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EXISTENCE OF POSITIVE ALMOST PERIODIC SOLUTIONS
FOR DELAY LOTKA-VOLTERRA COOPERATIVE SYSTEMS

KAIHONG ZHAO, JUQING LIU

Abstract. In this article, we study a Lotka-Volterra cooperative system of

equations with time-varying delays and distributed delays. By using Mawhin’s

continuation theorem of coincidence degree theory, we obtain sufficient condi-
tions for the existence of positive almost periodic solutions. Also we present

an example to illustrate our results.

1. Introduction

The well-known Lotka-Volterra model for ecological population modeling was
proposed by Lotka [11] and Volterra [25], and have been extensively investigated.
In recent years, it has found applications in epidemiology, physics, chemistry, eco-
nomics, biological science, and other areas (see [1, 6, 7]). Due to their theoretical
and practical significance, Lotka-Volterra systems have an extensive literature; see
for example the references in this article.

Since biological and environmental parameters are naturally subject to fluctu-
ation in time, periodically and almost periodically varying effects are important
selective forces for biological systems. Models should take into account the season-
ality or periodic changing conditions [9, 10, 13, 14, 15, 20, 23]. However, models are
more realistic when considering almost periodic conditions. In both cases, models
should include the effects of time delays.

There are many works on the study of the Lotka-Volterra type periodic systems
[12, 13, 14, 15, 27, 28]. However, there are only a few articles on the existence of
almost periodic solutions. Recently, by using: almost periodic functions, contrac-
tion mappings, fixed point theory, appropriate Lyapunov functionals, and almost
periodic functional hull theory, some authors have published works in the theory
on almost periodic systems [2, 3, 16, 17, 18, 19, 20, 22, 26, 30].

Motivated by this, in this article, we apply the coincidence theory to study the
existence of positive almost periodic solutions for the delay Lotka-Volterra type

2000 Mathematics Subject Classification. 34K14, 92D25.
Key words and phrases. Lotka-Volterra cooperative system; almost-periodic solution;

coincidence degree; delay equation.
c©2013 Texas State University - San Marcos.

Submitted December 4, 2012. Published July 8, 2013.

1



2 K. ZHAO, J. LIU EJDE-2013/157

system

u̇i(t) = ui(t)
(
ri(t)− Fi

(
t, ui(t)

)
− fi

(
t, ui(t− τii(t))

)
−
∫ 0

−σii

µii(t, s)ui(t+ s)ds+
n∑

j=1,j 6=i

Gij
(
t, uj(t)

)
+

n∑
j=i,j 6=i

gij
(
t, uj(t− τij(t))

)
+

n∑
j=1

∫ 0

−σij

µij(t, s)uj(t+ s)ds
)
,

(1.1)

where i = 1, 2, . . . , n, ui(t) stands for the ith species population density at time
t ∈ R, ri(t) is the natural reproduction rate, Fi, fi and µii represent the inner-
specific competition, Gij , gij and µij(i 6= j) stand for the interspecific cooperation,
τij(t) > 0 are all continuous almost periodic functions on R, µij(t, s) are positive
almost periodic functions on R × [−σij , 0] and continuous with respect to t ∈ R
and integrable with respect to s ∈ [−σij , 0], where σij are nonnegative constants,
moreover

∫ 0

−σij
µij(t, s)ds = 1, i, j = 1, 2, . . . , n. Throughout this paper, we always

assume that ri, Fi, fi, Gij and gij are nonnegative almost periodic functions with
respect to t ∈ R and satisfy the following conditions for each i, j = 1, 2, . . . , n

∂Fi(t, x)
∂x

> 0,
∂fi(t, x)
∂x

> 0,
∂Gij(t, x)

∂x
> 0,

∂gij(t, x)
∂x

> 0, (1.2)

and for each t ∈ R, there exist positive constants αi, βi, γij , δij such that

Fi(t, αi) = 0, fi(t, βi) = 0, Gij(t, γij) = 0, gij(t, δij) = 0. (1.3)

The initial condition of (1.1) is of the form

ui(s) = φi(s), i = 1, 2, . . . , n, (1.4)

where φi(s) is positive bounded continuous function on [−τ, 0] and τ = max1≤i,j≤n
{supt∈R : τij(t)|, σij}.

