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INFINITELY MANY SOLUTIONS FOR A PERTURBED
NONLINEAR FRACTIONAL BOUNDARY-VALUE PROBLEM

CHUANZHI BAI

Abstract. Using variational methods, we prove the existence of infinitely

many solutions for a class of nonlinear fractional boundary-value problems

depending on two parameters.

1. Introduction

In recent years, some fixed point theorems and monotone iterative methods
have been applied successfully to investigate the existence of solutions for nonlinear
fractional boundary-value problems, see for example, [2, 3, 4, 5, 7, 8, 9, 23, 26,
27, 31, 32, 33] and the references therein. But till now, there are few results on
the solutions to fractional boundary value problems which are established by the
variational methods. It is often very difficult to establish a suitable space and
variational functional for fractional boundary value problem for several reasons.
First and foremost, the composition rule in general fails to be satisfied by fractional
integral and fractional derivative operators. Furthermore, the fractional integral is
a singular integral operator and fractional derivative operator is non-local. Besides,
the adjoint of a fractional differential operator is not the negative of itself. Recently,
by using critical point theory, Jiao and Zhou [24] studied the fractional BVP

tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0,

where 0D
α
t and tD

α
T are the left and right Riemann-Liouville fractional derivatives

of order 0 < α ≤ 1 respectively, F : [0, T ]× RN → R is a given function satisfying
some assumptions and ∇F (t, x) is the gradient of F at x.

In [6], by using a local minimum theorem established by Bonanno in [16], we
provided a new approach to investigated the existence of solutions for the following
fractional boundary-value problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ λf(u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0,
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where α ∈ (1/2, 1], 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville

fractional integrals of order 1− α respectively, c0D
α
t and c

tD
α
T are the left and right

Caputo fractional derivatives of order 0 < α ≤ 1 respectively, λ is a positive real
parameter, and f : R→ R is a continuous function.

The purpose of this article is to establish the existence of infinitely many solutions
for the following perturbed nonlinear fractional boundary value problem

tD
α
T (0D

α
t u(t)) = λa(t)f(u(t)) + µg(t, u(t)), a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0,
(1.1)

where 0D
α
t and tD

α
T are the left and right Riemann-Liouville fractional derivatives

of order 0 < α ≤ 1 respectively, λ and µ are non-negative parameters, a : [0, T ]→ R,
f : R→ R and g : [0, T ]× R→ R are three given continuous functions.

Precisely, under appropriate hypotheses on the nonlinear term f, g, the existence
of two intervals Λ and J such that, for each λ ∈ Λ and µ ∈ J , BVP (1.1) admits
a sequence of pairwise distinct solutions is proved. Our analysis is mainly based
on a recent critical point theorem of Bonanno and Molica Bisci [10], which is a
more precise version of Ricceri’s Variational Principle [29]. This theorem and its
variations have been used in several works in order to obtain existence of infinitely
many solutions for different kinds of problems (see, for instance, [1, 10, 11, 12,
13, 14, 15] and references therein). The technique used in this paper in order to
approach perturbed nonlinearity depending on two parameters has been adopted
first in the paper [17]. Moreover, among authors that follow this technique, we
recall the papers [18, 19, 20, 21, 22].

This article is organized as follows. In section 2, we present some necessary
preliminary facts that will be needed in the paper. In section 3, we establish our
main two existence results and give an example to show the effectiveness of the our
results.

2. Preliminaries

In this section, we first introduce some necessary definitions and properties of
the fractional calculus which are used in this paper.

Definition 2.1. Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order α for function f denoted by aD

−α
t f(t) and

tD
−α
b f(t), respectively, are defined by

aD
−α
t f(t) =

1
Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b], α > 0,

tD
−α
b f(t) =

1
Γ(α)

∫ b

t

(s− t)α−1f(s)ds, t ∈ [a, b], α > 0,

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the
gamma function.

Definition 2.2. Let f be a function defined on [a, b]. For n − 1 ≤ γ < n(n ∈ N),
the left and right Riemann-Liouville fractional derivatives of order γ for function f
denoted by aD

γ
t f(t) and tD

γ
b f(t), respectively, are defined by

aD
γ
t f(t) =

dn

dtn
aD

γ−n
t f(t) =

1
Γ(n− γ)

dn

dtn

∫ t

a

(t− s)n−γ−1f(s)ds, t ∈ [a, b]
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and

tD
γ
b f(t) = (−1)n

dn

dtn
tD

γ−n
b f(t) =

(−1)n

Γ(n− γ)
dn

dtn

∫ b

t

(s− t)n−γ−1f(s)ds, t ∈ [a, b].

