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PSI-EXPONENTIAL DICHOTOMY FOR LINEAR
DIFFERENTIAL EQUATIONS IN A BANACH SPACE

ATANASKA GEORGIEVA, HRISTO KISKINOV,

STEPAN KOSTADINOV, ANDREY ZAHARIEV

Abstract. In this article we extend the concept ψ-exponential and ψ-ordinary

dichotomies for homogeneous linear differential equations in a Banach space.

With these two concepts we prove the existence of ψ-bounded solutions of the
appropriate inhomogeneous equation. A roughness of the ψ-dichotomy is also

considered.

1. Introduction

The problem of ψ-boundedness and ψ-stability of the solutions of differential
equations in finite dimensional Euclidean spaces has been studied by many autors;
see for example Akinyele [1], Constantin [6]. In these publications, the function ψ
is a scalar continuous function (and increasing, differentiable and bounded in [1],
nondecreasing and such that ψ(t) ≥ 1 on R+ in [6]). In Diamandescu [8, 9, 10, 11,
12] and Boi [2, 3, 4] the function ψ is a nonnegative continuous diagonal matrix.

Inspired by the famous monographs of Coppel [5], Daleckii and Krein [7] and
Massera and Schaeffer [13], considered the important notion of exponential and
ordinary dichotomy in detail. Diamandescu [8]-[12] and Boi [2]-[4], introduced
and studied the ψ-dichotomy for linear differential equations in finite dimensional
Euclidean space.

Here we introduce the concept of ψ-dichotomy for arbitrary Banach spaces in-
stead in finite dimensional Euclidean spaces. Moreover, in our case, ψ(t) is an
arbitrary bounded invertible linear operator, instead of the restriction to be a non-
negative diagonal matrix.

Conditions for the existence of ψ-bounded solutions of the homogeneous and the
appropriate inhomogeneous equations are proved. A roughness of the ψ-exponential
dichotomy is also proved.

2. Preliminaries

Let X be an arbitrary Banach space with norm | · | and identity I. Let LB(X)
be the space of all linear bounded operators acting in X with the norm ‖ · ‖. Let
J = [0,∞).
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We consider the linear homogenous equation
dx
dt

= A(t)x (2.1)

and the corresponding inhomogeneous equation
dx
dt

= A(t)x+ f(t), (2.2)

where A(.) : J → LB(X), f(.) : J → X are strong measurable and Bochner
integrable on the finite subintervals of J .

By a solution of (2.2) (or (2.1)) we will understand a continuous function x(t)
that is differentiable (in the sense that it is representable in the form x(t) =∫ t
a
y(τ)dτ of a Bochner integral of a strongly measurable function y) and satisfies

(2.2) (or (2.1)) almost everywhere.
By V (t) we will denote the Cauchy operator of (2.1). Let RL(X) be the subspace

of all invertible operators in LB(X) and let ψ(.) : J → RL(X) be continuous for
any t ∈ J operator-function.

Definition 2.1. A function u(.) : J → X is said to be ψ-bounded on J if ψ(t)u(t)
is bounded on J .

A function f(.) : J → X is said to be ψ-integrally bounded on J if it is measurable
and there exists a positive constant m such that

∫ t+1

t
|ψ(τ)f(τ)|dτ ≤ m for any

t ∈ J .
A function f(.) : J → X is said to be ψ-Bochner integrable on J if it is measur-

able and
∫
J
|ψ(τ)f(τ)|dτ <∞.

Let Cψ(X) denote the Banach space of all ψ-bounded and continuous functions
with values in X with the norm

‖|f‖|Cψ = sup
t∈J
|ψ(t)f(t)|.

Let Mψ(X) denote the Banach space of all ψ-integrally bounded functions with
values in X with the norm

‖|f‖|Mψ
= sup

t∈J

∫ t+1

t

|ψ(s)f(s)|ds.

Let Lψ(X) denote the Banach space of all ψ-Bochner integrable on J functions
with values in X with the norm

‖|f‖|Lψ =
∫
J

|ψ(s)f(s)|ds.

Definition 2.2. The equation (2.1) is said to has a ψ-exponential dichotomy on J
if there exist a pair mutually complementary projections P1 and P2 = I − P1 and
positive constants N1, N2, ν1, ν2 such that

‖ψ(t)V (t)P1V
−1(s)ψ−1(s)‖ ≤ N1e

−ν1(t−s) (0 ≤ s ≤ t) (2.3)

‖ψ(t)V (t)P2V
−1(s)ψ−1(s)‖ ≤ N2e

−ν2(s−t) (0 ≤ t ≤ s) (2.4)

Equation (2.1) is said to has a ψ-ordinary dichotomy on J if (2.3) and (2.4) hold
with ν1 = ν2 = 0.

