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ASYMPTOTIC STABILITY OF TRAVELING FRONTS IN
DELAYED REACTION-DIFFUSION MONOSTABLE EQUATIONS

ON HIGHER-DIMENSIONAL LATTICES

HAI-QIN ZHAO

Abstract. This article is concerned with traveling wave fronts for spatially
discrete delayed reaction-diffusion equations on higher-dimensional lattices.

Under the monostable assumption and some reasonable conditions, we prove

the globally asymptotic stability of traveling wave fronts in the sense of phase
shift by using the comparison principle and the squeezing technique.

1. Introduction

In this article, we study the globally asymptotic stability of traveling fronts of
the general delayed reaction-diffusion equation on higher-dimensional lattices,

u′η(t) = D(4nu)η + f
(
uη(t), uη(t− τ)

)
, (1.1)

where n ∈ Z+, η ∈ Zn, t > 0, uη(t) ∈ R, D > 0, τ ≥ 0 are constants, (4nu)η is the
standard n-dimensional discrete Laplacian; i.e.,

(4nu)η =
∑

‖η1−η‖=1, η1∈Zn

[
uη1(t)− uη(t)

]
.

Here the reaction function f satisfies the following assumptions:
(A1) f ∈ C2([0,K]2,R), f(0, 0) = f(K,K) = 0, f(u, u) > 0 for all u ∈ (0,K),

and ∂1f(K,K) + ∂2f(K,K) < 0, where K > 0 is a constant;
(A2) ∂2f(u, v) ≥ 0, and f(u, v) ≤ ∂1f(0, 0)u+ ∂2f(0, 0)v for (u, v) ∈ [0,K]2;
(A3) For any δ ∈ (0, 1), there exist a = a(δ) > 0, α = α(δ) ≥ 0 and β = β(δ) ≥ 0

with α+ β > 0 such that for any $ ∈ (0, δ] and (u, v) ∈ [0,K]2

(1−$)f(u, v)− f
(
(1−$)u, (1−$)v

)
≤ −a$uαvβ .

From (A1) and (A2), we can see that (1.1) has two equilibria 0 and K, and
∂1f(0, 0) + ∂2f(0, 0) ≥ 2

K f
(
K
2 ,

K
2

)
> 0. We would like to point out that (A1) is

a standard monostable assumption, (A2) is a quasi-monotone and sub-tangential
condition, and (A3) is not a more restrictive condition. Indeed, the assumption (A3)
is a convex condition and in general, monostable nonlinearities satisfy it, see Section
4 for applications. We are interested in traveling wave solutions of (1.1) that connect
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the two equilibria 0 and K. Throughout this paper, a traveling wave solution always
refers to a trinity (U, c, σ), where U = U(·) : R → [0,K] is a function, c > 0 is a
constant and σ ∈ Rn is a unit vector, such that uη(t) := U(η · σ + ct), is a solution
of (1.1), and

U(−∞) := lim
ξ→−∞

U(ξ) = 0, U(+∞) := lim
ξ→+∞

U(ξ) = K. (1.2)

The vector σ represents the direction of the wave. We call c the wave speed and U
the wave profile. Moreover, we say U is a traveling (wave) front if U(·) : R→ R is
monotone.

For some special cases of (1.1), many well-known results on the traveling wave
fronts have been obtained under the monostable assumptions. Some of them can
be summarized as follows:

(i) If n = 1 and f(u, v) = −du + b(v), d > 0 is a constant and b is a function,
then (1.1) reduces to the 1-D lattice differential equation with delay

u′i(t) = D[ui+1(t) + ui−1(t)− 2ui(t)]− dui(t) + b
(
ui(t− τ)

)
, i ∈ Z, t > 0. (1.3)

Ma and Zou [10] proved the existence, uniqueness and stability of traveling wave
fronts of (1.3) by considering a related continuum equation.

(ii) If n = 2 and f(u, v) = −dmu+$b(v), then (1.1) reduces to the 2-D delayed
lattice differential equation

u′i,j(t) = D[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]

− dui,j(t) +$b
(
ui,j(t− τ)

)
, i, j ∈ Z, t > 0,

(1.4)

which was derived for a single species in a 2-D patchy environment. Cheng et al
[4] studied the existence of the minimal wave speed and spreading speed. In [5],
they further proved that the traveling wave front of (1.4) with “large speed” is
exponentially stable, when the initial perturbation around the wave is sufficiently
small in a weighted norm. In particular, the following equation is a special case of
(1.4):

u′i,j(t) = D[ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j ] + g
(
ui,j(t)

)
, (1.5)

for i, j ∈ Z, t > 0. Guo and Wu [7] considered the existence, uniqueness, mono-
tonicity and asymptotic behavior of traveling wave fronts of (1.5).

(iii) If f(u, v) = (1− u)v, then (1.1) becomes

u′η(t) = D(4nu)η + uη(t− τ)
[
1− uη(t)

]
, η ∈ Zn, (1.6)

which was derived from branching theory in [9]. Zou [16] established the existence
of traveling wave fronts of (1.6) by constructing a pair of sub- and super-solutions.

It should be mentioned that the traveling wave solutions of delayed lattice dif-
ferential equations has been studied by many researchers; see e.g., [4, 2, 3, 10, 11,
8, 14, 16, 18]. In [16], Wu and Zou studied the existence of traveling fronts of (1.1)
with n = 1 and general delay. Zou [18] considered the existence of the traveling
fronts of (1.1) with general dimension n. More precisely, he reduced the existence
of the traveling fronts to that of an admissible pair of sub- and super-solutions
by establishing a monotone iteration starting from a supersolution. Wu and Liu
[17] further considered the monotonicity, uniqueness, periodicity, and symmetry of
traveling wave fronts of (1.1).

However, to the best of our knowledge, there has been no results on the stability
of traveling fronts of (1.1). Although the weighted energy method is efficient for
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solving the wave stability, there are some unavoidable shortcomings. In particular,
as mentioned before, this method can only prove the stability of traveling fronts
for large wave speeds and small perturbations. In the present paper, we shall use
the comparison principle and squeezing technique to prove the globally asymptotic
stability of traveling fronts of (1.1) with speed c > c∗ (Theorem 2.3), where c∗
is the minimal wave speed. We point out that although the technique used here
are similar to these in [1, 2, 10, 12, 15], the technique details are different. For
example, for the 1-D discrete equations, the proof of stability theorem of traveling
wave fronts [10] is through a related continuum equation by extending the spatial
variable from j ∈ Z to x ∈ R. But, here we shall only use the original equation
(1.1) to prove the stability result of traveling wave fronts.

