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STRICHARTZ ESTIMATES ON o-MODULATION SPACES

WEICHAO GUO, JIECHENG CHEN

ABSTRACT. In this article, we consider some dispersive equations, including
Schrédinger equations, nonelliptic Schrédinger equations, and wave equations.
We develop some Strichartz estimates in the frame of c-modulation spaces.

1. INTRODUCTION
We study the Cauchy problem for the Schrodinger type equation
iug + (—A)Pu=F
u(0, z) = ug,
the Cauchy problem for nonelliptic Schrodinger equation
wy +Y(D)v=F

1.2
v(0,2) =vy (12)
where (&) = 1, £1(¢/%, and the Cauchy problem for wave equation
Wt — Aw=F
(1.3)

w(0,z) = wo, w (0, ) = wy.

The initial data belongs to the a-modulation space Mglo‘ , and we use F' to denote
some nonlinear terms.
We recall Duhamel’s formula for above three dispersive equations. The solution

to (1) is

t
u(t,x) = =Ry z/ ei(t_s)(_A)B/zF(s)ds. (1.4)
0
The solution to (1.2) is
t
o(t,z) = e Py, — z/ e = (D) () ds. (1.5)
0

The solution to is
sin(ty—4) / (= VIR pae (1)
0

w(t,z) = cos(t\/z)wo + ﬁwl + V—»~A
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There are many publications about the theoretical and applied aspects of the
Schrodinger equation and the wave equation; see for example Tao [I4] and Sogge
[T1] for a nice introduction. We refer the reader to [T}, [2], [3] [4] [0} [16], 17, 18] for the
study of modulation space and dispersive equation.

In this paper, we are concerned mainly with the Strichartz estimates for the
solutions of the above three equations. The original estimates are due to Strichartz
[13], and they became fundamental and important tools in the study of dispersive
equations. The theory of Strichartz estimates has also been studied by many au-
thors. One is referred to [6], [7] and [9] for classical Strichartz estimates. We also
refer the readers to [B] and [20] for the Strichartz estimates in the frame of Wiener
amalgam spaces and modulation spaces. The following lemma is a basic Strchartz
estimate, proved by Keel-Tao [9], that we will use it frequently in our proofs.

Definition 1.1. An exponent pair (r, p) is called o-admissible if r,p > 2, (r,p,n) #
(2,00,2) and
1 o

+2<7
r o p = 2
If the equality holds, we say that (r,p) is sharp o-admissible, otherwise we say that
(r,p) is nonsharp o-admissible. If o > 1 we say the sharp o-admissible pair

20 ) (18)

c—1

(1.7)

(2,
is an endpoint.
Next we have the Strichartz estimates.

Lemma 1.2 ([9]). Let {U(t)}ter be a semigroup of operators that obey energy
estimate

U@ fllzz S 1fllze (1.9)

and dispersive estimate
U U () gllee S 1t —=s7lgllze- (1.10)

Then the estimates

NI0@) flleree < N fllz. (1.11)
| /R(U(S))*F(S)dSIILg SIEN Ly (1.12)
II/ tU(t)(U(S))*F(S)dSHL;Lg SIEN Ly (1.13)

s<

hold for all sharp o-admissible pairs (r,p) and (7,p). If U(t) satisfies stronger
condition

U@ U (s) gl S A+t =s)llgllzs, (1.14)

then the above estimates hold for all o-admissible pairs.

In 2012, Zhang[20] established some Strichartz estimates in the frame of modula-
tion spaces, here we will study the estimates in the frame of a-modulation spaces,
our theorems will cover the estimates in [20]. First, we recall the definition of
a-modulation space.
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Definition 1.3. Let p(£) be a smooth radial bump supported in the ball |£| < 2,
satisfying p(§) =1 as |§] < 1. For any k € Z", we set

(&) = p(g — <k>a/(1ia)k),

N (1.15)

and denote
e (&) = pi (€ ( Z pi'( ) : (1.16)
lezn
For any k € Z", we define
0 = 'nt 7. (1.17)
When « € [0,1), the a-modulation space associated with the above decomposition
is defined by

ME2®R) = {F € S @) Ifllaggg oy = (3 09002 f8) " < o0}

kezn
with the usual modifications when ¢ = oo

The a-modulation space was introduced by Grobner [8], and it is an intermediate
space between modulation space and Besov space, when o = 0 it is the usual
modulation space, and the Besov space can be regarded as the case a — 1. A
comprehensive study of a-modulation space has been done in [19]. We also need
some frequency decomposition spaces which are similar with the spaces defined in
[16].

