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EXISTENCE AND UNIQUENESS OF A LOCAL SOLUTION FOR
x′ = f(t, x) USING INVERSE FUNCTIONS

JEFFREY T. HOAG

Abstract. A condition on the function f is given such that the scalar ordinary

differential equation x′ = f(t, x) with initial condition x(t0) = x0 has a unique
solution in a neighborhood of t0. An example illustrates that this result can

be used when other theorems which put conditions on the difference f(t, x)−
f(t, y) do not apply.

1. Introduction

Consider the differential equation with initial condition:

x′(t) = f(t, x(t)), x(t0) = x0 (1.1)

where f is a scalar-valued function which is continuous in a neighborhood N of
(t0, x0). The continuity of f guarantees that there is at least one solution to this
initial value problem. There are various other conditions that can be imposed on
f which will ensure that (1.1) has a unique solution. Over twenty such unique-
ness conditions are collected in [1]. Most of these, including results by Nagumo
[3], Osgood [4] and Perron [5], rely on restrictions on f(t, x) − f(t, y) and can be
considered generalizations of the Lipschitz condition in the second argument.

In this article, a uniqueness theorem for (1.1) is given which instead puts the
Lipschitz condition on the first argument of f . That is, the condition is on the
difference f(t, x) − f(s, x) for (t, x) and (s, x) in N . It is easy to see that this is
possible when f(t0, x0) 6= 0 because in this case a solution of (1.1) is invertible in a
neighborhood of (t0, x0) and so if t(x) is the inverse of a solution to (1.1), it satisfies

t′(x) = g(x, t(x)), t(x0) = t0 (1.2)

where we define g(x, t) = 1/f(t, x). If f is Lipschitz in its first argument in a
neighborhood N of (t0, x0) then there is a neighborhood M of (x0, t0) where g
is Lipschitz in its second argument. From this it follows that (1.2) has a unique
solution in a neighborhood of (x0, t0) and therefore (1.1) has a unique solution in
a neighborhood of (t0, x0).

The theorem that follows extends this approach to include cases when f(t0, x0) =
0. It will be followed by an example for which this theorem applies but other
uniqueness theorems do not.
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2. Main result

Theorem 2.1. For (t0, x0) ∈ R2 and positive numbers a and b, define

U = [t0 − a, t0 + a]× [x0 − b, x0 + b].

Let f : U → R be a continuous function satisfying the following three conditions:
(i) there are constants c > 0 and r ∈ (0, 1/2) such that

|f(t, x)| ≥ c|x− x0|r for all (t, x) ∈ U ;

(ii) f(t, x0) is not identically zero on any interval (t0− ε, t0 + ε) for 0 < ε < a;
(iii) there is a number α such that for all (t, x) and (s, x) in U ,

|f(t, x)− f(s, x)| ≤ α|t− s|.

Then there is a unique solution to the initial value problem (1.1) in some interval
(t0 − ν, t0 + η).

Proof. Let x be a solution to (1.1) where f satisfies the conditions of the theorem.
Define the closed set D = {t ∈ [t0, t0 + a] : x′(t) = 0}. Suppose, for contradiction,
that x is not strictly monotone in any interval [t0, t0 + ε]. Then D is infinite and
t0 ∈ D. Since D is closed, supD ≡ t1 ∈ D. The set (t0, t1) −D is open, and, by
(ii), non-empty. Therefore, there is an interval (u, v) ⊆ (t0, t1) − D with u and v
both in D. Thus x′(u) = x′(v) = 0. Then by condition (i), x(u) = x(v) = x0 and it
follows by Rolle’s Theorem that there is a ξ ∈ (u, v) such that x′(ξ) = 0. But this
leads to the contradiction that ξ ∈ D ∩ (u, v) = ∅. Thus every solution of (1.1) is
strictly monotone (and therefore invertible) on some interval [t0, t0 + δ1). If t(x) is
the inverse of an increasing solution of (1.1) then t(x) satisfies

t′(x) =
1

f(t, x)
, t(x0) = t0 (2.1)

for x > x0.
Now let x and x̃ be any two increasing solutions of (1.1) with inverses t and t̃.

Since t and t̃ are both solutions to (2.1),

|t(x)− t̃(x)| ≤ |t(y)− t̃(y)|+
∫ x

y

|f(t(s), s)− f(t̃(s), s)|
|f(t(s), s)| |f(t̃(s), s)|

ds

for x > y > x0. Then, using conditions (i) and (iii),

|t(x)− t̃(x)| ≤ |t(y)− t̃(y)|+ α

c2

∫ x

y

|t(s)− t̃(s)|
|s− x0|2r

ds .

Applying the Gronwall-Reid Lemma to this inequality yields

|t(x)− t̃(x)| ≤ |t(y)− t̃(y)| exp
{ α

c2

∫ x

y

1
|s− x0|2r

ds
}
.

Now take the limit as y → x0+. Since 2r < 1, the improper integral converges.
Also |t(y) − t̃(y)| → |t(x0) − t̃(x0)| = 0. Therefore, t(x) = t̃(x) in some interval
[x0, x(t0 + δ1)] and so x(t) = x̃(t) for t ∈ [t0, t0 + δ1).

Thus there is at most one increasing solution to (1.1) on an interval [t0, t0 + δ1).
A similar arguments shows that there is at most one decreasing solution to (1.1) on
an interval [t0, t0 + δ2). Since it is well-known that (1.1) has either one solution or
infinitely many solutions, and since every solution of (1.1) is monotone, it follows
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that (1.1) has a unique solution on some interval [t0, t0 + η). A similar argument
shows that there is also a unique solution on some interval (t0 − ν, t0] . �

Examples. Consider the initial-value problem

x′(t) = g(t) + h(t)|x(t)|r, x(0) = 0 (2.2)

where g and h are non-negative Lipschitz continuous functions and 0 < r < 1. The
theorem given here can be applied to show that (2.2) has a unique solution in a
neighborhood of 0 provided h(0) 6= 0 and 0 < r < 1/2. However, any theorem
which relies only on the difference f(t, x)− f(t, y) –such as those mentioned in the
introduction– would evidently not apply to (2.2). For if such a theorem did apply
to (2.2) it would also have to apply to the example x′(t) = h(t)|x(t)|r, x(0) = 0,
since f(t, x)− f(t, y) is the same in this example as in (2.2). But this example has
the two solutions x(t) = [((1− r)

∫ t

0
h(s)ds)]1/(1−r) and x(t) ≡ 0 .

Example (2.2) is a generalization of an example which appears in [2], where a
theorem is given which also does not rely on the difference f(t, x) − f(t, y). But
the theorem in [2] does not apply to (2.2) unless g(0) 6= 0.

Remarks. Conditions (i) and (ii) in Theorem 2.1 replace the stronger condition
that f(t0, x0) 6= 0 as discussed in the Introduction. Neither of these conditions can
be dropped. Consider these two choices for f :

(a) f(t, x) = x3/5 + 1
100 t

3/2

(b) f(t, x) = x1/3.
With t0 = x0 = 0, both of these functions satisfy the conditions of Theorem 2.1,
except that example (a) does not satisfy condition (i), and example (b) does not
satisfy condition (ii). The non-uniqueness of solutions of the corresponding initial
value problem (1.1) is shown below.

(a) x(t) = kt5/2 is a solution where k is any of the three real numbers which
satisfy the equation ( 5k

2 −
1

100 )5 = k3.
(b) x(t) ≡ 0 and x(t) = (2t

3 )3/2 are both solutions.
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