The rest of this paper is organized as follows. In Section 2, we first introduce
some known results on the existence of traveling fronts. Then, we state our main
result on the globally asymptotic stability of traveling fronts of (1.1). The proof
of the main result; i.e., Theorem 2.3, is given in Section 3. In Section 4, we apply
our results to two specific biological models and obtain some new results which
essentially improve and complement the results obtained in [5, 10, 17, 18].

2. Preliminaries and main results

Substituting U(ξ), ξ = η · σ + ct into (1.1), we obtain the corresponding wave
equation

cU ′(ξ) = E[U ](ξ) + f
(
U(ξ), U(ξ − cτ)

)
, (2.1)

where

E[U ](ξ) := D

n∑
k=1

[U(ξ + σk) + U(ξ − σk)− 2U(ξ)]. (2.2)

For c ≥ 0 and λ ∈ C, we define

4(c, λ) = cλ−D
n∑
k=1

[
eλσk + e−λσk − 2

]
− ∂1f(0, 0)− ∂2f(0, 0)e−λcτ .

The following observation is straightforward.

Proposition 2.1. For any fixed σ ∈ Rn with |σ| = 1, there exist λ∗ := λ∗(σ) > 0
and c∗ := c∗(σ) > 0 such that

4(c∗, λ∗) = 0,
∂

∂λ
4(c∗, λ)

∣∣∣
λ=λ∗

= 0.

Furthermore,

(i) if 0 < c < c∗ and λ > 0, then 4(c, λ) < 0;
(ii) if c > c∗, then the equation 4(c, λ) = 0 has two positive real roots λ1(c)

and λ2(c) with λ1(c) < λ∗ < λ2(c) such that

4(c, λ)

{
< 0 for λ ∈ R \ (λ1(c), λ2(c)),
> 0 for λ ∈ (λ1(c), λ2(c)).

The following result can be found in [17].
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Proposition 2.2. Let σ ∈ Rn be a given unit vector. For every c ≥ c∗, (1.1) has
a traveling wave front (U(·), c, σ) with U ′(ξ) > 0 for all ξ ∈ R. Moreover, for any
c > c∗, U(ξ) satisfies

lim
ξ→−∞

U(ξ)e−λ1(c)ξ = 1, lim
ξ→−∞

U ′(ξ)e−λ1(c)ξ = λ1(c).

Now, we state our main result in this article.

Theorem 2.3. Assume that (A1)–(A3) hold. For any fixed σ ∈ Rn with |σ| = 1,
let (U(·), c, σ) be the traveling wave front of (1.1) with direction σ and speed c > c∗
given in Proposition 2.2. If ϕ = {ϕη}η∈Zn with ϕη ∈ C([−τ, 0], [0,K]) satisfies

lim inf
η·σ→+∞

ϕη(0) > 0, lim inf
η·σ→−∞

max
s∈[−τ,0]

∣∣ϕη(s)e−λ1(c)η·σ − ρ0e
λ1(c)cs

∣∣ = 0, (2.3)

then the unique solution {uη(t)}η∈Zn of (1.1) with initial data ϕ satisfies

lim
t→+∞

sup
η∈Zn

∣∣ uη(t)
U(η · σ + ct+ ξ0)

− 1
∣∣ = 0, (2.4)

where ξ0 = ln(ρ0)/λ1(c).

Remark 2.4. Zou [18] reduced the existence of the traveling fronts of (1.1) to
that of an admissible pair of sub- and super-solutions. Wu and Liu [17] further
considered the monotonicity and uniqueness of traveling wave fronts of (1.1). Here,
we obtain the stability of the traveling wave fronts. So, Theorem 2.3 complements
the results in [17, 18].

We also mention that Cheng et al [5] studied the stability of traveling wave
fronts of (1.4) by using the weighted energy method. However, if not impossible,
it is difficult to apply the weighted energy method to the n-dimensional delayed
reaction-diffusion equations (1.1). On the other hand, the weighted energy method
can only be used to prove the stability of traveling wave fronts for large wave speeds
and small initial perturbations. Clearly, our result on the stability of traveling fronts
in Theorem 2.3 is valid not only for large initial perturbations but also for small
wave speeds. Thus, Theorem 2.3 essentially extends the results in Cheng et al [5].

3. Asymptotic stability of traveling fronts

3.1. The initial value problem. To study the stability of traveling fronts, The-
orem 2.3, we first consider the initial-value problem

u′η(t) = F [u](η, t), η ∈ Zn, t > 0,

uη(s) = ϕη(s), η ∈ Zn, s ∈ [−τ, 0].
(3.1)

Here and in the sequel,
∑
‖η1−η‖=1 denotes the sum over η1 ∈ Zn with ‖η1−η‖ = 1,

and

F [u](η, t) := D
∑

‖η1−η‖=1

[
uη1(t)− uη(t)

]
+ f

(
uη(t), uη(t− τ)

)
, η ∈ Zn, t > 0.

To take advantage of our estimates for sub- and super-solutions, we make the
following extension for the function f . Define function f̂ : [0,K]× [0, 2K]→ R by

f̂(u, v) =

{
f(u, v), for (u, v) ∈ [0,K]2,
f(u,K) + (v −K)∂2f(u,K), for (u, v) ∈ [0,K]× [K, 2K].
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Clearly, ∂1f̂(u, v) is continuous on [0,K]2, ∂2f̂(u, v) is continuous on [0,K]×[0, 2K].
For convenience, we will denote f̂ by f in the remainder of this paper. In the sequel,
we also denote Li = max(u,v)∈[0,K]2 |∂if(u, v)|, i = 1, 2.

For the existence and positivity of solutions of (3.1), we have the following result.

Lemma 3.1. For any ϕ = {ϕη}η∈Zn with ϕη ∈ C([−τ, 0], [0,K]), (3.1) admits a
unique solution u(t) = {uη(t)}η∈Zn on [0,+∞) satisfies uη ∈ C([−τ,+∞), [0,K]).
Moreover, for any i ∈ {1, . . . , n},

uη±jpi(t) ≥ Djϕη(0)tje−(L1+2nD)t/j! ∀η ∈ Zn, j ∈ N ∪ {0}, t > 0, (3.2)

where pi is the vector in Zn whose i− th component is 1 and all other components
are 0. In what follows, we denote pi = (0, . . . , 0, 1i, 0, . . . , 0).