The organization of the rest of this paper is as follows. In Section 2, we intro-
duce some preliminary results which are needed in later sections. In Section 3, we
establish our main results for the existence of almost-periodic solutions of (1.1).
Finally, an example is given to illustrate the effectiveness of our results in Section
4.

2. Preliminaries

To obtain the existence of an almost periodic solution of system (1.1), we first
make the following preparations:

Definition 2.1 ([5]). Let u(t) : R → R be continuous in t. u(t) is said to be
almost periodic on R, if, for any ε > 0, the set K(u, ε) = {δ : |u(t + δ) − u(t)| <
ε, for any t ∈ R} is relatively dense, that is for any ε > 0, it is possible to find a real
number l(ε) > 0, for any interval with length l(ε), there exists a number δ = δ(ε)
in this interval such that |u(t+ δ)− u(t)| < ε, for any t ∈ R.

Definition 2.2. A solution u(t) = (u1(t), u2(t), . . . , un(t))T of (1.1) is called an
almost periodic solution if and only if for each i = 1, 2, . . . , n, ui(t) is almost peri-
odic.
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For convenience, we denote AP (R) is the set of all real valued, almost periodic
functions on R. For each j = 1, 2, . . . , n, let

∧(fj) =
{
λ̃ ∈ R : lim

T→∞

1
T

∫ T

0

fj(s)e−i
eλsds 6= 0

}
,

mod(fj) =
{ N∑
i=1

niλ̃i : ni ∈ Z,N ∈ N+, λ̃i ∈ ∧(fj)
}

be the set of Fourier exponents and the module of fj , respectively, where fj(·) is
almost periodic. Suppose fj(t, φj) is almost periodic in t, uniformly with respect
to φj ∈ C([−τ, 0],R). Let Kj(fj , ε, φj) denote the set of ε-almost periods for fj
uniformly with respect to φj ∈ C([−τ, 0],R). lj(ε) denote the length of inclusion
interval. m(fj) = 1

T

∫ T
0
fj(s)ds be the mean value of fj on interval [0, T ], where

T > 0 is a constant. clearly, m(fj) depends on T . m[fj ] = limT→∞
1
T

∫ T
0
fj(s)ds.

Lemma 2.3 ([5]). Suppose that f and g are almost periodic. Then the following
statements are equivalent

(i) mod(f) ⊃ mod(g),
(ii) for any sequence {t∗n}, if limn→∞ f(t + t∗n) = f(t) for each t ∈ R, then

there exists a subsequence {tn} ⊆ {t∗n} such that limn→∞ g(t + tn) = f(t)
for each t ∈ R.

Lemma 2.4 ([4]). Let u ∈ AP (R). Then
∫ t
t−τ u(s)ds is almost periodic.

Let X and Z be Banach spaces. A linear mapping L : dom(L) ⊂ X → Z
is called Fredholm if its kernel, denoted by ker(L) = {X ∈ dom(L) : Lx = 0},
has finite dimension and its range, denoted by Im(L) = {Lx : x ∈ dom(L)},
is closed and has finite codimension. The index of L is defined by the integer
dimK(L)− codim dom(L). If L is a Fredholm mapping with index zero, then there
exists continuous projections P : X → X and Q : Z → Z such that Im(P ) = ker(L)
and ker(Q) = Im(L). Then L|dom(L)∩ker(P ) : Im(L) ∩ ker(P ) → Im(L) is bijective,
and its inverse mapping is denoted by KP : Im(L)→ dom(L)∩ker(P ). Since ker(L)
is isomorphic to Im(Q), there exists a bijection J : ker(L) → Im(Q). Let Ω be a
bounded open subset of X and let N : X → Z be a continuous mapping. If QN(Ω)
is bounded and KP (I −Q)N : Ω→ X is compact, then N is called L-compact on
Ω, where I is the identity.

Let L be a Fredholm linear mapping with index zero and let N be a L-compact
mapping on Ω. Define mapping F : dom(L) ∩ Ω→ Z by F = L−N . If Lx 6= Nx
for all x ∈ dom(L) ∩ ∂Ω, then by using P,Q,KP , J defined above, the coincidence
degree of F in Ω with respect to L is defined by

degL(F,Ω) = deg(I − P − (J−1Q+KP (I −Q))N,Ω, 0)

where deg(g,Γ, p) is the Leray-Schauder degree of g at p relative to Γ.
Then the Mawhin’s continuous theorem is reads as follows.