According to [25, 28], if f ∈ ACn([a, b],RN ), then by performing repeatedly
integration by parts and differentiation, for n− 1 ≤ γ < n, we have

aD
γ
t f(t) =

1
Γ(n− γ)

∫ t

a

f (n)(s)
(t− s)γ+1−n ds+

n−1∑
j=0

f j(a)
Γ(j − γ + 1)

(t− a)j−γ , (2.1)

and

tD
γ
b f(t) =

(−1)n

Γ(n− γ)

∫ b

t

f (n)(s)
(s− t)γ+1−n ds+

n−1∑
j=0

(−1)jf j(b)
Γ(j − γ + 1)

(b− t)j−γ , (2.2)

where t ∈ [a, b].
From [25], [30], we have the following property of fractional integration.

Proposition 2.3. If f ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ 1, q ≥ 1,
1/p+ 1/q ≤ 1 + γ or p 6= 1, q 6= 1, 1/p+ 1/q = 1 + γ, then∫ b

a

[aD
−γ
t f(t)]g(t)dt =

∫ b

a

[tD
−γ
b g(t)]f(t)dt, γ > 0. (2.3)

By properties (2.1)–(2.3), one has (see [24])

Proposition 2.4. If f(a) = f(b) = 0, f ′ ∈ L∞([a, b],RN ) and g ∈ L1([a, b],RN ),
or g(a) = g(b) = 0, g′ ∈ L∞([a, b],RN ) and f ∈ L1([a, b],RN ), then∫ b

a

[aDα
t f(t)] g(t)dt =

∫ b

a

[tDα
b g(t)] f(t)dt, 0 < α ≤ 1. (2.4)

To establish a variational structure for BVP (1.1), it is necessary to construct
appropriate function spaces.

Definition 2.5. Let 0 < α ≤ 1. The fractional derivative space Eα0 is defined by
the closure of C∞0 ([0, T ],R) with respect to the norm

‖u‖α =
(∫ T

0

|0Dα
t u(t)|2dt+

∫ T

0

|u(t)|2dt
)1/2

, ∀u ∈ Eα0 .

It is obvious that the fractional derivative space Eα0 is the space of functions
u ∈ L2[0, T ] having an α-order fractional derivative 0D

α
t u ∈ L2[0, T ] and u(0) =

u(T ) = 0.

Proposition 2.6 ([24]). Let 0 < α ≤ 1. The fractional derivative space Eα0 is
reflexive and separable Banach space.

Proposition 2.7 ([24]). Let 1/2 < α ≤ 1. For all u ∈ Eα0 , we have
(i)

‖u‖L2 ≤ Tα

Γ(α+ 1)
‖0Dα

t u‖L2 . (2.5)

(ii)

‖u‖∞ = max
t∈[0,T ]

|u(t)| ≤ Tα−1/2

Γ(α)(2(α− 1) + 1)1/2
‖0Dα

t u‖L2 . (2.6)
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By (2.5), we can consider Eα0 with respect to the norm

‖u‖α =
(∫ T

0

|0Dα
t u(t)|2dt

)1/2

= ‖0Dα
t u‖L2 , ∀u ∈ Eα0 (2.7)

in the following analysis.
We are now in a position to give the definition for the solution of BVP (1.1).

Definition 2.8. A function u : [0, T ]→ R is called a solution of BVP (1.1) if
(i) tD

α−1
T (0D

α
t u(t)) and 0D

α−1
t u(t) exist for almost every t ∈ [0, T ], and

(ii) u satisfies (1.1).

By using (2.4) and Definition 2.8, we can give the definition of weak solution for
BVP (1.1) as follows.

Definition 2.9. By the weak solution of BVP (1.1), we mean that the function
u ∈ Eα0 such that a(·)f(u(·)) ∈ L1[0, T ], g(·, u(·)) ∈ L1[0, T ] and satisfies∫ T

0

[0Dα
t u(t) · 0Dα

t v(t)− λa(t)f(u(t)) · v(t)− µg(t, u(t)) · v(t)]dt = 0

for all v ∈ C∞0 ([0, T ],R).

By [24, Theorem 5.1], we have

Theorem 2.10. Let 0 < α ≤ 1 and u ∈ Eα0 . If u is a non-trivial weak solution of
(1.1), then u is also a non-trivial solution of (1.1).

Our main tools is an infinitely many critical points theorem [10] which is recalled
below.