Proof. We define F1[u](η, t) = D
∑
‖η1−η‖=1 uη1(t) +L1uη(t) + f

(
uη(t), uη(t− τ)

)
.

Clearly, F1[u](·) ≥ F1[v](·) for 0 ≤ v(·) ≤ u(·) ≤ K, and (3.1) is equivalent to

uη(t) = ϕη(0)e−(L1+2nD)t +
∫ t

0

e(L1+2nD)(s−t)F1[u](η, s)ds. (3.3)

The existence of solutions then follows by Picard’s iteration and the monotonicity
of the operator F1, see also Ma and Zou [11, Lemma 4.1].

Form (3.3), we have uη(t) ≥ ϕη(0)e−(L1+2nD)t and for any i ∈ {1, . . . , n},

uη(t) ≥
∫ t

0

e(L1+2nD)(s−t)F1[u](η, s)ds

≥ D
∫ t

0

e(L1+2nD)(s−t)[uη+pi(s) + uη−pi(s)]ds.

Therefore, by an induction argument, (3.2) holds. The proof is complete. �

Definition 3.2. A sequence of continuous functions {vη(t)}η∈Zn , t ∈ [−τ, b), b > 0,
is called a supersolution (a subsolution) of (3.1) on [0, b) if v′η(t) ≥ (≤)F [v](η, t),
a.e. for t ∈ [0, b).

Theorem 3.3 (Comparison Principle). Assume {u+
η (t)}η∈Zn and {u−η (t)}η∈Zn are

a pair of sub- and super-solutions of (3.1) on [0,∞) with 0 ≤ u−η (t), u+
η (t) ≤ K for

η ∈ Zn and t ∈ [−τ,∞), and u+
η (s) ≥ u−η (s) for η ∈ Zn and s ∈ [−τ, 0]. Then the

following hold:

(i) u+
η (t) ≥ u−η (t) for η ∈ Zn and t ≥ 0.

(ii) If there exists η0 ∈ Zn such that u+
η0(0) > u−η0(0), then u+

η (t) > u−η (t) for
η ∈ Zn and t > 0.

Proof. The conclusion (i) can be easily verified by using a method similar to that
of [10, Lemma 4.2], so we omit it here.

Let wη(t) = u+
η (t) − u−η (t), then wη(t) ≥ 0 for η ∈ Zn and t ≥ 0. By the

definition of the sub- and super-solutions of (3.1), we have, for any i ∈ {1, . . . , n},
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t > 0,

wη(t) = wη(0)e−(L1+2nD)t +
∫ t

0

e(L1+2nD)(s−t)
[
D

∑
‖η1−η‖=1

wη1(s)

+ L1wη(s) + f
(
u+
η (s), u+

η (s− τ)− f
(
u−η (s), u−η (s− τ)

)]
ds

≥ wη(0)e−(L1+2nD)t +D

∫ t

0

e(L1+2nD)(s−t)[wη+pi(s) + wη−pi(s)]ds

≥ D
∫ t

0

e(L1+2nD)(s−t)[wη+pi(s) + wη−pi(s)]ds ≥ 0,

(3.4)

where pi = (0, . . . , 0, 1i, 0, . . . , 0).
Suppose on the contrary that there exist η′ ∈ Zn and t′ > 0 such that wη′(t′) =

u+
η′(t
′) − u−η′(t′) = 0, then from (3.4), we have wη′±jpi(s) = 0 for any s ∈ [0, t′],

i ∈ {1, . . . , n} and j ∈ N. Noting that η0 = η′+Σ(±pi), we obtain wη0(0) = 0, which
is a contradiction. Therefore, u+

η (t) > u−η (t) for η ∈ Zn, t > 0. This completes the
proof. �

Lemma 3.4. Let K̄ = L1 + L2 and ui(t) = {uiη(t)}η∈Zn , i = 1, 2, be two solutions
of (3.1) with u1

η, u
2
η ∈ C([−τ,+∞), [0,K]). Then for t ≥ 0,

sup
η∈Zn

{
u1
η(t)− u2

η(t)
}
≤ sup
η∈Zn, s∈[−τ,0]

{
max

{
u1
η(s)− u2

η(s), 0
}}
eK̄t. (3.5)

The proof of the above lemma is similar to that of [10, Lemma 4.4] and is omitted.
Now, we construct a few of sub- and super-solutions for initial-value problem (3.1).

Lemma 3.5. Assume that φ(ξ) : R → [0,K] is continuous. Then wη(t) = φ(η ·
σ + ct) is a super-solution (resp. a sub-solution) of (3.1) on [0,∞) if Hc[φ](ξ) ≥ 0
(resp. ≤ 0) a.e. on R, where

Hc[φ](ξ) = cφ′(ξ)−D
n∑
k=1

[φ(ξ + σk) + φ(ξ − σk)− 2φ(ξ)]− f
(
φ(ξ), φ(ξ − cτ)

)
.

Lemma 3.6. For any δ ∈ (0, 1), there exist ρ > 0, γ > 0 such that for each ε ∈ (0, δ]
and for any ξ± ∈ R, the functions u(t) = {uη(t)}η∈Zn and u(t) = {uη(t)}η∈Zn

defined by

uη(t) = min{
(
1 + εe−ρt

)
U
(
η · σ + ct+ ξ+ − γεe−ρt

)
,K}

and
uη(t) =

(
1− εe−ρt

)
U
(
η · σ + ct+ ξ− + γεe−ρt

)
are a sub- and super-solution of (3.1), respectively.

