

0
aiiθiΦi(s)ds

,

where

Φi(t) := exp
{∫ t

0

θi

[
ri −

1
2

m∑
j=1

σ2
ij +

∫
Y

ln(1 + γi(u))ν(du)
]
ds

+
∫ t

0

θi

m∑
j=1

σijdBj(s) +
∫ t

0

∫
Y
θi ln(1 + γi(u))Ñ(dt, du)

}
Combining [3, Lemma 4.4 and Theorem 4.4], we can deduce the following lemma.

Lemma 2.3. Assume (A1) holds. If ci := ri− 1
2

∑m
j=1 σ

2
ij+

∫
Y ln(1+γi(u))ν(du) ≥

0, then for i = 1, . . . , n, we have

lim
t→∞

ln zi(t)
t

= 0 a.s. (2.3)

Remark 2.4. Based on the above analysis, (2.1) has a unique positive solution
yi(t) for any value yi(0) = xi(0) > 0 which is global and represented by

yi(t) =
( Φi(t)

1

x
θi
i (0)

+
∫ t

0
aiiθiΦi(s)ds

)1/θi
,

where Φi(t) is defined as above. Under the conditions of Lemma 2.3, we obtain
limt→∞

ln yi(t)
t = 0 a.s.

Theorem 2.5. Suppose that yi(t) is a positive solution of (2.1). If ci ≥ 0, then

lim
t→∞

1
t

∫ t

0

yθii (s)ds =
ri − 1

2

∑m
j=1 σ

2
ij +

∫
Y ln(1 + γi(u))ν(du)
aii

a.s.
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Proof. Applying Itô’s formula to ln yi(t) results in

d ln yi(t) = (ri −
1
2

m∑
j=1

σ2
ij +

∫
Y

ln(1 + γi(u))ν(du)− aiiyθii )dt

+
m∑
j=1

σijdBj(t) +
∫

Y
ln(1 + γi(u))Ñ(dt, du).

Integrating from 0 to t yields

ln yi(t)− ln yi(0) =
(
ri −

1
2

m∑
j=1

σ2
ij +

∫
Y

ln(1 + γi(u))ν(du)
)
t

− aii
∫ t

0

yθii (s)ds+M1(t) +M2(t),

where M1(t) =
∫ t

0

∑m
j=1 σijdBj(s), M2(t) =

∫ t
0

∫
Y ln(1 + γi(u))Ñ(ds, du) are real

valued local martingales vanishing at t = 0. Hence

ln yi(t)
t

− ln yi(0)
t

=
(
ri −

1
2

m∑
j=1

σ2
ij +

∫
Y

ln(1 + γi(u))ν(du)
)

− aii
t

∫ t

0

yθii (s)ds+
M1(t)
t

+
M2(t)
t

.

(2.4)

Then by [14, Proposition 2.4],

〈M1〉(t) =
∫ t

0

m∑
j=1

σ2
ijds =

m∑
j=1

σ2
ijt,

〈M2〉(t) =
∫ t

0

∫
Y

[ln(1 + γi(u))]2ν(du)ds = t

∫
Y

[ln(1 + γi(u))]2ν(du),

where 〈M〉(t) := 〈M,M〉 is Meyer’s angle bracket process. We have∫ t

0

1
(1 + s)2

ds =
t

t+ 1
<∞,

by the strong law of large numbers for local martingales [18], we then obtain

lim
t→∞

M1(t)
t

= 0 a.s., lim
t→∞

M2(t)
t

= 0 a.s.

Taking limits on both sides of (2.4) and combining Remark 2.4 lead to

lim
t→∞

1
t

∫ t

0

yθii (s)ds =
ri − 1

2

∑m
j=1 σ

2
ij +

∫
Y ln(1 + γi(u))ν(du)
aii

a.s.