Theorem 2.11. Let X be a reflexive real Banach space; Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let us put

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)
r − Φ(u)

and
γ = lim inf

r→+∞
ϕ(r), δ = lim inf

r→(infX Φ)+
ϕ(r).

(1) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds: either

the functional Φ − λΨ has a global minimum, or there exists a sequence {un} of
critical points (local minima) of Φ− λΨ such that limn→+∞ Φ(un) = +∞.

(2) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds: either

there exists a global minimum of Φ which is a local minimum of Φ − λΨ, or there
exists a sequence {un} of pairwise distinct critical points (local minima) of Φ−λΨ,
with limn→+∞ Φ(un) = infX Φ, which weakly converges to a global minimum of Φ.

3. Main results

We define the functional Φ,Ψ : Eα0 → R by setting, for every u ∈ Eα0 ,

Φ(u) :=
1
2
‖u‖2α, (3.1)
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Ψ(u) :=
∫ T

0

[
a(t)F (u(t)) +

µ

λ
G(t, u(t))

]
dt, (3.2)

where F (u) =
∫ u

0
f(s)ds and G(t, u) =

∫ u
0
g(t, x)dx. Clearly, Φ and Ψ are Gâteaux

differentiable functional whose Gâteaux derivative at the point u ∈ Eα0 are given
by

Φ′(u)v =
∫ T

0
0D

α
t u(t) · 0Dα

t v(t)dt,

Ψ′(u)v =
∫ T

0

(
a(t)f(u(t)) +

µ

λ
g(t, u(t))

)
v(t)dt

for every v ∈ Eα0 . Hence, a critical point of Iλ = Φ− λΨ, gives us a weak solution
of (1.1), which is also a solution of (1.1) by Theorem 2.10.

If α > 1/2, by Proposition 2.8 and (2.7), one has

‖u‖∞ ≤M
(∫ T

0

|0Dα
t u(t)|2dt

)1/2

= M‖u‖α, u ∈ Eα0 , (3.3)

where

M =
Tα−

1
2

Γ(α)
√

2(α− 1) + 1
. (3.4)

Given a constant 0 < h < 1/2, put

A(α, h) :=
1

2h2T 2

[1 + h3−2α + (1− h)3−2α

3− 2α
T 3−2α

− 2
∫ T

(1−h)T

t1−α(t− (1− h)T )1−αdt− 2
∫ T

hT

t1−α(t− hT )1−αdt

+ 2
∫ T

(1−h)T

(t− hT )1−α(t− (1− h)T )1−αdt
]
,

K :=
Γ2(2− α)

∫ (1−h)T

hT
a(t)dt

2M2A(α, h)
∫ T

0
a(t)dt

, (3.5)

λ1 =


A(α,h)

Γ2(2−α)
R (1−h)T
hT a(t)dt·lim supξ→+∞

F (ξ)
ξ2

, if lim supξ→+∞
F (ξ)
ξ2 < +∞,

0, if lim supξ→+∞
F (ξ)
ξ2 = +∞

(3.6)

λ2 =
1

2M2
∫ T

0
a(t)dt · lim infξ→+∞

F (ξ)
ξ2

, (3.7)

where M as in (3.4).

Theorem 3.1. Let 1/2 < α ≤ 1, 0 < h < 1/2, a : [0, T ] → R and f : R → R be
two nonnegative continuous functions, and assume that

0 < lim inf
ξ→+∞

F (ξ)
ξ2

< K lim sup
ξ→+∞

F (ξ)
ξ2

, (3.8)
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where K is given in (3.5). For every λ ∈ Λ :=]λ1, λ2[ (λ1 and λ2 are given in (3.6)
and (3.7) respectively) and for every g ∈ C([0, T ]× R) such that

G(t, u) ≥ 0, ∀(t, u) ∈ [0, T ]× [0,+∞[,

G∞ := lim sup
ξ→+∞

∫ T
0

max|x|≤ξ G(t, x)dt
ξ2

< +∞,
(3.9)

if we put

µ∗ :=
1

2M2G∞

(
1− 2M2λ

∫ T

0

a(t)dt · lim inf
ξ→+∞

F (ξ)
ξ2

)
,

with µ∗ = +∞ when G∞ = 0, then (1.1) possesses an unbounded sequence of
solutions in Eα0 for every µ ∈ J := [0, µ∗[.