Proof. It is easy to see that 0 < U(·) < K and U ′(·) > 0 on R. We first show that
uη(t) is a supersolution of (3.1). In view of

lim
(u,v,r,s,ρ)→(K−,K−,K−,K,0)

[
∂1f(u, v) + eρτ∂2f(r, s) + ρ

]
= ∂1f(K,K) + ∂2f(K,K) < 0,

there exist ρ1 ∈ (0, 1) and θ ∈
(
0, K2

)
such that

∂1f(u, v) + eρτ∂2f(r, s) < −ρ, (3.6)
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for ρ ∈ (0, ρ1], and (u, v, r, s) ∈ [K−θ,K]× [K−θ,K]× [K−θ,K]× [K−θ,K+θ].
Since limξ→−∞ U(ξ)e−λ1(c)ξ = 1, and limξ→−∞ U ′(ξ)e−λ1(c)ξ = λ1(c), we can take
ξ1 ∈ R such that for any ξ ≤ ξ1,

1
2
≤ U(ξ)e−λ1(c)ξ ≤ 3

2
,

1
2
λ1(c) ≤ U ′(ξ)e−λ1(c)ξ ≤ 3

2
λ1(c). (3.7)

Fixed 0 < ρ ≤ ρ1 such that δK(eρτ − 1) < θ, δeρτ < 1, and

ρK − aUα(ξ1)Uβ(ξ1 − cτ) + L2(eρτ − 1)K ≤ 0, (3.8)

where a = a(δ), α = α(δ) and β = β(δ) are determined in (A3).
Choose ξ2 ∈ R sufficiently large such that

U(ξ) ≥ K − θ, ∀ξ ≥ ξ2 − cτ. (3.9)

Set % = min{U ′(ξ) : ξ1 ≤ ξ ≤ ξ2} > 0. We can take γ > 0 sufficiently large such
that

−3
2
ρ+

1
2
γρλ1(c)− 3

2
L1 −

3
2
L2e

ρτe−λ1(c)cτ ≥ 0, (3.10)

−Kρ+ γρ%− L1K − L2e
ρτK ≥ 0, (3.11)

3
2
ρ− 1− δ

4
γρλ1(c) +

3
2
L2(eρτ − 1)e−λ1(c)cτ ≤ 0. (3.12)

If uη(t) = K, then it is easy to verify that u′η(t) − F [u](η, t) ≥ 0, so we only
consider the case uη(t) =

(
1 + εe−ρt

)
U (η · σ + ct+ ξ+ − γεe−ρt).

Let ξ = η · σ + ct+ ξ+ − γεe−ρt. Noting that uη(t− τ) ≤ 2K, then

u′η(t)− F [u](η, t)

= −ρεe−ρtU(ξ) +
(
1 + εe−ρt

)(
c+ γερe−ρt

)
U ′(ξ)

−D
(
1 + εe−ρt

) n∑
k=1

[U(ξ + σk) + U(ξ − σk)− 2U(ξ)]− f
(
uη(t), uη(t− τ)

)
= −ρεe−ρtU(ξ) + γερ

(
1 + εe−ρt

)
e−ρtU ′(ξ)

+
(
1 + εe−ρt

)
f
(
U(ξ), U(ξ − cτ)

)
− f

(
uη(t), uη(t− τ)

)
≥ −ρεe−ρtU(ξ) + γερ

(
1 + εe−ρt

)
e−ρtU ′(ξ) +

(
1 + εe−ρt

)
f
(
U(ξ), U(ξ − cτ)

)
− f

((
1 + εe−ρt

)
U(ξ),

(
1 + εe−ρ(t−τ)

)
U(ξ − cτ)

)
.

(3.13)

We distinguish among three cases.
Case (i): ξ ≥ ξ2. By (3.13), (3.6) and (3.9), we have

u′η(t)− F [u](η, t)

≥ −ρεe−ρtU(ξ) + γερe−ρtU ′(ξ) + f
(
U(ξ), U(ξ − cτ)

)
− f

((
1 + εe−ρt

)
U(ξ), U(ξ − cτ)

)
+ f

((
1 + εe−ρt

)
U(ξ), U(ξ − cτ)

)
− f

((
1 + εe−ρt

)
U(ξ),

(
1 + εe−ρ(t−τ)

)
U(ξ − cτ)

)
= −ρεe−ρtU(ξ) + γερe−ρtU ′(ξ)− εe−ρt∂1f

(
(1 + θ1εe

−ρt)U(ξ), U(ξ − cτ)
)
U(ξ)

− εe−ρ(t−τ)∂2f
((

1 + εe−ρt
)
U(ξ),

(
1 + θ2εe

−ρ(t−τ)
)
U(ξ − cτ)

)
U(ξ − cτ)

≥ εe−ρt
{
− ρU(ξ) + γρU ′(ξ)−

[
∂1f
(
(1 + θ1εe

−ρt)U(ξ), U(ξ − cτ)
)
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+ eρτ∂2f
((

1 + εe−ρt
)
U(ξ),

(
1 + θ2εe

−ρ(t−τ)
)
U(ξ − cτ)

) ]
U(ξ)

}
≥ εe−ρt

[
− ρU(ξ) + γρU ′(ξ) + ρU(ξ)

]
≥ 0,

where θi ∈ (0, 1), i = 1, 2, and we have used the estimate(
1 + θ2εe

−ρ(t−τ)
)
U(ξ − cτ) ≤

(
1 + εe−ρt

)
U(ξ) + εe−ρt(eρτ − 1)U(ξ) ≤ K + θ.

Case (ii): ξ < ξ1, it follows from (3.13), (3.7) and (3.10) that

u′η(t)− F [u](η, t)

≥ −ρεe−ρtU(ξ) + γερe−ρtU ′(ξ) + f
(
U(ξ), U(ξ − cτ)

)
− f

((
1 + εe−ρt

)
U(ξ),

(
1 + εe−ρ(t−τ)

)
U(ξ − cτ)

)
≥ −ρεe−ρtU(ξ) + γερe−ρtU ′(ξ)− L1εe

−ρtU(ξ)− L2εe
−ρ(t−τ)U(ξ − cτ)

≥ εe−ρteλ1(c)ξ
[
− 3

2
ρ+

1
2
γρλ1(c)− 3

2
L1 −

3
2
L2e

ρτe−λ1(c)cτ
]
≥ 0.

Case (iii): ξ1 ≤ ξ ≤ ξ2, by (3.13) and (3.11), we obtain

u′η(t)− F [u](η, t)

≥ −ρεe−ρtU(ξ) + γερe−ρtU ′(ξ) + f
(
U(ξ), U(ξ − cτ)

)
− f

((
1 + εe−ρt

)
U(ξ),

(
1 + εe−ρ(t−τ)

)
U(ξ − cτ)

)
≥ −ρεe−ρtK + γερe−ρtU ′(ξ)− L1εe

−ρtK − L2εe
−ρ(t−τ)K

≥ εe−ρt[−Kρ+ γρ%− L1K − L2e
ρτK] ≥ 0.