This completes the proof. �

3. Global positive solutions of (1.1)

As xi(t) in (1.1) denotes the size of species i, it should be nonnegative. To
guarantee that the stochastic differential equations (SDEs) have a unique global
solution for any given initial value, the coefficients of the equation are generally
required to satisfy both the linear growth condition and the local Lipschitz condition
(see e.g.[23, 12]). But we can find that the coefficients of (1.1) are locally Lipschitz
continuous, and they do not satisfy the linear growth condition. So the solution of
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(1.1) may explode in a finite time. The following theorem gives sufficient condition
for global positive solutions.

Theorem 3.1. Let (A1), (A2) hold and θi ≥ 1, i = 1, . . . , n. Then for any initial
value x0 ∈ Rn+, Equation (1.1) has a unique global solution x(t) ∈ Rn+ for all t ≥ 0
almost surely.

Proof. Our proof is motivated by Mao, Marion and Renshaw [22]. Clearly, the
coefficients of (1.1) are locally Lipschitz continuous, so for any initial value x0 ∈ Rn+
Equation (1.1) has a unique maximal local solution x(t) on t ∈ [0, τe), where τe is
the explosion time. If we show that τe = ∞ a.s., then the solution is global. Now
let k0 be big enough for every component of x0 lying within the interval [1/k0, k0].
For any integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) /∈ (1/k, k) for some i = 1, . . . , n},

where we set inf ∅ =∞. Obviously, τk is increasing as k →∞. Set τ∞ = limk→∞ τk,
whence τ∞ ≤ τe a.s. Now all we need to show is τ∞ = ∞ a.s. If this assertion is
false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε.
Therefore, there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1. (3.1)

Define a C2-function V : Rn+ → R+ by

V (x) =
n∑
i=1

pi(xi − 1− lnxi).

If x(t) ∈ Rn+, Itô’s formula shows that

dV (x(t))

=
n∑
i=1

{
pi

[
(xi − 1)(ri − aiixθii −

n∑
j 6=i

aijxj) + 0.5
m∑
j=1

σ2
ij

]}
dt

+
n∑
i=1

pi(xi − 1)
m∑
j=1

σijdBj(t) +
n∑
i=1

∫
Y
pi[xiγi(u)− ln(1 + γi(u))]N(dt, du)

=
n∑
i=1

{
pi

[
(xi − 1)(ri − aiixθii −

n∑
j 6=i

aijxj) + 0.5
m∑
j=1

σ2
ij

+
∫

Y
(xiγi(u)− ln(1 + γi(u)))ν(du)

]}
dt+

n∑
i=1

pi(xi − 1)
m∑
j=1

σijdBj(t)

+
n∑
i=1

∫
Y
pi[xiγi(u)− ln(1 + γi(u))]Ñ(dt, du),

where we drop t− from x(t−). Using (A1) and (A2), we get that there exists a
positive constant K such that

n∑
i=1

pi

[
(xi − 1)(ri − aiixθii −

n∑
j 6=i

aijxj) + 0.5
m∑
j=1

σ2
ij

+
∫

Y
(xiγi(u)− ln(1 + γi(u)))ν(du)

]
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≤
n∑
i=1

pi

[
(ri +

∫
Y
γi(u)ν(du))xi + aiix

2
i − aiixθ+1

i + aiix
θ
i − ri + 0.5

m∑
j=1

σ2
ij

−
∫

Y
ln(1 + γi(u))ν(du)

]
+ 0.5xT (−P̄ Ā− ĀT P̄ )x

≤
n∑
i=1

{
− aiipixθi+1

i − (τ − aiipi)x2
i + piaiix

θi
i + pi

(
ri +

∫
Y
γi(u)ν(du)

)
xi

+ pi

(
− ri + 0.5

m∑
j=1

σ2
ij −

∫
Y

ln(1 + γi(u))ν(du)
)}
≤ K.