Remark 2.3. For ψ(t) = I for all t ∈ J we obtain the notion of exponential and
ordinary dichotomy in [5, 7, 13].
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Definition 2.4. Equation (2.1) is said to have a ψ-bounded growth on J if for
some fixed h > 0 there exists a constant C ≥ 1 such that every solution x(t) of
(2.1) satisfies

|ψ(t)x(t)| ≤ C|ψ(s)x(s)| (0 ≤ s ≤ t ≤ s+ h) (2.5)

3. Main results

Lemma 3.1. Equation (2.1) has a ψ-exponential dichotomy on J with positive
constants ν1 and ν2 if and only if there exist a pair mutually complementary pro-
jections P1 and P2 = I − P1 and positive constants M, Ñ1, Ñ2 such that following
inequalities are fulfilled

|ψ(t)V (t)P1ξ| ≤ Ñ1e
−ν1(t−s)|ψ(s)V (s)P1ξ| (ξ ∈ X, 0 ≤ s ≤ t) (3.1)

|ψ(t)V (t)P2ξ| ≤ Ñ2e
−ν2(s−t)|ψ(s)V (s)P2ξ| (ξ ∈ X, 0 ≤ t ≤ s) (3.2)

‖ψ(t)V (t)P1V
−1(t)ψ−1(t)‖ ≤M (t ≥ 0) (3.3)

Proof. Let (2.1) have a ψ-exponential dichotomy on J . Then for any x ∈ X from
(2.3) it follows that

|ψ(t)V (t)P1V
−1(s)ψ−1(s)x| ≤ N1e

−ν1(t−s)|x| (0 ≤ s ≤ t)

For x = ψ(s)V (s)P1ξ we obtain (3.1). The proof of(3.2) is analogous. Obviously
the inequality (3.3) holds.

Now vice versa. Let (3.1), (3.2) and (3.3) are fulfilled. For any x ∈ X we can
choose ξ = V −1(s)ψ−1(s)x and from (3.1) we obtain

|ψ(t)V (t)P1V
−1(s)ψ−1(s)x| ≤ Ñ1e

−ν1(t−s)|ψ(s)V (s)P1V
−1(s)ψ−1(s)x|

≤MÑ1e
−ν1(t−s)|x| (0 ≤ s ≤ t)

Hence estimate (2.3) holds with N1 = MÑ1. The proof of (2.4) is analogous. �

Let us explain in detail the importance of Lemma 3.1, which obviously can be
taken as definition for ψ-exponential dichotomy on J instead of Definition 2.2.

The pair mutually complementary projections P1 and P2 = I − P1 exists if and
only if for some t0 ∈ J the space X decomposes into a direct sum of two closed
subspaces X = X1 +X2.

Let us introduce the subspaces Xk(t) = V (t)V −1(t0)Xk (k = 1, 2, t ∈ J). Then
X1(t0) = X1 and X2(t0) = X2. The projection functions corresponding to the
subspaces Xk(t) are

Pk(t) = V (t)PkV −1(t) (k = 1, 2; t ∈ J).

And from the estimates (3.1) and (3.2) it follows, that the complemented subspace
X1(t0) is exactly the subspace of all initial values x0

1 ∈ X1(t0) such that the solutions
x1(t) = V (t)V −1(t0)x0

1 starting at moment t0 from the subspace X1(t0) are ψ-
bounded on J .

From the existence of the pair mutually complementary projections P1 and P2 =
I − P1, it follows also the existence of the projection functions

Qk(t) = ψ(t)V (t)PkV −1(t)ψ−1(t), (k = 1, 2; t ∈ J)

which induce the decomposition of the spaces X into direct sums of closed subspaces
X = Q1(t)X +Q2(t)X = X̃1(t) + X̃2(t)
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The condition (3.3) for uniform bondedness of the projectionsQk(t) (k = 1, 2; t ∈
J) is equivalent (see [7]) to the requirement, that the angular distance between the
subspaces X̃1(t) and X̃2(t) cannot become arbitrary small under a variation of t.
More precisely there must exist a constant γ > 0 such that

Sn(X̃1(t), X̃2(t)) ≥ γ (t ∈ J) (3.4)

where the angular distance Sn between two subspaces Y1 and Y2 of a space Y is
defined as

Sn(Y1, Y2) = inf
yk∈Yk,|yk|=1,(k=1,2)

|y1 + y2| (3.5)

The subspaces X̃k(t) and projection functions Qk(t), (k = 1, 2; t ∈ J) are
introduced by us explicitly to fit the concept of the ψ-boundedness and ψ-dichotomy
in an arbitrary Banach space. For ψ(t) = I (t ∈ J) (i.e. for the exponential
dichotomy in [7, 13]) X̃k(t) ≡ Xk(t) and Qk(t) ≡ Pk(t) (k = 1, 2, t ∈ J).