Therefore, uη(t) is a supersolution of (3.1).
Similarly, by virtue of (3.12) and (3.8), we can show that uη(t) is a subsolution

of (3.1) under the assumption (A3). This completes the proof. �

3.2. Proof of Theorem 2.3. We need to establish several technical lemmas.

Lemma 3.7. For any ε > 0, there exists ξ1(ε) < 0 such that, for ξ = η · σ + ct ≤
ξ1(ε),

U(ξ + ξ0 − 2ε) < inf
t≥−τ

uη(t) ≤ sup
t≥−τ

uη(t) < U(ξ + ξ0 + 2ε), (3.14)

Proof. Let ε1 = ρ0

(
eλ1(c)ε − 1

)
e−λ1(c)cτ > 0. Then by (2.3), there exists ξ+(ε) < 0

such that for η · σ ≤ ξ+(ε) and s ∈ [−τ, 0],

ϕη(s)e−λ1(c)η·σ < ρ0e
λ1(c)cs + ε1

≤ ρ0e
λ1(c)cs + ρ0

(
eλ1(c)ε − 1

)
eλ1(c)cs = ρ0e

λ1(c)cseλ1(c)ε,

it follows that ϕη(s) < eλ1(c)(η·σ+cs+ξ0+ε). Similarly, one can verify that there exists
ξ−(ε) < 0 such that ϕη(s) > eλ1(c)(η·σ+cs+ξ0−ε) for η · σ ≤ ξ−(ε) and s ∈ [−τ, 0].
Let x1(ε) := min{ξ+(ε), ξ−(ε)}. Then, for any η · σ ≤ x1(ε) and s ∈ [−τ, 0],

eλ1(c)(η·σ+cs+ξ0−ε) < ϕη(s) < eλ1(c)(η·σ+cs+ξ0+ε).

Set
φ−(ξ) = max{0, eλ1(c)(ξ+ξ0−ε) − leνλ1(c)(ξ+ξ0−ε)},

where ν = 1
2

(
1+min

{
2, λ2(c)

λ1(c)

})
and l ≥ max

{
Q(c, ν), e−(ν−1)λ1(c)(x1(ε)+ξ0−ε−cτ)

}
.

Then, by Lemma 3.5, φ−(η · σ + ct) is a subsolution of (3.1).
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Noting that eλ1(c)(η·σ+cs+ξ0−ε) − leνλ1(c)(η·σ+cs+ξ0−ε) < 0 for η · σ > x1(ε) and
s ∈ [−τ, 0], we have, for η ∈ Zn and s ∈ [−τ, 0],

ϕη(s) > max
{

0, eλ1(c)(η·σ+cs+ξ0−ε) − leνλ1(c)(η·σ+cs+ξ0−ε)
}
.

Thus, by Theorem 3.3, for η ∈ Zn and t ≥ −τ ,

uη(t) ≥ eλ1(c)(η·σ+ct+ξ0−ε) − leνλ1(c)(η·σ+ct+ξ0−ε).

Since limξ→−∞ U(ξ)e−λ1(c)ξ = 1, there exists x2(ε) < 0 such that for ξ ≤ x2(ε),

eλ1(c)(ξ+ξ0−ε) − leνλ1(c)(ξ+ξ0−ε) > U(ξ + ξ0 − 2ε).

Therefore, for ξ = η · σ + ct ≤ x2(ε),

inf
t≥−τ

uη(t) ≥ eλ1(c)(ξ+ξ0−ε) − leνλ1(c)(ξ+ξ0−ε) > U(ξ + ξ0 − 2ε).

Set φ+(ξ) = min
{
K, eλ1(c)(ξ+ξ0+ε) + leνλ1(c)(ξ+ξ0+ε)

}
, we can similarly show

that there exists x3(ε) < 0 such that for ξ = η · σ + ct ≤ x3(ε),

sup
t≥−τ

uη(t) ≤ eλ1(c)(ξ+ξ0+ε) + leνλ1(c)(ξ+ξ0+ε) < U(ξ + ξ0 + 2ε).

Take ξ1(ε) = min{x2(ε), x3(ε)}, then the assertion of the lemma follows. �

Lemma 3.8. There exist δ ∈ (0, 1), ρ > 0, γ > 0 and z0 > 0 such that for η ∈ Zn
and t ≥ 1,(

1− δe−ρ(t−1−τ)
)
U
(
η · σ + ct+ ξ0 − z0 + γδe−ρ(t−1−τ)

)
≤ uη(t) ≤ min

{(
1 + δe−ρt

)
U
(
η · σ + ct+ ξ0 + z0 − γδe−ρt

)
,K
}
.

(3.15)

Consequently, for t ≥ 1,

1− δe−ρ(t−1−τ) ≤ inf
ξ∈R

uη(t)
U(ξ + ξ0 − z0)

, sup
ξ∈R

uη(t)
U(ξ + ξ0 + z0)

≤ 1 + δe−ρt, (3.16)

where ξ = η · σ + ct.

Proof. In view of (3.14), we have uη(1 + τ + s) ≥ U(η · σ + c(1 + τ + s) + ξ0 − 2)
for η · σ ≤ ξ1(1)− c(1 + τ) and s ∈ [−τ, 0].

Since lim infη·σ→+∞ ϕη(0) > 0, there exists δ1 > 0 and x4 > 0 such that ϕη(0) >
δ1 for η · σ > x4. Fix a positive integer N > [x4 − ξ1(1) + c(1 + τ)]

/
σi0 , where

σi0 := maxi=1,...,n{σi} > 0. If η · σ > ξ1(1) − c(1 + τ), then (η + Npi0) · σ > x4,
and hence, it follows from Lemma 3.1 that

uη(1 + τ + s) = u(η+Npi0 )−Npi0 (1 + τ + s)

≥ DN (1 + τ + s)Nϕη+Npi0
(0)e−(L1+2nD)(1+τ+s)

/
N !