Lemma 2.5 ([8]). Let Ω ⊂ X be an open bounded set and let N : X → Z be a
continuous operator which is L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ dom(L), Lx 6= λNx;
(b) for each x ∈ ∂Ω ∩ L,QNx 6= 0;
(c) deg(JNQ,Ω ∩ ker(L), 0) 6= 0.
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Then Lx = Nx has at least one solution in Ω ∩ dom(L).

3. Existence of positive almost-periodic solutions

In this section, we state and prove our main results of our this paper. By making
the substitution

ui(t) = eyi(t), i = 1, 2, . . . , n,
Equation (1.1) can be reformulated as

ẏi(t) = ri(t)− Fi(t, eyi(t))− fi(t, eyi(t−τii(t)))−
∫ 0

−σii

µii(t, s)eyi(t+s)ds

+
n∑

j=1,j 6=i

Gij(t, eyj(t)) +
n∑

j=1,i6=j

gij(t, eyj(t−τij(t)))

−
n∑

j=1,j 6=i

∫ 0

−σij

µij(t, s)eyj(t+s)ds, i = 1, 2, . . . , n.

(3.1)

The initial condition (1.4) can be rewritten as

yi(s) = lnφi(s) =: ψi(s), i = 1, 2, . . . , n. (3.2)

Set X = Z = V1 ⊕ V2, where

V1 =
{
y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ C(R,Rn) : yi(t) ∈ AP (R),

mod(yi(t)) ⊂ mod(Hi(t)),∀λ̃i ∈ ∧(yi(t)), |λ̃i| > β, i = 1, 2, . . . , n
}
,

V2 =
{
y(t) ≡ (h1, h2, . . . , hn)T ∈ Rn

}
Hi(t) = ri(t)− Fi(t, eψi(t))− fi(t, eψi(−τii(0)))−

∫ 0

−σii

µii(t, s)eψi(s)ds

+
n∑

j=1,j 6=i

[
Gij(t, eψj(t)) + gij(t, eψj(−τij(0)))

]
−

n∑
j=1

∫ 0

−σij

µij(t, s)eψj(s)ds

and ψ(·) is defined as (3.2), i = 1, 2, . . . , n, β > 0 is a given constant. For y =
(y1, y2, . . . , yn)T ∈ Z, define ‖y‖ = max1≤i≤n supt∈R |yi(t)|.

Lemma 3.1. Z is a Banach space equipped with the norm ‖ · ‖.

Proof. Let y{k} = (y{k}1 , y
{k}
2 , . . . , y

{k}
n )T ⊂ V1, and let y{k} converge to y =

(y1, y2, . . . , yn)T ; that is, y{k}j → yj , as k →∞, j = 1, 2, . . . , n. Then it is easy to

show that yj ∈ AP (R) and mod(yj) ∈ mod(Hj). For any |̃λj | ≤ β, we have that

lim
T→∞

1
T

∫ T

0

y
{k}
j (t)e−ieλjtdt = 0, j = 1, 2, . . . , n;

therefore,

lim
T→∞

1
T

∫ T

0

yj(t)e
−ieλjtdt = 0, j = 1, 2, . . . , n,

which implies y ∈ V1. Then it is not difficult to see that V1 is a Banach space
equipped with the norm ‖ · ‖. Thus, we can easily verify that X and Z are Banach
spaces equipped with the norm ‖ · ‖. The proof is complete. �
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Lemma 3.2. Let L : X → Z, Ly = ẏ, then L is a Fredholm mapping of index zero.

Proof. Clearly, L is a linear operator and ker(L) = V2. We claim that Im(L) = V1.
Firstly, we suppose that z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ Im(L) ⊂ Z. Then there
exist z{1}(t) = (z{1}1 (t), z{1}2 (t), . . . , z{1}n (t))T ∈ V1 and constant vector z{2} =
(z{2}1 , z

{2}
2 , . . . , z

{2}
n )T ∈ V2 such that

z(t) = z{1}(t) + z{2};

that is,

zi(t) = z
{1}
i (t) + z

{2}
i , i = 1, 2, . . . , n.