Lemma 3.2. Equation (2.1) has ψ-bounded growth on J if and only if there exist
positive constants K ≥ 1 and α > 0 such that

‖ψ(t)V (t)V −1(s)ψ−1(s)‖ ≤ Keα(t−s) (0 ≤ s ≤ t) (3.6)

Proof. Let us suppose that (2.1) has ψ-bounded growth; i.e. (2.5) holds. Let
t ≥ s be two arbitrary positive numbers. Setting n = [ t−sh ] and η = t−s

h we have
n ≤ η ≤ n+ 1. Then

|ψ(t)x(t)| = |ψ(ηh+ s)x(ηh+ s)| ≤ C|ψ(nh+ s)x(nh+ s)| ≤ . . .
≤ Cn+1|ψ(s)x(s)| ≤ Cη+1|ψ(s)x(s)| (0 ≤ s ≤ t)

We can take K = C and α = h−1 lnC. Obviously, Cη+1 = Keα(t−s) and we have
the estimate

|ψ(t)x(t)| ≤ Keα(t−s)|ψ(s)x(s)|.
For an arbitrary vector ξ ∈ X we consider the solution x(t) of (2.1) with x(0) =
V −1(s)ψ−1(s)ξ. Therefore,

|ψ(t)V (t)V −1(s)ψ−1(s)ξ| ≤ Keα(t−s)|ξ|
is fulfilled for any ξ ∈ X. Hence the estimate (3.6) holds.

Vice versa - suppose that (3.6) holds. From x(t) = V (t)V −1(s)x(s) and the
estimate (3.6) we obtain

|x(t)| ≤ Keα(t−s)|x(s)|
for some K ≥ 1 and α > 0. Then we can take C = Keαh. Obviously C ≥ 1. Hence
(2.1) has ψ-bounded growth. �

Remark 3.3. The proof shows that the condition for ψ-bounded growth (and for
bounded growth) of (2.1) is independent from the choice of h.

Remark 3.4. In the famous monograph by Coppel [5, p. 9], nessesary and suf-
ficient condition for bounded growth are formulated with K,α ∈ R, which is an
typing error. By Boi [2, Lemma 2.4] necessary and sufficient conditions for ψ-
bounded growth are formulated with K,α > 0, which is also wrong. The only cor-
rect necessary and sufficient condition for bounded and ψ-bounded growth which
is independent from the choice of h must be formulated with K ≥ 1, α > 0.

Lemma 3.5. If (2.1) has ψ-bounded growth on J , then (3.3) is a consequence of
(3.1) and (3.2).
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Proof. Let suppose that (2.1) has ψ-bounded growth. Let m ≥ 0. Then, using
Lemma 3.2 we have the estimate

‖ψ(t+m)V (t+m)V −1(t)ψ−1(t)‖ ≤ Keαm (3.7)

with K ≥ 1 and α > 0.
Let us consider, for an arbitrary fixed t ∈ J , a pair unit vectors yk(t) ∈ X̃k(t)

(k = 1, 2).

yk(t) = ψ(t)V (t)PkV −1(t)ψ−1(t)ωk (ωk ∈ X, |yk(t)| = 1, k = 1, 2)

Let ξk = V −1(t)ψ−1(t)ωk. From (3.1), (3.2) and (3.7) we obtain

|ψ(t+m)V (t+m)P1ξ1| ≤ Ñ1e
−ν1m|ψ(t)V (t)P1ξ1| = Ñ1e

−ν1m, (3.8)

|ψ(t+m)V (t+m)P2ξ2| ≥ Ñ−1
2 eν2m|ψ(t)V (t)P2ξ2| = Ñ−1

2 eν2m (3.9)

From

|ψ(t+m)V (t+m)(P1ξ1 + P2ξ2)| =
= |ψ(t+m)V (t+m)V −1(t)ψ−1(t)ψ(t)V (t)(P1ξ1 + P2ξ2)|
≤ ‖ψ(t+m)V (t+m)V −1(t)ψ−1(t)‖ |ψ(t)V (t)P1ξ1 + ψ(t)V (t)P2ξ2|
≤ Keαm|ψ(t)V (t)P1ξ1 + ψ(t)V (t)P2ξ2|
= Keαm|y1(t) + y2(t)|

we conclude that

|y1(t) + y2(t)| ≥
≥ K−1e−αm|ψ(t+m)V (t+m)P1ξ1 + ψ(t+m)V (t+m)P2ξ2|
≥ K−1e−αm(|ψ(t+m)V (t+m)P2ξ2)| − |ψ(t+m)V (t+m)P1ξ1|)