Therefore,∫ τk∧T

0

dV (x(t)) ≤
∫ τk∧T

0

Kdt+
∫ τk∧T

0

n∑
i=1

pi(xi(t)− 1)
m∑
j=1

σijdBj(t)

+
∫ τk∧T

0

∫
Y

n∑
i=1

∫
Y
pi[xiγi(u)− ln(1 + γi(u))]Ñ(dt, du).

Taking expectations on both sides results in

EV (x(τk ∧ T )) ≤ V (x0) +KE(τk ∧ T ) ≤ V (x0) +KT. (3.2)

Set Ωk = {τk ≤ T} for k ≥ k1, from (3.1) we have P(Ωk) ≥ ε. Note that for every
ω ∈ Ωk, there is some i such that xi(τk, ω) equals either k or 1/k, hence

V (x(τk, ω)) ≥ pi[k − 1− ln(k)] ∧ pi[1/k − 1− ln(1/k)].

Using (3.2), yields

V (x0) +KT ≥ E (IΩkV (x(τk, ω))) ≥ ε (pi[k − 1− ln(k)] ∧ pi[1/k − 1− ln(1/k)]) ,

where IΩk is the indicator function of Ωk. When k →∞ we obtain

∞ > V (x0) +KT =∞,

it results in τ∞ =∞ a.s. The proof is complete. �

4. Ultimate boundedness

In the previous section, we saw that (1.1) has a unique global solution x(t) ∈
Rn+ for any t ≥ 0 almost surely. Based on this fundamental theorem, we discuss
the ultimate boundedness and asymptotic boundedness in any pth moment of the
solutions.

Theorem 4.1. Under the assumptions of Theorem 3.1, for any initial value x0 ∈
Rn+, the solution of (1.1) satisfies

lim sup
t→∞

E|x(t)| ≤ K.

Proof. Define the Lyapunov function

V (x) :=
n∑
i=1

pixi, x ∈ Rn+.



8 X. ZHANG, K. WANG EJDE-2013/162

Applying Itô’s formula, we obtain

dV (x(t)) =
n∑
i=1

pixi(ri − aiixθii −
n∑
j 6=i

aijxj)dt+
n∑
i=1

pixi

m∑
j=1

σijdBj(t)

+
∫

Y

n∑
i=1

pixiγi(u)N(dt, du)

= LV (x)dt+
n∑
i=1

pixi

m∑
j=1

σijdBj(t) +
∫

Y

n∑
i=1

pixiγi(u)Ñ(dt, du),

(4.1)

where we write x(t−) = x, and

LV (x) =
n∑
i=1

pi

(
ri − aiixθii −

n∑
j 6=i

aijxj +
∫

Y
γi(u)ν(du)

)
xi

=
n∑
i=1

pi

(
ri − aiixθii + aiixi +

∫
Y
γi(u)ν(du)

)
xi + xT (−P̄ Ā)x

=
n∑
i=1

pi

(
ri − aiixθii + aiixi +

∫
Y
γi(u)ν(du)

)
xi + 0.5xT (−P̄ Ā− ĀT P̄ )x

≤
n∑
i=1

[
− aiipixθi+1

i − (τ − aiipi)x2
i + pi

(
ri +

∫
Y
γi(u)ν(du)

)
xi

]
.

For arbitrary α > 0, making use of the conditions of this Theorem, applying Itô’s
formula once again yields

d(eαtV (x(t)))

= αeαtV (x(t))dt+ eαtdV (x(t))

≤ eαt
n∑
i=1

[−aiipixθi+1
i − (τ − aiipi)x2

i + pi(α+ ri +
∫

Y
γi(u)ν(du))xi]dt

+ eαt
n∑
i=1

pixi

m∑
j=1

σijdBj(t) + eαt
∫

Y

n∑
i=1

pixiγi(u)Ñ(dt, du)

≤ K0e
αtdt+ eαt

n∑
i=1

pixi

m∑
j=1

σijdBj(t) + eαt
∫

Y

n∑
i=1

pixiγi(u)Ñ(dt, du),

where K0 is a positive constant. Therefore,

E(eαtV (x(t))) ≤ V (x0) +
K0

α
(eαt − 1);

that is to say

lim sup
t→∞

EV (x(t)) ≤ K0

α
. (4.2)

Noting that |x(t)| ≤
∑n
i=1 xi(t) ≤

V (x(t))
min1≤i≤n pi

, we obtain

lim sup
t→∞

E|x(t)| ≤ K0

αmin1≤i≤n pi
=: K.