From the definition of zi(t) and z
{1}
i (t), we can easily see that

∫ t
t−τ zi(s)ds and∫ t

t−τ z
{1}
i (s)ds are almost periodic function. So we have z{2}i ≡ 0, i = 1, 2, . . . , n,

then z{2} ≡ (0, 0, . . . , 0)T , which implies z(t) ∈ V1, that is Im(L) ⊂ V1.
On the other hand, if u(t) = (u1(t), u2(t), . . . , un(t))T ∈ V1\{0}, then we have∫ t

0
uj(s)ds ∈ AP (R), j = 1, 2, . . . , n. If λ̃j 6= 0, then we obtain

lim
T→∞

1
T

∫ T

0

(
∫ t

0

uj(s)ds)e−i
eλjtdt =

1

iλ̃j
lim
T→∞

frac1T
∫ T

0

uj(t)e−i
eλjtdt,

for j = 1, 2, . . . , n. It follows that

∧[
∫ t

0

uj(s)ds−m(
∫ t

0

uj(s)ds)] = ∧(uj(t)), j = 1, 2, . . . , n;

hence ∫ t

0

u(s)ds−m(
∫ t

0

u(s)ds) ∈ V1 ⊂ X

Note that
∫ t
0
u(s)ds −m(

∫ t
0
u(s)ds) is the primitive of u(t) in X, we have u(t) ∈

Im(L), that is V1 ⊂ Im(L). Therefore, Im(L) = V1.
Furthermore, one can easily show that Im(L) is closed in Z and

dim ker(L) = n = codim Im(L);

therefore, L is a Fredholm mapping of index zero. The proof is complete. �

Lemma 3.3. Let N : X → Z, Ny = (Gy1, G
y
2, . . . , G

y
n)T , where

Gyi = ri(t)− Fi(t, exp{yi(t)})− fi(t, exp{yi(t− τii(t))})

−
∫ 0

−σii

µii(t, s) exp{yi(t+ s)}ds+
n∑

j=1,j 6=i

Gij(t, exp{yj(t)})

+
n∑

j=1,i6=j

gij(t, exp{yj(t− τij(t)}) +
n∑

j=1,j 6=i

∫ 0

−σij

µij(t, s) exp{yj(t+ s)}ds,

for j = 1, 2, . . . , n. Set

P : X → Z, Py = (m(y1),m(y2), . . . ,m(yn))T ,

Q : Z → Z, Qz = (m[z1],m[z2], . . . ,m[zn])T .

Then N is L-compact on Ω, where Ω is an open bounded subset of X.
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Proof. Obviously, P and Q are continuous projectors such that

ImP = ker(L), Im(L) = ker(Q).

It is clear that (I −Q)V2 = {(0, 0, . . . , 0)}, (I −Q)V1 = V1. Hence

Im(I −Q) = V1 = Im(L).

Then in view of

Im(P ) = ker(L), Im(L) = ker(Q) = Im(I −Q),

we obtain that the inverse KP : Im(L)→ ker(P )∩dom(L) of LP exists and is given
by

KP (z) =
∫ t

0

z(s)ds−m[
∫ t

0

z(s)ds].

Thus,

QNy = (m[Gy1],m[Gy2], . . . ,m[Gyn])T ,

KP (I −Q)Ny = (f(y1)−Q(f(y1)), f(y2)−Q(f(y2)), . . . , f(yn)−Q(f(yn)))T ,

where

f(yi) =
∫ t

0

(Gyi −m[Gyi ])ds, i = 1, 2, . . . , n.

Clearly, QN and (I−Q)N are continuous. Now we will show that KP is also con-
tinuous. By assumptions, for any 0 < ε < 1 and any compact set φi ⊂ C([−τ, 0],R),
let li(εi) be the length of the inclusion interval of Ki(Hi, εi, φi), i = 1, 2, . . . , n. Sup-
pose that {zk(t)} ⊂ Im(L) = V1 and zk(t) = (zk1 (t), zk2 (t), . . . , zkn(t))T uniformly
converges to z(t) = (z1(t), z2(t), . . . , zn(t))T ; that is, zki → zi, as k → ∞, i =
1, 2, . . . , n. Because of

∫ t
0
zk(s)ds ∈ Z, k = 1, 2, . . . , n, there exists σi(0 < σi < εi)

such that Ki(Hi, σi, φi) ⊂ Ki(
∫ t
0
zki (s)ds, σi, φi), i = 1, 2, . . . , n. Let li(σi) be the

length of the inclusion interval of Ki(Hi, σi, φi) and

li = max{li(εi), li(σi)}, i = 1, 2, . . . , n.