≥ K−1e−αm(Ñ−1
2 eν2m − Ñ1e

−ν1m) = γm

Making reference to (3.5) it follows

Sn(X̃1(t), X̃2(t)) ≥ γm
Taking m large enough the constant γm > 0 and we can conclude that the angular
distance between the subspaces X̃1(t) and X̃2(t) is bounded from below. By Daleckii
and Krein [7, Corollary 1.1, Chapter IV] this is equivalent to the boundedness from
above of the corresponding projection function Q1(t). Hence (3.3) holds and the
proof is complete. �

Theorem 3.6. If the homogeneous equation (2.1) has ψ-exponential dichotomy
on J , then the inhomogeneous equation (2.2) has for every ψ-bounded function
f(t) ∈ Cψ(X) at least one ψ-bounded solution x(t) ∈ Cψ(X). This solution is

x(t) =
∫ t

0

V (t)P1V
−1(s)f(s)ds−

∫ ∞
t

V (t)P2V
−1(s)f(s)ds (3.10)

Proof. Let us consider the function

x̃(t) =
∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds−

∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds

=
∫ t

0

ψ(t)V (t)P1V
−1(s)ψ−1(s)ψ(s)f(s)ds
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−
∫ ∞
t

ψ(t)V (t)P2V
−1(s)ψ−1(s)ψ(s)f(s)ds

Because (2.2) has a ψ-exponential dichotomy on J , from (2.3), (2.4) and the con-
dition for ψ-boundedness of f(t) (i.e. the existence of a constant c such that
|ψ(t)f(t)| ≤ c) we obtain the estimate

|x̃(t)| ≤
∫ t

0

‖ψ(t)V (t)P1V
−1(s)ψ−1(s)‖ |ψ(s)f(s)|ds

+
∫ ∞
t

‖ψ(t)V (t)P2V
−1(s)ψ−1(s)‖ |ψ(s)f(s)|ds

≤ c(N1

ν1
+
N2

ν2
)

Hence ‖|x̃(t)‖|Cψ ≤ (N1
ν1

+ N2
ν2

)‖|f(t)‖|Cψ ; i.e. x̃(t) is bounded on J .
Let x(t) = ψ−1(t)x̃(t). Obviously x(t) is ψ-bounded on J . Then

x(t) = ψ(t)−1
(∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds−

∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds

)
We have already proved, that the integrals exist. Then

dx
dt

= A(t)
∫ t

0

V (t)P1V
−1(s)f(s)ds+ V (t)P1V

−1(t)f(t)

+ V (t)P2V
−1(t)f(t)−A(t)

∫ ∞
t

V (t)P2V
−1(s)f(s)ds

= A(t)x(t) + V (t)P1V
−1(t)f(t) + V (t)P2V

−1(t)f(t)

= A(t)x(t) + f(t)

Hence the function

x(t) =
∫ t

0

V (t)P1V
−1(s)f(s)ds−

∫ ∞
t

V (t)P2V
−1(s)f(s)ds

is a ψ-bounded solution of the inhomogeneous equation (2.2) on J . �

Remark 3.7. Let introduce the principal Green function of (2.2) with the projec-
tions P1 and P2 from the definition for ψ-exponential dichotomy

G(t, s) =

{
V (t)P1V

−1(s) (t > s)
−V (t)P2V

−1(s) (t < s)
(3.11)

Clearly G is continuous except at t = s where it has a jump discontinuity. Then
the solution (3.10) can be rewritten as

x(t) =
∫
J

G(t, s)f(s)ds

Remark 3.8. Since J = [0,∞) then every ψ-bounded on J solution of equation
(2.2),

x(t) =
∫ ∞

0

G(t, s)f(s)ds

has an initial value

x(t) =
∫ ∞

0

G(0, s)f(s)ds = −P2

∫ ∞
0

V −1(s)f(s)ds



EJDE-2013/153 PSI-EXPONENTIAL DICHOTOMY 7

belonging to the subspace X2.
We obtain the general form of the ψ-bounded solutions on J by adding to the

already obtained solution an arbitrary ψ-bounded solution of the homogeneous
equation (2.1). These are exactly the solutions that are initially in X1.