This completes the proof. �
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Definition 4.2 ([15]). The solution of(1.1) is said to be stochastically ultimately
bounded if for any ε ∈ (0, 1), there is a constant H = H(ε) such that for any
x0 ∈ Rn+,

lim sup
t→∞

P {|x(t)| > H} < ε.

As an application of Theorem 4.1, together with the Chebyshev inequality, we
have the following corollary.

Corollary 4.3. Under the conditions of Theorem 4.1, the solution of (1.1) is
stochastically ultimately bounded.

Furthermore, we can get the following property.

Theorem 4.4. Assume (A1), (A2) hold and θi > 1, i = 1, . . . , n. Then for p > 0,
there exists a positive constant K = K(p), for any initial value x0 ∈ Rn+, the
solution of (1.1) has the property

lim sup
t→∞

Expi (t) ≤ K(p), t ≥ 0, i = 1, . . . , n.

Proof. Define the Lyapunov function

V (x, t) :=
n∑
i=1

etxpi , x ∈ Rn+.

Applying Itô’s formula, we obtain

dV (x(t), t) = LV (x(t))dt+ etp

n∑
i=1

xpi

m∑
j=1

σijdBj(t)

+ et
n∑
i=1

xpi

∫
Y

[(1 + γi(u))p − 1]Ñ(dt, du),

where we write x(t−) = x, and

LV (x) = et
n∑
i=1

p
{[1
p

+ ri +
p− 1

2

m∑
j=1

σ2
ij +

1
p

∫
Y
[(1 + γi(u))p − 1]ν(du)

]
xpi

− aiixp+θii −
n∑
j 6=i

aijx
p
i xj

}
≤ et

n∑
i=1

p
{[1
p

+ ri +
p− 1

2

m∑
j=1

σ2
ij +

1
p

∫
Y
[(1 + γi(u))p − 1]ν(du)

]
xpi

− aiixp+θii −
n∑
j 6=i

aij

[pxp+1
i

p+ 1
+
xp+1
j

p+ 1

]}
≤ et

n∑
i=1

p
{[1
p

+ ri +
p− 1

2

m∑
j=1

σ2
ij +

1
p

∫
Y
[(1 + γi(u))p − 1]ν(du)

]
xpi

− aiixp+θii −
[ n∑
j 6=i

( p

p+ 1
(aij) +

1
p+ 1

(aji)
)]
xp+1
i

}
≤ et

n∑
i=1

Ki(p),



10 X. ZHANG, K. WANG EJDE-2013/162

where Ki(p) is a positive constant. Hence

etE[
n∑
i=1

xpi (t)] ≤
n∑
i=1

xpi (0) + E
∫ t

0

es
n∑
i=1

Ki(p)ds =
n∑
i=1

xpi (0) +
n∑
i=1

Ki(p)(et − 1).

It is not difficult to derive that

lim sup
t→∞

E[
n∑
i=1

xpi (t)] ≤
n∑
i=1

Ki(p) =: K(p).

The required assertion follows immediately. �

5. Pathwise estimation

In this section we consider the asymptotic pathwise estimation of the solution
to (1.1).

Theorem 5.1. For θi > 1, i = 1, . . . , n, under Assumptions (A1), (A2), for any
initial value x0 ∈ Rn+, the solution of (1.1) has the property

lim sup
t→∞

lnxi(t)
ln t

≤ 1 a.s., i = 1, . . . , n.