It is easy to see that li is the length of the inclusion interval of Ki(Hi, σi, φi)
and Ki(Hi, εi, φi), i = 1, 2, . . . , n. Hence, for any t /∈ [0, li], there exists ξt ∈
Ki(Hi, σi, φi) ⊂ Ki(

∫ t
0
zki (s)ds, σi, φi) such that t + ξt ∈ [0, li], i = 1, 2, . . . , n.

Hence, by the definition of almost periodic function we have

‖
∫ t

0

zk(s)ds‖

= max
1≤i≤n

sup
t∈R
|
∫ t

0

zki (s)ds|

≤ max
1≤i≤n

sup
t∈[0,li]

|
∫ t

0

zki (s)ds|+ max
1≤i≤n

sup
t/∈[0,li]

|
∫ t

0

zki (s)ds

−
∫ t+ξt

0

zki (s)ds+
∫ t+ξt

0

zki (s)ds|

≤ 2 max
1≤i≤n

sup
t∈[0,li]

|
∫ t

0

zki (s)ds|+ max
1≤i≤n

sup
t/∈[0,li]

|
∫ t

0

zki (s)ds−
∫ t+ξt

0

zki (s)ds|

≤ 2 max
1≤i≤n

|
∫ li

0

zki (s)ds|+ max
1≤i≤n

εi.

(3.3)
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From this inequality, we can conclude that
∫ t
0
z(s)ds is continuous, where z(t) =

(z1(t), z2(t), . . . , zn(t))T ∈ Im(L). Consequently, KP and KP (I−Q)Ny are contin-
uous. From (3.3), we also have

∫ t
0
z(s)ds and KP (I−Q)Ny are uniformly bounded

in Ω. Further, it is not difficult to verify that QN(Ω) is bounded and KP (I−Q)Ny
is equicontinuous in Ω. By the Arzela-Ascoli theorm, we have immediately conclude
that KP (I − Q)N(Ω) is compact. Thus N is L-compact on Ω. The proof is com-
plete. �

By (1.2), Fi(t, x), fi(t, x), Gij(t, x) and gij(t, x) can be represented expansion
into power-series at αi, βi, γij and δij of x in form of

Fi(t, x) = Fi(t, αi) +
∂Fi
∂x
|(t,αi)x+ o(x2), i = 1, 2, . . . , n;

fi(t, x) = fi(t, βi) +
∂fi
∂x
|(t,βi)x+ o(x2), i = 1, 2, . . . , n;

Gij(t, x) = Gij(t, γij) +
∂Gij
∂x
|(t,γij)x+ o(x2), i 6= j, i, j = 1, 2, . . . , n;

gij(t, x) = gij(t, δij) +
∂gij
∂x
|(t,δij)x+ o(x2), i 6= j, i, j = 1, 2, . . . , n;

respectively, where o(x2) is a higher-order infinitely small quantity of x2. By (1.3),
we can conclude that Fi(t, αi) = 0, fi(t, βi) = 0, Gij(t, γij) = 0, gij(t, δij) = 0. For
convenience, we denote

∂Fi
∂x
|(t,αi) := bii(t),

∂fi
∂x
|(t,βi) := cii(t),

∂Gij
∂x
|(t,γij) := bij(t),

∂gij
∂x
|(t,δij) := cij(t),

for i 6= j, i, j = 1, 2, . . . , n. By (1.3), bij(t) > 0, cij(t) > 0 for i, j = 1, 2, . . . , n.

Theorem 3.4. Assume the following conditions hold:

(H1) ei := m[ri(t)] > 0, m[bij(t)] > 0, m[cij(t))] > 0, i, j = 1, 2, . . . , n;
(H2) dii >

∑n
i6=j,j=1 dij, where dii = m[bii(t)] + m[cii(t)] + 1, dij = m[bij(t)] +

m[cij(t)] + 1, i 6= j, i, j = 1, 2, . . . , n.

Then (1.1) has at least one positive almost periodic solution.

Proof. To use the continuation theorem of coincidence degree theorem to establish
the existence of a solution of (1.1), we set Banach space X and Z the same as those
in Lemma 3.1 and set mappings L,N, P,Q the same as those in Lemma 3.2 and
Lemma 3.3, respectively. Then we can obtain that L is a Fredholm mapping of
index zero and N is a continuous operator which is L-compact on Ω.