Remark 3.9. The solution (3.10) remains ψ-bounded when the condition for ψ-
boundedness of the function f(t) is replaced by the more general condition for its
ψ-integrally boundedness ∫ t+1

t

|ψ(τ)f(τ)|dτ ≤ m

Proof. We have the estimate

|ψ(t)x(t)|

= |ψ(t)
∫
J

G(t, τ)f(τ)dτ |

≤
∫
J

‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)f(τ)|dτ

=
∫
t≤τ
‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)f(τ)|dτ

+
∫
t≥τ
‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)f(τ)|dτ

≤ N2

∫
t≤τ

e−ν2(τ−t)|ψ(τ)f(τ)|dτ +N1

∫
t≥τ

e−ν1(t−τ)|ψ(τ)f(τ)|dτ

≤ N2

∫
s≥0

e−ν2s|ψ(t+ s)f(t+ s)|ds+N1

∫
s≤0

eν1(s)|ψ(t+ s)f(t+ s)|ds

≤ N2m

∞∑
k=0

e−ν2k +N1m

∞∑
k=0

e−ν1k

=
N2m

1− e−ν2
+

N1m

1− e−ν1
.

�

As was just shown, the ψ-exponential dichotomy of (2.1) is a sufficient condition
for the existence of ψ-bounded solutions of the inhomogeneous equation (2.2) with
ψ-bounded or ψ-integrally bounded free term.

Since our phase space is an arbitrary Banach space (i.e. it may be with infinite
dimension), in order to explain the extent to which this condition is necessary we
must introduce some additional assumptions.

Definition 3.10. The linear manifold X1 consisting of the initial values x0 of the
solutions of equation (2.1) that are ψ-bounded on J is called the Yψ-set of this
equation.

We will assume that X1 is a complemented subspace; i.e., that it is closed and
has a direct complement: X = X1 +X2.

In the finite-dimensional case this condition is automatically satisfied. In a
Hilbert space the second part of the condition is superfluous since an orthogonal
complement always exists.
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We note, that this condition is essentially contained in the definition of ψ-
exponential dichotomy of an equation, because a subspace is complemented if and
only if there exists at least one projection that projects the space into this subspace.

Theorem 3.11. Let Bψ(X) denote any of the Banach spaces Cψ(X), Mψ(X),
Lψ(X). Suppose that equation (2.2) has for each function f(t) ∈ Bψ(X) at least
one solution x that is ψ-bounded on J :

‖|x‖|Cψ = sup
t∈J
|ψ(t)x(t)| <∞.

Suppose further that the Yψ-set X1 of equation (2.1) is a complemented subspace
and that X2 is a complement of it. Then to each function f(t) ∈ Bψ(X) there
corresponds an unique solution x(t) that is ψ-bounded on J and initially in X2 :
x(0) ∈ X2.

This solution satisfies to the estimate

‖|x‖|Cψ ≤ KBψ‖|f‖|Bψ ,

where KBψ > 0 is a constant not depending on f .

Proof. Suppose f(t) ∈ Bψ(X). By hypothesis, there exists a solution x(t) ∈ Cψ(X)
of equation (2.2). Let P1 and P2 be the mutually complementary projections on
the subspaces X1 and X2.

We denote by x1(t) the solution of the corresponding homogeneous equation
which satisfies the condition x(0) = P1x(0). This solution is ψ-bounded by def-
inition of the subspace X1. But then the solution x2(t) = x(t) − x1(t) of the
inhomogeneous equation for which x2(0) = x(0) − P1x(0) = P2x(0) ∈ X2 is also
ψ-bounded.

The uniqueness follows from the fact that the difference of two such solutions
would be bounded by a solution initially in X2 of the homogeneous equation, which
is possible only for the zero solution.

It remains for us to prove the last assertion of the lemma. We consider the space
C1 of all functions x(t) that are solutions of equations of the form

x′(t)−A(t)x(t) = f(t)

under the conditions x(0) ∈ X2 and f(t) ∈ Bψ(X). It was essentially shown above
that the operator Tx(t) = x′(t)−A(t)x(t) effects a one-to-one mapping of the linear
space C1 onto Bψ(X) . If in C1 we introduce the norm

‖|x‖|C1
= ‖|x‖|Cψ + ‖|Tx‖|Bψ

the operator Tx automatically turns out to be continuous. If, in addition, the space
C1 turns out to be complete, the inverse operator T−1 will also be continuous by
Banach’s theorem, and the solution x = T−1f of equation (2.2) will then satisfy
the estimate

‖|x‖|Cψ ≤ ‖|x‖|C1
≤ ‖T−1‖ ‖|f‖|Bψ .