Proof. Here we adopt the same notation as in the proof of Theorem 4.1. From
(4.1), by simple manipulation, one has

E
(

sup
t≤u≤t+1

V (x(u))
)

≤ E(V (x(t))) + E
(

sup
t≤u≤t+1

∫ u

t

n∑
i=1

[
− aiipixθi+1

i (s)− (τ − aiipi)x2
i (s)

+ pi

(
ri +

∫
Y
γi(u)ν(du)

)
xi(s)

]
ds
)

+ E
(

sup
t≤u≤t+1

∫ u

t

n∑
i=1

pixi(s)
m∑
j=1

σijdBj(s)
)

+ E
(

sup
t≤u≤t+1

∫ u

t

∫
Y

n∑
i=1

pixi(s)γi(u)Ñ(ds, du)
)

≤ E(V (x(t))) + E
(

sup
t≤u≤t+1

∫ u

t

n∑
i=1

[
aiipix

2
i (s)

+ pi

(
ri +

∫
Y
|γi(u)|ν(du)

)
xi(s)

]
ds
)

+ E
(

sup
t≤u≤t+1

∫ u

t

n∑
i=1

pixi(s)
m∑
j=1

σijdBj(s)
)

+ E
(

sup
t≤u≤t+1

|
∫ u

t

∫
Y

n∑
i=1

pixi(s)γi(u)Ñ(ds, du)|
)

≤ E(V (x(t))) + q1

∫ t+1

t

E|x(s)|ds+ q2

∫ t+1

t

E|x(s)|2ds

+ E
(

sup
t≤u≤t+1

∫ u

t

n∑
i=1

pixi(s)
m∑
j=1

σijdBj(s)
)



EJDE-2013/162 ASYMPTOTIC BEHAVIOR 11

+ E
(

sup
t≤u≤t+1

|
∫ u

t

∫
Y

n∑
i=1

pixi(s)γi(u)Ñ(ds, du)|
)
, (5.1)

where q1 =
√
nmax1≤i≤n{pi(ri +

∫
Y |γi(u)|ν(du))}, q2 = max1≤i≤n{aiipi}. By the

Burkholder-Davis-Gundy inequality for local martingale (see, e.g., [23, 2]) and the
Hölder inequality, we obtain that

E
(

sup
t≤u≤t+1

∫ u

t

n∑
i=1

pixi(s)
m∑
j=1

σijdBj(s)
)
≤ 3E

(∫ t+1

t

|xT P̄ σ|2ds
)1/2

≤ 3|P̄ σ|
(
E
∫ t+1

t

|x(s)|2ds
)1/2

,

where σ = (σij), and

E
(

sup
t≤u≤t+1

|
∫ u

t

∫
Y

n∑
i=1

pixi(s)γi(u)Ñ(ds, du)|
)

≤
n∑
i=1

piJE
(∫ t+1

t

∫
Y
x2
i (s)γ

2
i (u)N(ds, du)

)1/2

≤
n∑
i=1

piJ
(
E
∫ t+1

t

∫
Y
x2
i (s)γ

2
i (u)N(ds, du)

)1/2

=
n∑
i=1

piJ
(∫

Y
γ2
i (u)ν(du)E

∫ t+1

t

x2
i (s)ds

)1/2

≤ J
n∑
i=1

pi

(∫
Y
γ2
i (u)ν(du)

)1/2(
E
∫ t+1

t

|x(s)|2ds
)1/2

,

where J is a positive constant. Moreover, we can derive from Theorem 4.4 that
there exists positive constants K1, K2 such that lim supt→∞ E

∫ t+1

t
|x(s)|ds ≤ K1

and lim supt→∞ E
∫ t+1

t
|x(s)|2ds ≤ K2. Substituting the above inequalities into

(5.1) and combining (4.2), we can see that

lim sup
t→∞

E
(

sup
t≤u≤t+1

V (x(u))
)

≤ K0

α
+ q1K1 + q2K2 +

(
3|p̄σ|+ J

n∑
i=1

pi

(∫
Y
γ2
i (u)ν(du)

)1/2)
K

1/2
2 .