Now, we are in the position of searching for an appropriate open, bounded subset
Ω for the application of the continuation theorem. Corresponding to the operator
equation

Ly = λNy, λ ∈ (0, 1),
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we obtain

ẏi(t) = λ
[
ri(t)− bii(t)eyi(t) − cii(t)eyi(t−τii(t)) +

n∑
j=1,j 6=i

bij(t)eyj(t)

+
n∑

j=1,i6=j

cij(t)eyj(t−τij(t)) −
∫ 0

−σii

µii(t, s)eyj(t+s)ds

+
n∑
j=1

∫ 0

−σij

µij(t, s)eyj(t+s)ds− o(e2yi(t))− o(e2yi(t−τii(t)))

+
n∑

j=1,j 6=i

(
o(e2yj(t)) + o(e2yj(t−τij(t)))

)]
, i = 1, 2, . . . , n.

(3.4)

Assume that y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ X is a solution of (3.4) for some
λ ∈ (0, 1). Denote

θ̄ = max
1≤i≤n

sup
t∈R

yi(t), θ = min
1≤i≤n

inf
t∈R

yi(t).

On the both sides of (3.4), integrating from 0 to T and applying the mean value
theorem of integral calculus, we have

0 ≤ λ
[
m
(
ri(t)

)
−m

(
bii(t)

)
eyi(ξii) −m

(
cii(t)

)
eyi(ηii−τii(ηii))

+
n∑

j=1,j 6=i

m
(
bij(t)

)
eyj(ξij) +

n∑
j=1,i6=j

m
(
cij(t)

)
eyj(ηij−τij(ηij))

−
∫ 0

−σii

m
(
µii(t, s)

)
eyj(ζii+s)ds+

n∑
j=1

∫ 0

−σij

m
(
µij(t, s)

)
eyj(ζij+s)ds

−m
(
o(e2yi(t))

)
−m

(
o(e2yi(t−τii(t)))

)
+

n∑
j=1,j 6=i

m
(
o(e2yj(t))

)
+

n∑
j=1,j 6=i

m
(
o(e2yj(t−τij(t)))

)]
+m

(
|ẏi(t)|

)
, i = 1, 2, . . . , n,

(3.5)

where ξij ∈ [0, T ], ηij ∈ [0, T ], ζij ∈ [0, T ], i, j = 1, 2, . . . , n. In the light of (3.5),
we have

λ
[
m
(
bii(t)

)
eyi(ξii) +m

(
cii(t)

)
eyi(ηii−τii(ηii)) +m

(
o(e2yi(t))

)
+
∫ 0

−σii

m
(
µii(t, s)

)
eyj(ζii+s)ds+m

(
o(e2yi(t−τii(t)))

)]
≤ λ

[
m
(
ri(t)

)
+

n∑
j=1,j 6=i

m
(
bij(t)

)
eyj(ξij) +

n∑
j=1,i6=j

m
(
cij(t)

)
eyj(ηij−τij(ηij))

+
n∑
j=1

∫ 0

−σij

m
(
µij(t, s)

)
eyj(ζij+s)ds+

n∑
j=1,j 6=i

m
(
o(e2yj(t))

)
+

n∑
j=1,j 6=i

m
(
o(e2yj(t−τij(t)))

)]
+m

(
|ẏi(t)|

)
, i = 1, 2, . . . , n.

(3.6)
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On both sides of (3.6), taking the supremum with respect to ξij , ηij , ζij and letting
T → +∞, we obtain(
m
[
bii(t)

]
+m

[
cii(t)

]
+ 1
)
eθ ≤ m

[
ri(t)

]
+

n∑
j=1,j 6=i

(
m
[
bij(t)

]
+m

[
cij(t)

]
+ 1
)
eθ;

that is,

diie
θ −

n∑
j=1,j 6=i

dije
θ ≤ ei, i = 1, 2, . . . , n,

which imply
θ ≤ lnB, (3.7)

where B = max1≤i≤n{Bi},

Bi =
ei

dii −
∑n
j=1,j 6=i dij

.