Proof. Our aim is to apply part (1) of Theorem 2.11. Let Φ,Ψ be the functionals
defined in (3.1) and (3.2) respectively. By the Lemma 5.1 in [24], Φ is continu-
ous and convex, so it is weakly sequentially lower semicontinuous, moreover, Φ is
continuously Gâteaux differentiable and coercive. The functional Ψ is well defined,
continuously Gâteaux differentiable and with compact derivative, hence it is se-
quentially weakly upper semicontinuous. It is well known that the critical point of
the functional Φ− λΨ in Eα0 is exactly the solution of (1.1).

Let ρn be a sequence of positive numbers such that limn→∞ ρn = +∞ and

lim
n→∞

F (ρn)
ρ2
n

= lim inf
ξ→+∞

F (ξ)
ξ2

.

Let rn = ρ2n
2M2 for all n ∈ N. By (3.3), for all v ∈ Eα0 such that Φ(v) ≤ rn, one has

‖v‖∞ ≤ ρn. Thus,

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

supv∈Φ−1(]−∞,rn[) Ψ(v)−Ψ(u)
rn − Φ(u)

≤
supv∈Φ−1(]−∞,rn[) Ψ(v)

rn

≤ 2M2

∫ T

0

a(t)dt · F (ρn)
ρ2
n

+
2M2µ

λ

∫ T
0

max|ξ|≤ρn G(t, ξ)dt
ρ2
n

.

So,

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2M2

∫ T

0

a(t)dt · lim inf
ξ→+∞

F (ξ)
ξ2

+
2M2µ

λ
G∞ < +∞.

Thus, it is easy to verify that when G∞ > 0, for every µ ∈ J ,

γ < 2M2

∫ T

0

a(t)dt · lim inf
ξ→+∞

F (ξ)
ξ2

+
2M2µ∗
λ

G∞ =
1
λ
,

while, when G∞ = 0, we have by λ ∈]λ1, λ2[ that,

γ < 2M2

∫ T

0

a(t)dt · lim inf
ξ→+∞

F (ξ)
ξ2

<
1
λ
.

Thus, we conclude that

Λ ⊂]0,
1
γ

[,
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by the definition of Λ. Now, we claim that the functional Φ − λΨ is unbounded
from below. Let {ηn} be a positive real sequence such that limn→∞ ηn = +∞. We
consider a function vn defined by setting

vn(t) =


Γ(2−α)ηn

hT t, t ∈ [0, hT [,
Γ(2− α)ηn, t ∈ [hT, (1− h)T ],
Γ(2−α)ηn

hT (T − t), t ∈](1− h)T, T ],
(3.10)

where 0 < h < 1/2. Clearly vn(0) = vn(T ) = 0 and vn ∈ L2[0, T ]. A direct
calculation shows that

0D
α
t vn(t) =


ηn
hT t

1−α, t ∈ [0, hT [,
ηn
hT

(
t1−α − (t− hT )1−α) , t ∈ [hT, (1− h)T ],

ηn
hT

(
t1−α − (t− hT )1−α − (t− (1− h)T )1−α) , t ∈](1− h)T, T ]

and

∫ T

0

(0D
α
t vn(t))2dt

=
∫ hT

0

+
∫ (1−h)T

hT

+
∫ T

(1−h)T

(0D
α
t vn(t)2dt

=
η2
n

h2T 2

[ ∫ T

0

t2(1−α)dt+
∫ T

hT

(t− hT )2(1−α)dt

+
∫ T

(1−h)T

(t− (1− h)T )2(1−α)dt

− 2
∫ T

hT

t1−α(t− hT )1−αdt− 2
∫ T

(1−h)T

t1−α(t− (1− h)T )1−αdt

+ 2
∫ T

(1−h)T

(t− hT )1−α(t− (1− h)T )1−αdt
]

=
η2
n

h2T 2

[1 + h3−2α + (1− h)3−2α

3− 2α
T 3−2α

− 2
∫ T

(1−h)T

t1−α(t− (1− h)T )1−αdt− 2
∫ T

hT

t1−α(t− hT )1−αdt

+ 2
∫ T

(1−h)T

(t− hT )1−α(t− (1− h)T )1−αdt
]

= 2A(α, h)η2
n,

for each n ∈ N. Thus, vn ∈ Eα0 , and

Φ(vn) =
1
2
‖vn‖2α = A(α, h)η2

n. (3.11)
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Putting together (3.9) and the nonnegative of f , one has

Ψ(vn) =
∫ T

0

[
a(t)F (vn(t)) +

µ

λ
G(t, vn(t))

]
dt

≥
∫ T

0

a(t)F (vn(t))dt

=
∫ hT

0

a(t)F
(Γ(2− α)ηn

hT
t
)
dt+

∫ (1−h)T

hT

a(t)F
(

Γ(2− α)ηn
)
dt

+
∫ T

(1−h)T

a(t)F
(Γ(2− α)ηn

hT
(T − t)

)
dt

≥ F (Γ(2− α)ηn)
∫ (1−h)T

hT

a(t)dt.