Hence there is a positive constant M such that

E
(

sup
n≤t≤n+1

|x(t)|
)
≤M, n = 1, 2, . . . .

Let ε > 0 be arbitrary, by the Chebyshev inequality, we have

P
{

sup
n≤t≤n+1

|x(t)| > n1+ε
}
≤ M

n1+ε
n = 1, 2, . . . .

Since the series
∑∞
n=1

M
n1+ε converges, then from the Borel-Cantella lemma [23] that

there exists a n0 := n0(ω) such that for almost all ω ∈ Ω, whenever n ≥ n0 and
n ≤ t ≤ n+ 1, we have

sup
n≤t≤n+1

|x(t)| ≤ n1+ε.



12 X. ZHANG, K. WANG EJDE-2013/162

So

lim sup
t→∞

ln |x(t)|
ln t

≤ 1 + ε.

Letting ε→ 0 leads to the desired assertion. �

Remark 5.2. Noting that the limit limt→∞
ln t
t = 0, under the conditions of The-

orem 5.1, we obtain lim supt→∞
ln xi(t)

t ≤ 0, a.s., i = 1, . . . , n.

On the other hand, by the positivity of solution of (1.1) and the comparison
theorem [25, Theorem 3.1], we obtain that

xi(t) ≥ yi(t), i = 1, . . . , n,

where yi(t) is the solution of (2.1). According to the analysis for (2.1) in section 2,
we obtain the following results.

Theorem 5.3. Let (A1), (A2) hold and θi > 1, i = 1, . . . , n. If ri − 1
2

∑m
j=1 σ

2
ij +∫

Y ln(1 + γi(u))ν(du) ≥ 0, then for any initial value x0 ∈ Rn+, the solution of (1.1)
satisfies

lim inf
t→∞

1
t

∫ t

0

xθii (s)ds ≥ lim
t→∞

1
t

∫ t

0

yθii (s)ds

=
ri − 1

2

∑m
j=1 σ

2
ij +

∫
Y ln(1 + γi(u))ν(du)
aii

,

lim inf
t→∞

lnxi(t)
t

≥ 0 a.s., i = 1, . . . , n.

Now combining Remark 5.2 and Theorem 5.3 leads to the following theorem.

Theorem 5.4. Under the conditions of Theorem 5.3, for each i = 1, . . . , n,

lim
t→∞

lnxi(t)
t

= 0 a.s.

6. Stochastic permanence

Stochastic permanence is one of the most interesting and important topics. In
this section, stochastic permanence is studied based on the results in Section 4. We
firstly introduce the definition of stochastic permanence.

Definition 6.1 ([20]). If for arbitrary ε ∈ (0, 1), there are two positive constants
β1 and β2 such that for any initial data x0 ∈ Rn+, the solution x(t) of Eq.(1.1) has
the property that

lim inf
t→∞

P{xi(t) ≥ β1} ≥ 1− ε, lim inf
t→∞

P{xi(t) ≤ β2} ≥ 1− ε, 1 ≤ i ≤ n,

then (1.1) is said to be stochastically permanent.

Theorem 6.2. Under the conditions of Theorem 3.1, if there exists a positive
constant α, such that

ri −
3 + α

2

m∑
j=1

σ2
ij −

∫
Y

[ 1
(2 + α)(1 + γi(u))2+α

− 1
2 + α

]
ν(du) > 0,

then, for the case 1 ≤ θi ≤ 2 + α, Equation (1.1) is stochastically permanent.
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Proof. Define yi = 1/xi for xi > 0, applying Itô’s formula, we obtain

dy2+α
i = d(

1
xi

)2+α

= −(2 + α)(
1
xi

)α+3xi(ri − aiixθii −
n∑
j 6=i

aijxj)dt

+
2 + α

2
(α+ 3)(

1
xi

)α+4x2
i

m∑
j=1

σ2
ijdt− (2 + α)(

1
xi

)α+3xi

m∑
j=1

σijdBj

+
∫

Y
[

1
(xi + xiγi(u))2+α

− 1
x2+α
i

]N(dt, du)