Thus it remains to prove the completeness of C1. Let {xn(t)} be a Cauchy sequence
in it. Such a sequence is also a Cauchy sequence in Cψ(X) and hence has a limit
x(t) in it. In this case clearly

x(0) = lim
n→∞

xn(0) ∈ X2.
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In exactly the same way it follows that the sequence {fn(t)} = {Txn(t)} has a limit
f(t) in Bψ(X). Therefore for each t ∈ J

x(t)− x(0) = lim
n→∞

∫ ∞
0

x′n(τ)dτ

= lim
n→∞

∫ ∞
0

(fn(τ) +A(τ)xn(τ))dτ

=
∫ ∞

0

(f(τ) +A(τ)x(τ))dτ

which implies that x(t) satisfies the equation x′(t)−A(t)x(t) = f(t). Thus x(t) ∈ C1

and, as easily seen, ‖|x− xn‖|C1
→ 0 for n→ 0, i.e. C1 is complete. The theorem

is proved. �

Theorem 3.12. In order for equation (2.1) to has ψ-ordinary dichotomy on J it
is necessary and sufficient that its Yψ-set be a complemented subspace and that to
each function f(t) ∈ Lψ(X) there corresponds at least one ψ-bounded solution on
J of the inhomogeneous equation (2.2).

Proof. The necessity of the second condition follows from Theorem 3.6 and Remark
3.9, because obviously Lψ(X) ⊂ Mψ(X). The necessity of the first was noted in
defining the Y-set.

Now the sufficiency. Let ξ ∈ X be an arbitrary fixed vector and let us consider
the function

f(t) =

{
ψ−1(t)ξ for s ≤ t ≤ s+ h

0 otherwise
(3.12)

where s ≥ 0 and h > 0. Then f ∈ Lψ(X) and ‖|f‖|Lψ = h|ξ|. The corresponding
solution of (2.2) is

x(t) =
∫
J

G(t, τ)f(τ)dτ =
∫ s+h

s

G(t, τ)ψ−1(t)ξdτ.

From Theorem 3.11, it follows the estimate

|ψ(t)x(t)| = |
∫ s+h

s

ψ(t)G(t, τ)ψ−1(t)ξdτ | ≤ KLψh|ξ|.

It follows that
|ψ(t)G(t, τ)ψ−1(t)ξ| ≤ KLψ |ξ|.

Hence, since ξ is arbitrary,

‖ψ(t)G(t, τ)ψ−1(t)‖ ≤ KLψ .

Thus (2.3) and (2.4) hold with N1 = N2 = KLψ and ν1 = ν2 = 0. Obviously (2.3)
and (2.4) remains valid also in the excepted case t = s. �

Corollary 3.13. In a finite-dimensional phase space the homogeneous equation
(2.1) has ψ-ordinary dichotomy on J if and only if there corresponds to each func-
tion f(t) ∈ Lψ(X) at least one ψ-bounded solution on J of the inhomogeneous
equation (2.2).
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Lemma 3.14. Suppose that (2.2) has a ψ-bounded solution for every function
f ∈ Cψ and let r = KCψ . Let x(t) be a solution of the corresponding homogeneous
equation (2.1) and let

x1(t) = V (t)P1V
−1(t)x(t), x2(t) = V (t)P2V

−1(t)x(t).

If for some fixed s ≥ 0 is fulfilled |ψ(t)x1(t)| ≤ N |ψ(s)x(s)| for s ≤ t ≤ s+ r, then

|ψ(t)x1(t)| ≤ eN |ψ(s)x(s)|e−r
−1(t−s) for s ≤ t <∞.

If for some fixed s ≥ 0 is fulfilled |ψ(t)x2(t)| ≤ N |ψ(s)x(s)| for max{0, s− r} ≤ t ≤
s, then

|ψ(t)x2(t)| ≤ eN |ψ(s)x(s)|e−r
−1(s−t) for 0 ≤ t ≤ s.

Proof. Let us take
f(t) = χ(t)x(t)|ψ(t)x(t)|−1

where x(t) = V (t)ξ is a nontrivial solution of the homogeneous equation (2.1) and
χ(t) be an arbitrary real valued function such that 0 ≤ χ(t) ≤ 1 for all t ≥ 0 and
χ(t) = 0 for f ≥ t1. Then obviously f ∈ Cψ(X) and ‖|f‖|Cψ ≤ 1. Hence by
the arbitrary nature of χ(t) applying Theorem 3.11 we have with r = KCψ , the
estimate

|ψ(t)
∫ t1

t0

G(t, τ)x(τ)|ψ(τ)x(τ)|−1dτ | ≤ r (0 ≤ t0 ≤ t1, t ≥ 0).