On both sides of (3.6), taking the infimum with respect to ξij , ηij , ζij and letting
T → +∞, we obtain

θ ≤ lnB. (3.8)
On the other hand, according to (3.4), we derive

λri(t)− ẏi(t) ≤ λ
[
bii(t)eyi(t) + cii(t)eyi(t−τii(t))

+
∫ 0

−σii

µii(t, s)eyi(t+s)ds+ o(e2yi(t)) + o(e2yi(t−τii))
]
,

(3.9)

for i = 1, 2, . . . , n. Integrating on both sides of (3.9), from 0 to T , and using the
mean value theorem, we obtain

λm
(
ri(t)

)
< m

(
ẏi(t)

)
+ λ
[
m
(
bii(t)

)
eyi(ξi) +m

(
cii(t)

)
eyi(ηi−τii(ηi))

+
∫ 0

−σii

m
(
µii(t, s)

)
eyi(ζi+s)ds+m

(
o(e2yi(t))

)
+m

(
o(e2yi(t−τii(t)))

)]
, i = 1, 2, . . . , n,

(3.10)

where ξi ∈ [0, T ], ηi ∈ [0, T ], ζi ∈ [0, T ], for i = 1, 2, . . . , n. On both sides of
(3.10), take the supremum and infimum with respect to ξi, ηi, ζi, respectively, and
let T → +∞, then for i = 1, 2, . . . , n, we have

m
[
ri(t)

]
<
(
m
[
bii(t)

]
+m

[
cii(t)

]
+ 1
)
eθ,

m
[
ri(t)

]
<
(
m
[
bii(t)

]
+m

[
cii(t)

]
+ 1
)
eθ,

namely,

eθ >
m
[
ri(t)

]
m
[
bii(t)

]
+m

[
cii(t)

]
+ 1

=
ei
dii
,

eθ >
m
[
ri(t)

]
m
[
bii(t)

]
+m

[
cii(t)

]
+ 1

=
ei
dii
,

which imply that
θ > lnC, θ > lnC, (3.11)
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where C = min1≤i≤n
{
ei/dii

}
. Combing with (3.7), (3.8) and (3.11), we derive that

for all t ∈ R, i = 1, 2, . . . , n,

lnC < θ ≤ yi(t) ≤ θ < lnB + 1. (3.12)

Denote M = max{| lnC|, | lnB + 1|}. Clearly, M is independent of λ. Take

Ω = {y = (y1, y2, . . . , yn)T ∈ X : ‖y‖ < M}.
It is clear that Ω satisfies the requirement (a) in Lemma 2.5. When y ∈ ∂Ω ∩
ker(L), y = (y1, y2, . . . , yn)T is a constant vector in Rn with ‖y‖ = M . Then

QNy = (m[G1],m[G2], . . . ,m[Gn])T , y ∈ X
where

Gi = ri(t)− Fi(t, eyi)− fi(t, eyi)−
∫ 0

−σii

µii(t, s)eyids

+
n∑

j=1,j 6=i

Gij(t, eyj ) +
n∑

j=1,i6=j

gij(t, eyj )

+
n∑

j=1,j 6=i

∫ 0

−σij

µij(t, s)eyj ds, i = 1, 2, . . . , n,

and

m[Gi] = m[ri(t)]− (m[bii(t)] +m[cii(t)] + 1)eyi

+
n∑

j=1,j 6=i

(m[bij(t)] +m[cij(t)] + 1)eyj

= ei − diieyi +
n∑

j=1,j 6=i

dije
yj , i = 1, 2, . . . , n.

There exist positive integers l, k ∈ {1, 2, . . . , n} such that xl = y = min1≤i≤n{yi}
and xk = y = max1≤i≤n{yi}. If QNy = (0, 0, . . . , 0)T , then we have

dlle
y = dlle

yl = el +
n∑

j=1,j 6=l

dlje
yj ≥ el,

dlle
y = dlle

yk = ek +
n∑

j=1,j 6=k

dkje
yj ≤ ek +

n∑
j=1,j 6=k

dkje
y,

namely,

ey ≥ el
dll

> C,

ey ≤ ek
dll −

∑n
j=1,j 6=k dkj

≤ B,

which imply that lnC < y ≤ yi ≤ y ≤ lnB, i = 1, 2, . . . , n. Thus, y = (y1, y2, . . .,
yn)T ∈ Ω, this contradicts the fact that y ∈ ∂Ω ∩ ker(L). Therefore, QNy 6=
(0, 0, . . . , 0)T , which implies that the requirement (b) in Lemma 2.5 is satisfied.
When y ∈ ∂Ω ∩ ker(L), y = (y1, y2, . . . , yn)T is a constant vector in Rn with ‖y‖ =
M . Then

QNy = (m[G1],m[G2], . . . ,m[Gn])T 6= (0, 0, . . . , 0)T ,
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which implies that the requirement (b) in Lemma 2.5 is satisfied. If necessary, we
can let M be greater such that yTQNy < 0, for any y ∈ ∂Ω∩ker(L). Furthermore,
take the isomorphism J : Im(Q) → ker(L), Jz ≡ z and let Φ(γ; y) = −γy + (1 −
γ)JQNy, then for any y ∈ ∂Ω ∩ ker(L), yTΦ(γ; y) < 0, we have

deg{JQN,Ω ∩ ker(L), 0} = deg{−y,Ω ∩ ker(L), 0} 6= 0.