≤ (2 + α)(
1
xi

)α
{
− 1
x2
i

[
ri −

α+ 3
2

m∑
j=1

σ2
ij −

∫
Y
(

1
(2 + α)(1 + γi(u))2+α

− 1
2 + α

)ν(du)
]

+
aii

x2−θi
i

}
dt− (2 + α)(

1
xi

)α+2
m∑
j=1

σijdBj

+
∫

Y
[

1
(xi + xiγi(u))2+α

− 1
x2+α
i

]Ñ(dt, du)

= (2 + α)yαi
{
− y2

i

[
ri −

α+ 3
2

m∑
j=1

σ2
ij −

∫
Y

(
1

(2 + α)(1 + γi(u))2+α

− 1
2 + α

)ν(du)
]

+ aiiy
2−θi
i

}
dt− (2 + α)yα+2

i

m∑
j=1

σijdBj

+
∫

Y
y2+α
i [

1
(1 + γi(u))2+α

− 1]Ñ(dt, du).

Choose a sufficiently small positive ζ such that

ri −
α+ 3

2

m∑
j=1

σ2
ij −

∫
Y

( 1
(2 + α)(1 + γi(u))2+α

− 1
2 + α

)
ν(du) >

ζ

2 + α
.

Define V = eζty2+α
i , using Itô’s formula results in

dV ≤ (2 + α)eζtyαi
{
− y2

i

[
ri −

α+ 3
2

m∑
j=1

σ2
ij −

∫
Y

(
1

(2 + α)(1 + γi(u))2+α

− 1
2 + α

)ν(du)
]

+ aiiy
2−θi
i

}
dt+ ζeζty2+α

i dt

− (2 + α)eζtyα+2
i

m∑
j=1

σijdBj + eζt
∫

Y
y2+α
i [

1
(1 + γi(u))2+α

− 1]Ñ(dt, du)

=: eζtF (yi)dt− (2 + α)eζty2+α
i

m∑
j=1

σijdBj

+ eζt
∫

Y
y2+α
i [

1
(1 + γi(u))2+α

− 1]Ñ(dt, du),
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where

F (yi) = (2 + α)yαi
{
− y2

i

[
ri −

α+ 3
2

m∑
j=1

σ2
ij −

∫
Y

(
1

(2 + α)(1 + γi(u))2+α

− 1
2 + α

)ν(du)− ζ

2 + α

]
+ aiiy

2−θi
i

}
has an upper positive bound, say K. Integrating from 0 to t and taking expecta-
tions, we obtain

E[eζty2+α
i ] ≤ y2+α

i (0) +
K

ζ
(eζt − 1).

Therefore

lim sup
t→∞

E[x−(α+2)
i (t)] ≤ K

ζ
=: K0.

For any given ε > 0, set β1 = ε1/(2+α)/K
1/(2+α)
0 , by the Chebyshev inequality, we

obtain

lim sup
t→∞

P
{
xi(t) < β1

}
= lim sup

t→∞
P
{
x
−(2+α)
i (t) > β

−(2+α)
1

}
≤ lim sup

t→∞
β2+α
i E[x−(2+α)

i (t)] = ε.