≥ DNδ1e
−(L1+2nD)(1+τ)

/
N ! ≥ (1− δ)K,

for η ·σ > ξ1(1)− c(1 + τ), s ∈ [−τ, 0] and some δ ∈ (0, 1). Thus, for any ρ > 0 and
γ > 0,

uη(1 + τ + s) ≥ (1− δ)U
(
η · σ + c(1 + τ + s) + ξ0 − 2

)
≥ (1− δe−ρs)U

(
η · σ + c(1 + τ + s) + ξ0 − 2− δγeρτ + δγe−ρs

)
,
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for η ∈ Zn and s ∈ [−τ, 0]. Choose ρ small enough and γ large enough, respectively,
such that the conclusion of Lemma 3.6 holds. Consequently, we have, for η ∈ Zn
and t ≥ −τ ,

uη(1 + τ + t) ≥ (1− δe−ρt)U
(
η · σ + c(1 + τ + t) + ξ0 − 2− δγeρτ + δγe−ρt

)
,

Then, for η ∈ Zn and t ≥ 1,

uη(t) ≥ (1− δe−ρ(t−1−τ))U
(
η · σ + ct+ ξ0 − (2 + δγeρτ ) + δγe−ρ(t−1−τ)

)
. (3.17)

Again, in view of (3.14), uη(s) < U(η · σ + cs+ ξ0 + 2) for ξ = η · σ ≤ ξ1(1) and
s ∈ [−τ, 0]. Also, for δ given in the above estimate and sufficiently large x5 > 0
satisfying U(ξ1(1)− cτ + x5 + ξ0 + 2) ≥ K/(1 + δ), we get for ξ = η · σ ≥ ξ1(1) and
s ∈ [−τ, 0], uη(s) ≤ K ≤ (1 + δ)U(η · σ + cs + x5 + ξ0 + 2). Thus, for η ∈ Zn and
s ∈ [−τ, 0], we have

uη(s) ≤ (1 + δ)U
(
η · σ + cs+ x5 + ξ0 + 2

)
≤ (1 + δe−ρs)U

(
η · σ + cs+ x5 + ξ0 + 2 + δγeρτ − δγe−ρs

)
.

Hence, for η ∈ Zn and s ∈ [−τ, 0],

uη(s) ≤ min{(1 + δe−ρs)U(η · σ + cs+ x5 + ξ0 + 2 + δγeρτ − δγe−ρs),K}.

Using the comparison principle, we obtain, for all η ∈ Zn and t ≥ −τ ,

uη(t) ≤ min
{

(1 + δe−ρt)U
(
η · σ + ct+ x5 + ξ0 + 2 + δγeρτ − δγe−ρt

)
,K
}
. (3.18)

Let z0 = x5 + 2 + δγeρτ , then (3.15) follows from (3.17) and (3.18), and (3.16)
is a direct consequence of (3.15). This completes the proof. �

Lemma 3.9. There exists M0 > 0 such that for ε ∈ (0, δ] and ξ ≥M0 + ξ0,

(1− ε)U
(
ξ + 3εγeρτ

)
≤ U(ξ) ≤ (1 + ε)U

(
ξ − 3εγeρτ

)
. (3.19)

The proof of the above lemma is similar to that of Ma and Zou [10, Lemma 5.3]
and is omitted.

In the sequel, the constants δ, ρ, γ, z0,M0 are fixed as in Lemmas 3.8 and 3.9.
Consider the continuum version of (1.1) for the moment

ut(x, t) = D

n∑
i=1

[
u(x+pi, t)+u(x−pi, t)−2u(x, t)

]
+f
(
u(x, t), u(x, t−τ)

)
, (3.20)

where x ∈ Rn, t > 0, and pi = (0, . . . , 0, 1i, 0, . . . , 0). One sees that if u(x, s)|x=η =
uη(s), for η ∈ Zn and s ∈ [−τ, 0], then u(x, t)|x=η = uη(t), for η ∈ Zn and t > 0.
Also, the corresponding wave equation of (3.20) takes the form (2.1).

Lemma 3.10. Let z, M1 and T be any given positive constants and u±(x, t;T ) be
solutions of (3.20) with initial values

u+(x, s;T ) = U
(
x · σ + cs+ cT + ξ0 + z

)
ζ
(
x · σ + cs+ cT +M1

)
+ U

(
x · σ + cs+ cT + ξ0 + 2z

)[
1− ζ(x · σ + cs+ cT +M1)

]
,

(3.21)

u−(x, s;T ) = U
(
x · σ + cs+ cT + ξ0 − z

)
ζ
(
x · σ + cs+ cT +M1

)
+ U

(
x · σ + cs+ cT + ξ0 − 2z

)[
1− ζ(x · σ + cs+ cT +M1)

]
,

(3.22)
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for x ∈ Rn and s ∈ [−τ, 0], respectively, where ζ(y) = min{max{0,−y}, 1} for
y ∈ R. Then there exists ε ∈

(
0,min

{
δ/2, ze−ρτ/(3γ)

})
, depending on z and M1(

independent of T ), such that for any x · σ + cT ≥ −M1 and s ∈ [−τ, 0],

u+(x, 1 + τ + s;T ) ≤ (1 + ε)U
(
x · σ + c(T + 1 + τ + s) + ξ0 + 2z − 3εγeρτ

)
,

(3.23)

u−(x, 1 + τ + s;T ) ≥ (1− ε)U
(
x · σ + c(T + 1 + τ + s) + ξ0 − 2z + 3εγeρτ

)
.

(3.24)

Proof. We consider only u+, since the inequality for u− can be proved similarly.
In view of u+(x, s;T ) ≤ U(x · σ + cs + cT + ξ0 + 2z) for x ∈ Rn and s ∈ [−τ, 0],
and u+(x, s;T ) = U(x · σ + cs + cT + ξ0 + z) < U(x · σ + cs + cT + ξ0 + 2z) for
x · σ ∈ (−∞,−M1 − 1− cT ] and s ∈ [−τ, 0]. Using a comparison principle for the
continuum equation (3.20) (see e.g., [10, Lemma 4.3]), we obtain for x ∈ Rn and
t > 0, u+(x, t;T ) < U(x · σ+ ct+ cT + ξ0 + 2z), which implies that for x ∈ Rn and
s ∈ [−τ, 0],

u+(x, 1 + τ + s;T ) < U(x · σ + c(T + 1 + τ + s) + ξ0 + 2z).