(3.12)

Therefore, from (3.11) and (3.12) we achieve

Φ(vn)− λΨ(vn) ≤ A(α, h)η2
n − λF (Γ(2− α)ηn)

∫ (1−h)T

hT

a(t)dt.

From (3.8), we know that λ1 < λ2. Let

B = lim sup
ξ→+∞

F (ξ)
ξ2

. (3.13)

If B < +∞, we set ε ∈
]
0, B − A(α,h)

λΓ2(2−α)
R (1−h)T
hT a(t)dt

[
, then from (3.13) there

exists N1 such that

F (Γ(2− α)ηn) > (B − ε)Γ2(2− α)η2
n, ∀n > N1.

Hence,

Φ(vn)− λΨ(vn) < A(α, h)η2
n − λ(B − ε)Γ2(2− α)η2

n

∫ (1−h)T

hT

a(t)dt

= η2
n

(
A(α, h)− λ(B − ε)Γ2(2− α)

∫ (1−h)T

hT

a(t)dt
)
,

(3.14)

for n > N1. From the choice of ε, we have

lim
n→+∞

(Φ(vn)− λΨ(vn)) = −∞.

On the other hand, if B = +∞, we fix Θ > A(α,h)

λΓ2(2−α)
R (1−h)T
hT a(t)dt

, then from

(3.13) there exists NΘ such that

F (Γ(2− α)ηn) > ΘΓ2(2− α)η2
n, ∀n > NΘ.

Therefore,

Φ(vn)− λΨ(vn) ≤ A(α, h)η2
n − λF (Γ(2− α)ηn)

∫ (1−h)T

hT

a(t)dt

< A(α, h)η2
n − λΘΓ2(2− α)η2

n

∫ (1−h)T

hT

a(t)dt

= η2
n

(
A(α, h)− λΘΓ2(2− α)

∫ (1−h)T

hT

a(t)dt
)
, n > NΘ.
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Taking into account the choice of Θ, one has

lim
n→+∞

(Φ(vn)− λΨ(vn)) = −∞.

By Theorem 2.11, the functional Φ − λΨ admits a sequence un of critical points
such that limn→+∞ Φ(un) = +∞. It follows from (3.1) that

‖un‖α =
√

2Φ(un),

which implies limn→+∞ ‖un‖α = +∞. This completes the proof in view of the
relation between the critical points of Φ − λΨ and the solutions of problem (1.1)
pointed out in Theorem 2.10. �

In the following, arguing in a similar way, but applying case (2) of Theorem 2.11,
we can establish the existence of infinitely many solutions of (1.1) converging at
zero. For convenience, let

λ3 =


A(α,h)

Γ2(2−α)
R (1−h)T
hT a(t)dt·lim supξ→0+

F (ξ)
ξ2

, if lim supξ→0+
F (ξ)
ξ2 < +∞,

0, if lim supξ→0+
F (ξ)
ξ2 = +∞,

(3.15)

λ4 =
1

2M2
∫ T

0
a(t)dt · lim infξ→0+

F (ξ)
ξ2

. (3.16)

Theorem 3.2. Let 1/2 < α ≤ 1, 0 < h < 1/2, a : [0, T ] → R and f : R → R be
two nonnegative continuous functions, and assume that

0 < lim inf
ξ→0+

F (ξ)
ξ2

< K lim sup
ξ→0+

F (ξ)
ξ2

, (3.17)

where K is given in (3.5). For every λ ∈ Λ1 :=]λ3, λ4[ (λ3 and λ4 are given in
(3.15) and (3.16) respectively) and for every g ∈ C([0, T ]× R) such that

G(t, u) ≥ 0 for all (t, u) ∈ [0, T ]× [0, τ ], for some τ > 0,

G0 := lim sup
ξ→0+

∫ T
0

max|x|≤ξ G(t, x)dt
ξ2

< +∞,
(3.18)

if we put

µ∗ :=
1

2M2G0

(
1− 2M2λ

∫ T

0

a(t)dt · lim inf
ξ→0+

F (ξ)
ξ2

)
,

with µ∗ = +∞ when G0 = 0, then (1.1) admits a sequence {un} of solutions such
that un → 0 strongly in Eα0 for every µ ∈ J := [0, µ∗[.