Hence lim inft→∞ P{xi(t) ≥ β1} ≥ 1− ε, i = 1, . . . , n.
On the other hand, as an application of Theorem 4.1, and the Chebyshev inequal-

ity, we can easily show that for arbitrary ε ∈ (0, 1), there is a positive constant β2

such that for any initial data x0 ∈ Rn+, lim inft→∞ P{xi(t) ≤ β2} ≥ 1−ε, 1 ≤ i ≤ n.
Therefore, (1.1) is stochastically permanent. �

7. Example and numerical simulations

Consider the two-species stochastic Gilpin-Ayala mutualism system with jumps

dx1 = x1(r1 − a11x
θ1
1 − a12x2)dt+ σ11dB1(t) + σ12dB2(t) +

∫
Y
γ1(u)x1N(dt, du),

dx2 = x2(r2 − a22x
θ2
2 − a21x1)dt+ σ21dB1(t) + σ22dB2(t) +

∫
Y
γ2(u)x2N(dt, du).

(7.1)
In Figure 1, we choose r1 = 0.06, r2 = 0.05, a11 = 0.08, a22 = 0.04, a12 = a21 =

−0.005, θ1 = θ2 = 1.01, σ11 = 0.2, σ22 = 0.05, σ12 = σ21 = 0, γ1(u) = 0.2, γ2(u) =
0.24, x1(0) = 1.1, x2(0) = 1.5, Y = (0,∞), λ(Y) = 1. Since a11a22 − a12a21 > 0,
then (A1) and (A2) hold, so (7.1) has a unique global positive solution for any
positive initial value by Theorem 3.1 and pth moment of the solution of (7.1) is
asymptotic bounded, see Figure 1. Moreover,

r1 −
σ2

11 + σ2
12

2
+
∫

Y
ln(1 + γ1(u))ν(du) = 0.22 > 0,

r2 −
σ2

21 + σ2
22

2
+
∫

Y
ln(1 + γ2(u))ν(du) = 0.26 > 0.

Then in view of Theorem 5.3, we obtain ln xi(t)
t → 0, i = 1, 2, Figure 1 confirms

these.
In Figure 2, we choose r1 = 0.5, r2 = 0.2, a11 = a22 = 0.9, a12 = a21 = −0.05,

θ1 = θ2 = 1.01, σ11 = 0.05, σ22 = 0.1, σ12 = σ21 = 0, γ1(u) = 0.2, γ2(u) = 0.12,
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Figure 1. Solutions of (7.1) for r1 = 0.06, r2 = 0.05, a11 = 0.08,
a22 = 0.04, a12 = a21 = −0.005, θ1 = θ2 = 1.01, σ11 = 0.2,
σ22 = 0.05, σ12 = σ21 = 0 , γ1(u) = 0.2, γ2(u) = 0.24, x1(0) = 1.1,
x2(0) = 1.5, Y = (0,∞), λ(Y) = 1

x1(0) = 0.1, x2(0) = 0.8, Y = (0,∞), λ(Y) = 1. Since a11a22 − a12a21 > 0, then
(A1) and (A2) hold. In Theorem 6.2, choose α = 1, by simple calculation, we have

r1 −
3 + α

2

m∑
j=1

σ2
1j −

∫
Y

[ 1
(2 + α)(1 + γ1(u))2+α

− 1
2 + α

]
ν(du) = 0.64 > 0,

r2 −
3 + α

2

m∑
j=1

σ2
2j −

∫
Y

[ 1
(2 + α)(1 + γ2(u))2+α

− 1
2 + α

]
ν(du) = 0.28 > 0 .

Theorem 6.2 tells us that (7.1) is stochastically permanent, and Figure 2 confirms
this.

Conclusions. An stochastic Gilpin-Ayala mutualism model with jumps has been
studied in this article. The high nonlinearity of Gilpin-Ayala model and Poisson
jumps make the problem difficult. Sufficient criteria for the existence of global
positive solution, stochastically ultimate boundedness and stochastic permanence
are derived for the n-dimensional model by analysis of Lyapunov functions which has
been used by many authors. We also investigate asymptotic pathwise estimation.
The simulation results verify the effectiveness of the proposed results.
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Figure 2. Solutions of (7.1) for r1 = 0.5, r2 = 0.2, a11 = a22 =
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