Case (i): T ∈ [0, c0), where c0 := 1
c . Then, by the uniform continuity of u+ and

U , there exists ε ∈
(
0,min

{
δ/2, ze−ρτ/(3γ)

})
such that for any T ∈ [0, c0),

u+(x, 1 + τ + s;T ) ≤ U
(
x · σ + c(T + 1 + τ + s) + ξ0 + 2z − 3εγeρτ

)
, (3.25)

for x · σ + cT ∈ [−M1,M0 − 2z] and s ∈ [−τ, 0].
Case (ii): T ≥ c0. There exist k ∈ N and T0 ∈ [0, c0) such that T = T0 + kc0.
From (3.21), we obtain, for x ∈ Rn and s ∈ [−τ, 0],

u+(x, s;T )

= U
(
(x+ kσ) · σ + cs+ cT0 + ξ0 + z

)
ζ
(
(x+ kσ) · σ + cs+ cT0 +M1

)
+ U

(
(x+ kσ) · σ + cs+ cT0 + ξ0 + 2z

)[
1− ζ((x+ kσ) · σ + cs+ cT0 +M1)

]
= u+(x+ kσ, s;T0).

(3.26)

Hence, u+(x, t;T ) = u+(x + kσ, t;T0), for x ∈ Rn and t > 0. For x · σ + cT ∈
[−M1,M0 − 2z], let x = x′ − kσ, then x · σ + cT = (x′ − kσ) · σ + c(T0 + k 1

c ) =
x′ · σ + cT0 ∈ [−M1,M0 − 2z]. Hence, by (3.8) and (3.25), we obtain

u+(x, 1 + τ + s;T ) = u+(x′, 1 + τ + s;T0)

≤ U
(
x′ · σ + c(T0 + 1 + τ + s) + ξ0 + 2z − 3εγeρτ

)
= U

(
x · σ + c(T + 1 + τ + s) + ξ0 + 2z − 3εγeρτ

)
.

Furthermore, from Lemma 3.9, for x · σ + cT ∈ [M0 − 2z,+∞) and s ∈ [−τ, 0],

u+(x, 1 + τ + s;T ) < U
(
x · σ + c(T + 1 + τ + s) + ξ0 + 2z

)
≤ (1 + ε)U

(
x · σ + c(T + 1 + τ + s) + ξ0 + 2z − 3εγeρτ

)
.

Therefore, (3.23) holds, and this completes the proof. �

The following result is a direct consequence of Lemma 3.10.



12 H.-Q. ZHAO EJDE-2013/119

Corollary 3.11. Let z, M1 and T be any given positive constants and u±η (t;T ) be
solutions of (1.1) with initial values

u+
η (s;T ) = U

(
η · σ + cs+ cT + ξ0 + z

)
ζ
(
η · σ + cs+ cT +M1

)
+ U

(
η · σ + cs+ cT + ξ0 + 2z

)[
1− ζ(η · σ + cs+ cT +M1)

]
,

(3.27)

u−η (s;T ) = U
(
η · σ + cs+ cT + ξ0 − z

)
ζ
(
η · σ + cs+ cT +M1

)
+ U

(
η · σ + cs+ cT + ξ0 − 2z

)[
1− ζ(η · σ + cs+ cT +M1)

]
,

(3.28)

for η ∈ Zn and s ∈ [−τ, 0], respectively, where ζ(y) = min{max{0,−y}, 1} for
y ∈ R. Then there exists ε ∈

(
0,min

{
δ/2, ze−ρτ/(3γ)

})
, depending on z and M1

(independent of T ), such that for any η · σ + cT ≥ −M1 and s ∈ [−τ, 0],

u+
η (1 + τ + s;T ) ≤ (1 + ε)U

(
η · σ + c(T + 1 + τ + s) + ξ0 + 2z − 3εγeρτ

)
,

u−η (1 + τ + s;T ) ≥ (1− ε)U
(
η · σ + c(T + 1 + τ + s) + ξ0 − 2z + 3εγeρτ

)
.

Proof of Theorem 2.3. Define

z+ = inf{z : z ∈ A+}, A+ = {z ≥ 0 : lim sup
t→+∞

sup
ξ∈R

uη(t)
U(ξ + ξ0 + 2z)

≤ 1},

z− = inf{z : z ∈ A−
}
, A− = {z ≥ 0 : lim inf

t→+∞
inf
ξ∈R

uη(t)
U(ξ + ξ0 − 2z)

≥ 1},

in which ξ = η · σ + ct. By Lemma 3.8, we see that 1
2z0 ∈ A±, and hence z± are

well defined and z± ∈ [0, 1
2z0]. Furthermore, as limε→0

U(·+ε)
U(·) = 1 uniformly on R,

we see that z± ∈ A± and A± = [z±,+∞).
Thus, to complete the proof, it is sufficient to show that z+ = z− = 0. First,

we prove that z+ = 0 by a contradiction argument. On the contrary, suppose that
z+ > 0. We fix z = z+ and M1 = −ξ1( z

+

2 ) and denote by ε the resulting constant
in Corollary 3.11. Since z+ ∈ A+, lim supt→+∞ supξ∈R

uη(t)
U(ξ+ξ0+2z+) ≤ 1. It then

follows that there exists T ≥ 0 such that for s ∈ [−τ, 0],

sup
ξ∈R

uη(T + s)
U(ξ + ξ0 + 2z+)

≤ 1 + ε̂/K,

where ξ = η ·σ+ c(T + s) and ε̂ = εU
(
−M1 + ξ0− 3εγeρτ

)
e−K̄(1+τ), K̄ = L1 +L2.

Thus, for any η ∈ Zn and s ∈ [−τ, 0], uη(T + s) ≤ U(η ·σ+ c(T + s) + ξ0 + 2z+) + ε̂.
From (3.27), we obtain u+

η (s;T ) = U(η · σ + c(T + s) + ξ0 + 2z+) for η · σ ∈
[−M1 − cs− cT,+∞). Then, for η · σ ∈ [−M1 − cs− cT,+∞),

uη(T + s) ≤ U(η · σ + c(T + s) + ξ0 + 2z+) + ε̂ = u+
η (s;T ) + ε̂.

For η ·σ ∈ (−∞,−M1−cs−cT ] =
(
−∞, ξ1( z

+

2 )−cs−cT
]
, by (3.14) and definition

of u+
η (s;T ), we have uη(T +s) < U

(
η ·σ+c(T +s)+ξ0 +z+

)
≤ u+

η (s;T ). Thus, for
any η ∈ Zn and s ∈ [−τ, 0], uη(T + s) ≤ u+

η (s;T ) + ε̂. By Lemmas 3.4, we obtain
uη(T + 1 + τ + s) ≤ u+

η (1 + τ + s;T ) + ε̂eK̄(1+τ), which implies

uη(T + 1 + τ + s) ≤ u+
η (1 + τ + s;T ) + ε̂eK̄(1+τ)

= u+
η (1 + τ + s;T ) + εU

(
−M1 + ξ0 − 3εγeρτ

)
.