So, the requirement (c) in Lemma 2.5 is satisfied. Hence, (3.1) has at least one
almost periodic solution in Ω, that is (1.1) has at least one positive almost periodic
solution. The proof is complete. �

4. Examples

Consider the following two species Lotka-Volterra type cooperative system with
time-varying delays and distributed delays:

ẋ(t) = x(t)
(
r1(t)− F1(t, x(t))− f1(t, x(t− τ11(t)))

−
∫ 0

−σ11

µ11(t, s)x(t+ s)ds+G12(t, y(t))

+ g12(t, y(t− τ12(t))) +
∫ 0

−σ12

µ12(t, s)y(t+ s)ds
)
,

ẏ(t) = y(t)
(
r2(t)− F2(t, y(t))− f2(t, y(t− τ22(t)))

−
∫ 0

−σ22

µ22(t, s)y(t+ s)ds+G21(t, x(t))

+ g21(t, x(t− τ21(t))) +
∫ 0

−σ21

µ21(t, s)x(t+ s)ds
)
,

(4.1)

where r1(t) = 2+sin
√

2t+sin
√

3t, F1(t, x) =
(
2+sin

√
3t+sin

√
5t
)

sinx, f1(t, x) =(
2 + cos

√
3t+ cos

√
5t
)

sinx, G12(t, x) = 1
4 (2 + cos

√
2t+ cos

√
3t) sin 2x, g12(t, x) =

2+sin
√

2t+sin
√

3t
6 sin 3x, τ11(t) = esin

√
2t+sin

√
5t, τ12(t) = esin t+cos

√
2t, r2(t) = 2 −

sin
√

2t− sin
√

3t, F2(t, y) =
(
2 + sin

√
3t− sin

√
5t
)

sin y, f2(t, y) =
(
2 + cos

√
3t−

cos
√

5t
)

sin y, G21(t, y) = 2−cos
√

2t+cos
√

3t
8 sin 4y, g21(t, y) = 2−sin

√
2t+sin

√
3t

10 sin 5y,
τ22(t) = esin

√
2t+cos

√
5t, τ21(t) = esin t−cos

√
2t, µij(t, s) are positive almost peri-

odic functions on R × [−σij , 0] and continuous with respect to t ∈ R and inte-
grable with respect to s ∈ [−σij , 0], where σij are nonnegative constants, moreover∫ 0

−σij
µij(t, s)ds = 1, i, j = 1, 2, . . . , n. Obviously, αi = βi = γi = 2π. By a simple

calculation, we have

b11(t) = 2 + sin
√

3t+ sin
√

5t, c11(t) = 2 + cos
√

3t+ cos
√

5t,

b12(t) =
2 + cos

√
2t+ cos

√
3t

2
, c12(t) =

2 + sin
√

2t+ sin
√

3t
2

,

b22(t) = 2 + sin
√

3t− sin
√

5t, c22(t) = 2 + cos
√

3t− cos
√

5t,

b21(t) =
2− cos

√
2t+ cos

√
3t

2
, c21(t) =

2− sin
√

2t+ sin
√

3t
2

,

e1 = m[r1(t)] = 2, d11 = m[b11(t)] +m[c11(t)] + 1 = 5,

d12 = m[b12(t)] +m[c12(t)] + 1 = 3, e2 = m[r1(t)] = 2,
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d22 = m[b11(t)] +m[c22(t)] + 1 = 5, d21 = m[b21(t)] +m[c21(t)] + 1 = 3,

then, in the matrix d11 = 5 > 3 = d12, d22 = 5 > 3 = d21 and

M = max{| lnC|, | lnB + 1|} = 1,

Ω = {y = (y1, y2, . . . , yn)T ∈ X : ‖y‖ < 1}.

Therefore, all conditions of Theorem 3.4 are satisfied, and system (4.1) has at least
one positive almost periodic solution.
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