Proof. Fix λ ∈ Λ1, and pick µ ∈ [0, µ∗[. We want to apply Theorem 2.11(2), with
X = Eα0 , and Φ,Ψ be the functionals defined in (3.1) and (3.2) respectively. Let
kn be a sequence of positive numbers such that limn→∞ kn = 0 and

lim
n→∞

F (kn)
k2
n

= lim inf
ξ→0+

F (ξ)
ξ2

.

Putting rn = k2
n

2M2 for all n ∈ N and working as in the proof of Theorem 3.1, it
follows that δ < +∞, where δ is as defined in Theorem 2.11, and also Λ1 ⊂

]
0, 1

δ

[
.

Now we claim that

Φ− λΨ does not have a local minimum at zero. (3.19)
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Let {ηn} be a sequence of positive numbers in ]0, η[ (η > 0) such that ηn → 0, and
{vn} be the sequence in Eα0 defined in (3.10). From (3.18) and the nonnegative of
f one has that (3.12) holds.

By condition (3.17), we know that λ3 < λ4. Let

B1 = lim sup
ξ→+0+

F (ξ)
ξ2

. (3.20)

For the case : B1 < +∞, one has (3.14) holds. From the choice of ε, we have

lim
n→+∞

(Φ(vn)− λΨ(vn)) < 0 = Φ(0)− λΨ(0).

for each n ∈ N large enough, which implies (3.19) holds in view of fact that ‖vn‖ →
0. Similarly, for the case B1 = +∞, one has (3.19) holds.

Observing that minX Φ = Φ(0), the conclusion follows from Theorem 2.11 case
(2). �

Finally, we give an example to show the effectiveness of the results obtained here.

Example 3.3. Let α = 0.8 and T = 1. Consider the following boundary-value
problem

tD
0.8
1 (0D

0.8
t u(t)) = λa(t)f(u(t)) + µg(t, u(t)), a.e. t ∈ [0, 1],

u(0) = u(1) = 0,
(3.21)

where a : [0, 1] → R, f : R → R and g : [0, 1] × R → R are the nonnegative and
continuous functions defined as follows

a(t) =


t
3 , t ∈ [0, 1

3 [
−12

(
t− 1

2

)2 + 4
9 , t ∈ [ 1

3 ,
2
3 [

1−t
3 , t ∈ [ 2

3 , 1],

f(x) =

{
|x|(3 + 2 cos(ln(|x|))− sin(ln(|x|))), x 6= 0
0, x = 0,

g(t, x) =

{
4
5 + t 3

√
x, x ≤ 1

t+ x
5 (3 + 2 sin(lnx) + cos(lnx)), x > 1.

Then, for every λ ∈]5.4503, 5.4911[ and µ ∈ [0, 0.8132(1 − 01821λ)[, BVP (3.21)
admits an unbounded sequence of solutions in E0.8

0 . In fact, we have

F (x) =


x2( 3

2 + cos(lnx)), x > 0
0, x = 0
−x2( 3

2 + cos(ln(|x|))), x < 0,

and

G(t, x) =

{
4
5x+ 3

4 tx
4
3 , x ≤ 1

1
2 −

t
4 + tx+ x2

5 ( 3
2 + sin(lnx)), x > 1.

It is easy to verify that

lim inf
ξ→+∞

F (ξ)
ξ2

=
1
2
, lim sup

ξ→+∞

F (ξ)
ξ2

=
5
2
,

G∞ = lim sup
ξ→+∞

∫ 1

0
max|x|≤ξ G(t, x)dt

ξ2
=

1
2
.
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Moreover, it is easy to calculate that M = 1.1089, A(α, h) = A(0.8, 1/3) = 1.2762
(here h = 1/3) and

lim infξ→+∞ F (ξ)/ξ2

lim supξ→+∞ F (ξ)/ξ2
= 0.2 < 0.2015 =

Γ2(1.2)
∫ 2/3

1/3
a(t)dt

2M2A(0.8, 1/3)
∫ 1

0
a(t)dt

= K,

which implies that condition (3.8) holds. Obviously, condition (3.9) holds. Thus, by
Theorem 3.1, for each λ ∈]λ1, λ2[=]5.4503, 5.4911[ and µ ∈ [0, 0.8132(1− 0.1821λ)[,
the problem (3.21) has an unbounded sequence of solutions in E0.8

0 .
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