Then by Corollary 3.11, we obtain, for η · σ + cT ∈ [−M1,+∞) and s ∈ [−τ, 0],

uη(T + 1 + τ + s) ≤ (1 + ε)U
(
η · σ + c(T + 1 + τ + s) + ξ0 + 2z+ − 3εγeρτ

)
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+ εU
(
−M1 + ξ0 − 3εγeρτ

)
≤ (1 + 2ε)U

(
η · σ + c(T + 1 + τ + s) + ξ0 + 2z+ − 3εγeρτ

)
.

Again by (3.14) and 3γεeρτ < z+, we obtain, for η ·σ+c(T+1+τ) ≤ ξ1( z
+

2 ) = −M1

and s ∈ [−τ, 0],

uη(T + 1 + τ + s) ≤ U(η · σ + c(T + 1 + τ + s) + ξ0 + z+)

≤ (1 + 2ε)U
(
η · σ + c(T + 1 + τ + s) + ξ0 + 2z+ − 3εγeρτ

)
.

Thus, for η ∈ Zn and s ∈ [−τ, 0],

uη(T + 1 + τ + s) ≤ (1 + 2ε)U
(
η · σ + c(T + 1 + τ + s) + 2z+ + ξ0 − 3εγeρτ

)
≤ (1 + 2εe−ρs)

× U
(
η · σ + c(T + 1 + τ + s) + ξ0 + 2z+ − εγ − 2εγe−ρs

)
.

Hence, for η ∈ Zn and s ∈ [−τ, 0],

uη(T + 1 + τ + s)

≤ min{(1 + 2εe−ρs)U
(
η · σ + c(T + 1 + τ + s) + ξ0 + 2z+ − εγ − 2εγe−ρs

)
,K}.

It then follows from Theorem 3.3 and Lemma 3.6 that, for all η ∈ Zn and t > 0,

uη(T + 1 + τ + t) ≤ min{(1 + 2εe−ρt)U
(
η · σ + c(T + 1 + τ + t)

+ ξ0 + 2z+ − εγ − 2εγe−ρt
)
,K};

that is,

uη(t) ≤ min{
(
1 + 2εe−ρ(t−T−1−τ)

)
U
(
η · σ + ct+ ξ0

+ 2z+ − εγ − 2εγe−ρ(t−T−1−τ)
)
,K}.

which implies

lim sup
t→+∞

sup
ξ∈R

uη(t)
U(ξ + ξ0 + 2z+ − εγ)

≤ 1,

where ξ = η · σ + ct. Thus, z+ − εγ/2 ∈ A+, which is a contradiction, and hence
z+ = 0. Similarly, we can show that z− = 0. This completes the proof. �

4. Applications

In this section, we apply our results developed in Sections 2 and 3 to the models
(1.4) and (1.6).

Example 4.1. Consider the equation
u′i,j(t) = Dm[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]

− dmui,j(t) +$b
(
ui,j(t− τ)

)
.

(4.1)

Assume that
(B1) b ∈ C2([0,K],R), b(0) = $b(K) − dmK = 0, and b(v) > 0 for v ∈ (0,K),

$b′(K) < dm, b′(v) ≥ 0 and b(v) ≤ b′(0)v for v ∈ [0,K], where K > 0 is a
constant;

(B2) For any δ ∈ (0, 1), there exist a = a(δ) > 0 and β = β(δ) > 0 such that for
γ ∈ (0, δ] and v ∈ [0,K], (1− γ)$b(v)−$b((1− γ)v) ≤ −aγvβ .

Let f(u, v) = −dmu+$b(v), one can easily verify that (A1)–(A3) hold.

From Theorem 2.3, the following result holds.
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Theorem 4.2. Assume that (B1), (B2) hold. For any fixed θ ∈ R, let U be the
unique traveling front of (4.1) with direction θ and speed c > c∗, where c∗ is the
minimal wave speed. If ϕ = {ϕi,j}(i,j)∈Z2 with ϕi,j ∈ C([−τ, 0], [0,K]) satisfies

lim inf
i cos θ+j sin θ→+∞

ϕη(0) > 0

and

lim inf
i cos θ+j sin θ→−∞

max
s∈[−τ,0]

∣∣ϕi,j(s)e−λ1(c)(i cos θ+j sin θ) − ρ0e
λ1(c)cs

∣∣ = 0,

then the unique solution {ui,j(t)}(i,j)∈Z2 of (4.1) with initial data ϕ satisfies

lim
t→+∞

sup
(i,j)∈Z2

∣∣ ui,j(t)
U(i cos θ + j sin θ + ct+ ξ0)

− 1
∣∣ = 0,

where ξ0 = 1
λ1(c) ln ρ0 and λ1(c) is the smallest root of the equation

cλ−Dm

[
eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ − 4

]
+ dm − b′(0)e−λcτ = 0.

Remark 4.3. Cheng et al [5] proved the stability of traveling fronts of (4.1) for
large wave speeds and small initial perturbations. Clearly, our result on the stability
of traveling fronts in Theorem 4.2 is valid not only for large initial perturbations but
also for small wave speeds. Thus, Theorem 4.2 complements the result in Cheng et
al [5].

Example 4.4. Consider the equation

u′η(t) = D(4nu)η + uη(t− τ)
[
1− uη(t)

]
, η ∈ Zn. (4.2)

The results in [18] show that for any fixed σ ∈ Rn with |σ| = 1, there exists
a number c∗(σ) > 0 such that for each c > c∗(σ), (4.2) has a traveling front
(U(ξ), c, σ) connecting 0 and 1. Wu and Liu [17] further obtained the monotonicity
and uniqueness of the traveling wave fronts. However, there has been no results on
the stability of the traveling fronts of (4.2).

Let f(u, v) = (1−u)v, then (A1)–(A3) hold. Theorem 2.3 implies that the travel-
ing front (U(ξ), c, σ) with direction σ and speed c > c∗(σ) is globally asymptotically
stable with phase shift. Obviously, this result complements the one established by
[17, 18].
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