Putting t1 = t and respectively t0 = t we obtain

|ψ(t)V (t)P1ξ|
∫ t

t0

|ψ(τ)x(τ)|−1dτ ≤ r (0 ≤ t0 ≤ t),

|ψ(t)V (t)P2ξ|
∫ t1

t

|ψ(τ)x(τ)|−1dτ ≤ r (t ≤ t1 ≤ ∞).

(3.13)

Replacing ξ by P1ξ, respectively P2ξ, it follows by integration that∫ s

t0

|ψ(τ)V (τ)P1ξ|−1dτ ≤ e−r
−1(t−s)

∫ t

t0

|ψ(τ)V (τ)P1ξ|−1dτ (t0 ≤ s ≤ t),∫ t1

s

|ψ(τ)V (τ)P1ξ|−1dτ ≤ e−r
−1(s−t)

∫ t1

t

|ψ(τ)V (τ)P1ξ|−1dτ (t ≤ s ≤ t1).

(3.14)
Replacing t0 by s and s by s + r in the first inequality (3.14) and using the first
assumption of the lemma, for t ≥ s+ r, we obtain

rN−1|ψ(s)x(s)|−1 ≤
∫ s+r

s

|ψ(τ)x1(τ)|−1dτ ≤ ee−r
−1(t−s)

∫ t

s

|ψ(τ)x1(τ)|−1dτ

Using the first inequality (3.13), for t ≥ s+ r, we have

|ψ(t)x1(t)| ≤ r
(∫ t

s

|ψ(τ)x1(τ)|−1dτ
)−1

≤ eN |ψ(s)x(s)|e−r
−1(t−s)

Since obviously the same inequality holds for s ≤ t ≤ s + r, the first assertion of
the lemma is proved.

The proof of the second assertion of the lemma is similar, using the second
assumption of it and replacing s by s − r and t1 by s in the second inequality
(3.14). �
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Theorem 3.15. For equation (2.1) to be ψ-exponential dichotomous on J it is
necessary and sufficient that its Yψ-set be a complemented subspace and that to
each function f(t) ∈ Mψ(X) there corresponds at least one ψ-bounded solution on
J of the inhomogeneous equation (2.2).

Proof. The necessity of the second condition follows from Theorem 3.6 and Remark
3.9, while the necessity of the first was noted in defining the Y-set.

Now the sufficiency. Let the Yψ-set of the homogeneous equation (2.1) be a
complemented subspace and suppose that to each function f(t) ∈ Mψ(X) there
corresponds at least one ψ-bounded solution on J of the inhomogeneous equation
(2.2). Since Cψ(X) ⊂ Mψ(X) and Lψ(X) ⊂ Mψ(X) the equation (2.2) has a
ψ-bounded solution on J for every f ∈ Cψ(X) and for every f ∈ Lψ(X) too.

By Theorem 3.12 and its proof (2.3) and (2.4) hold with N1 = N2 = KLψ and
ν1 = ν2 = 0. Hence the conditions of Lemma 3.14 are fulfilled with N = KLψ for
every solution x(t) of (2.1) and for every s ≥ 0. Applying Lemma 3.14 we obtain
(2.3) and (2.4) with N1 = N2 = eKLψ and ν1 = ν2 = KCψ

−1. The theorem is
proved. �

Corollary 3.16. In a finite-dimensional phase space the homogeneous equation
(2.1) is ψ-exponential dichotomous on J if and only if there corresponds to each
function f(t) ∈Mψ(X) at least one ψ-bounded solution on J of the inhomogeneous
equation (2.2).

Theorem 3.17. Suppose that (2.1) has ψ-bounded growth. For equation (2.1) to
be ψ-exponential dichotomous on J it is necessary and sufficient that its Yψ-set be
a complemented subspace and that to each function f(t) ∈ Cψ(X) there corresponds
at least one ψ-bounded solution on J of the inhomogeneous equation (2.2).

Proof. The necessity of the second condition follows from Theorem 3.6, while the
necessity of the first was noted in defining the Y-set.

Now the sufficiency. Let assume that the equation (2.1) has ψ-bounded growth.
From Lemma 3.2 it follows

‖ψ(t)V (t)V −1(s)ψ−1(s)‖ ≤ Keα(t−s) (0 ≤ s ≤ t)

where K ≥ 1 and α > 0 are constants. Because the initial conditions of Lemma
3.14 are fulfilled, replacing ξ by V −1(s)ψ−1(s)ξ and putting t1 =∞ in the second
inequality (3.13) we obtain for t ≤ s,

|ψ(t)V (t)P2V
−1(s)ψ−1(s)ξ| ≤ r

(∫ ∞
t

|ψ(τ)V (τ)V −1(s)ψ−1(s)ξ|
)−1

≤ r
(
K−1|ξ|−1

∫ ∞
t

eα(s−τ)
)−1

.

Thus
‖ψ(t)V (t)P2V

−1(s)ψ−1(s)‖ ≤ αrK (t ≤ s).
Analogously, we obtain

‖ψ(t)V (t)P2V
−1(s)ψ−1(s)‖ ≤ αrKeα(t−s) (t ≥ s)

and hence

‖ψ(t)V (t)P1V
−1(s)ψ−1(s)‖ ≤ (1 + αr)Keα(t−s) (t ≥ s). (3.15)
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In the same way, from the first inequality (3.13) it follows

‖ψ(t)V (t)P1V
−1(s)ψ−1(s)‖ ≤ αrK

(
1− e−α(t−s))−1

(t > s). (3.16)

Let h = α−1 ln 1+2αr
1+αr . By using (3.16) for t − s ≥ h and (3.15) for t − s ≤ h we

obtain
‖ψ(t)V (t)P1V

−1(s)ψ−1(s)‖ ≤ (1 + 2αr)K for all (t ≥ s).
Now we can apply Lemma 3.14 with N = (1 + 2αr)K and obtain

‖ψ(t)V (t)P1V
−1(s)ψ−1(s)‖ ≤ e(1 + 2αr)Ke−r

−1(t−s) (0 ≤ s ≤ t),

‖ψ(t)V (t)P2V
−1(s)ψ−1(s)‖ ≤ eαrKe−r

−1(s−t) (0 ≤ t ≤ s).

Thus (2.1) has a ψ-exponential dichotomy. �

Corollary 3.18. In a finite-dimensional phase space the homogeneous equation
(2.1) with ψ-bounded growth is ψ-exponential dichotomous on J if and only if there
corresponds to each function f(t) ∈ Cψ(X) at least one ψ-bounded solution on J of
the inhomogeneous equation (2.2).

An important property of the ψ-exponential dichotomies is their roughness. That
is, they are not destroyed by small perturbations of the coefficient operator. Let
consider the perturbed equation

dx
dt

= (A(t) +B(t))x . (3.17)

Theorem 3.19. Suppose that the equation (2.1) has a ψ-exponential dichotomy on
J . If δ = supt∈J ‖ψ(t)B(t)ψ−1(t)‖ is sufficient small, then the perturbed equation
(3.17) has also a ψ-exponential dichotomy on J .

Proof. Let us consider the inhomogeneous equation

dx(t)
dt

= (A(t) +B(t))x(t) + f(t), (3.18)

and introduce the map

Tz(t) =
∫
J

G(t, τ) (B(τ)z(τ) + f(τ)) dτ

First we shall prove that T maps Cψ into itself. Using the same technic and
notations as in the proofs of Theorem 3.6 and Remark 3.9, we obtain the estimate

|ψ(t)Tz(t)| = |ψ(t)
∫
J

G(t, τ) (B(τ)z(τ) + f(τ)) dτ | ≤

≤
∫
J

‖ψ(t)G(t, τ)ψ−1(τ)‖ ‖ψ(τ)B(τ)ψ−1(τ)‖ |ψ(τ)z(τ)|dτ

+
∫
J

‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)f(τ)|dτ

≤ δc
(N1

ν1
+
N2

ν2

)
+

N2m

1− e−ν2
+

N1m

1− e−ν1
.

Hence Tz ∈ Cψ and T : Cψ → Cψ.
Now we will show that the map T is a contraction. Let z1, z2 ∈ Cψ. Then

‖|Tz1 − Tz2‖|Cψ
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≤ |ψ(t)
∫
J

G(t, τ)B(τ) (z1(τ)− z2(τ)) dτ | ≤

≤
∫
J

‖ψ(t)G(t, τ)ψ−1(τ)‖ ‖ψ(τ)B(τ)ψ−1(τ)‖ |ψ(τ)(z1(τ)− z1(τ))|dτ

≤ δ
(N1

ν1
+
N2

ν2

)
‖|z1 − z2‖|Cψ .

By selecting a sufficient small δ we can obtain δ
(
N1
ν1

+ N2
ν2

)
< 1 and the map T will

be a contraction.
By the fixed point principle of Banach it follows, that the map T has an unique

fixed point. Denoting this point by z we have

z(t) =
∫
J

G(t, τ)
(
B(τ)z(τ) + f(τ)

)
dτ.

Thus z(t) is a solution of (3.18). Hence the equation (3.18) has for every ψ-integrally
bounded function f(t) at least a ψ-bounded solution. From Theorem 3.15 it follows
that the equation (3.17) has a ψ-exponential dichotomy. �
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