Definition 1.4. If X = LTL2(R x R™) (1 < r,p,q < 00), we denote

1/
pro = (3 WOy ) < o)

keZm

158(X) = {ueSR"™): |ul,

with the usual modifications when ¢ = oo

Using Minkowski’s inequality, we can verify that for r > g,
Iy romgsy < g oyre) - (1.18)
In Section 2, we will give some basic definitions and properties associated with
a-modulation spaces, and recall some basic estimates of oscillatory integral which
are useful in our proof. We will give the proof of main theorems in Section 3.
Standard techniques involving 7T method and duality argument will be used to
establish some Strichartz estimates. In the case when (r, p) and (7, p) are sharp, we

will use a dilation argument, based on some basic Strichartz estimates. Now, we
present our main results. First the Strichartz estimates for Schrodinger equation:

Theorem 1.5. Suppose s € R, ¢ > 1, a €1[0,1), 5 € (0,2] and 8 # 1, (p,r) and
(p,7) are both % -admissible pairs, then the solution of (L.1|) satisfies

Jult )it o) S ol g + 1Flpsscomssmagpr gy (119)
where §(r,p) = o — 2 — 2)+2- B)L. More precisely, we have
it(—A)B/2
”6125( ) s,g (L;'Lﬁ) SJ ||u0||M§‘:Z(§(T,p),O¢’ (120)

z S [3/2
H/ . (t=9)(= F( ) SA(LYLE) < ||F
<

s+5(r p)+8(7,p), ’-I(L'r LP ) (121>
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Next we have the Strichartz estimates for nonelliptic Schrodinger equation:

Theorem 1.6. Suppose s € R, ¢ > 1, a € [0,1), 5 € (0,2] and 8 # 1, (p,r) and
(p,7) are both T -admissible pairs, then the solution of (L.2|) satisfies

ot Dl criey S Neollyggrsomn + 1P lpscmsomagpryy  (122)
where §(r,p) = (% — 2 — 2)+2- B)L. More precisely, we have
||eit'¢)(D)fU0||l5Dvg (LILQ) SJ ||/UO||M;-Z§(7‘,p),a’ (123)

s " < s . I
e ey S IF 3RS D L ) (1.24)

I / ¢it=)0(D) B () ds
s<t

Next we have the Strichartz estimates for wave equation:

admissible pairs, if%—%—l—1>0andn—l—ﬂ—f—@—%>0, then the

solution of (|L1.3)) satisfies

lwlliga rezy S lwoll ypgroerme + lwillypsoem—vo + 1 F N arocmron-ra )
where 0(r,p) = a2 (251 — 2 — "le) + 211 More precisely, we have
|| COS(t\/ —A)wo 152 (LY LE) < ||wOHM§t9(7',p),a’ (1.25)
sin(tv/—A
\/j)wl 158 (LY L) S ||w1||M§te(,-,p>71,a, (1.26)

sin((t — s)v/—A)

We must point out that our results can’t be deduced directly by a simple inter-
polation between the modulation space(c = 0) and the Besov space, since in [19],
the authors have pointed out that a—modulation space can’t be reformulated by
interpolations between modulation and Besov spaces at least for some special cases.

oy SF

=1 léte(r,p)w(i.ﬁ)ﬂ,q(L:./Lg/). (1.27)

2. PRELIMINARIES

We will often use the notation X < Y whenever there exists some constant C
so that X < CY, C can depend on n,p,r,p, 7, a,B. For k = (k1,ka,... kn) €
Zm, (k) == (1 + |k[*)2. We denote by S := S(R™) the Schwartz space and &’ :=
S'(R™) the tempered distribution space. We use L} (R) to denote the Banach space
of functions f : R — C whose norm

Il = ( [ 1s@rra) " (21)

is finite, with the usual modifications when r = co. We use L] L2 (R x R™) to denote
the spacetime norm

1/r
1Pl ey = ([ 1P15) (22)

with the usual modifications when p, g or 7 is infinity.

In our proofs, the almost orthogonality property will be used frequently, this
property is independent of «. Here we give a proof which is different from [I9] and
seems more regular. Firstly, we establish following position lemma.
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Lemma 2.1. For every x,y € R", we have the following
min((z)*/ ), (1)) e — y| S [(2)*/ 07Dz — (y)*/ 7y
< max((z)*/ 1=, () =)z —y|.
Particularly, if we choose y =k, |x —y| = r, then
min((z)*/ 0=, (k) O )r S () O — (k) /O]
< max({a)*/ =, (k)/ =),
s0 we have
)/ (A= g — (k) A=k ~ ()= if k| — o0 and |z — k| =7.  (2.3)

Proof. By the symmetry of x and y, we only prove the case |z| < |y|. Let

W) = o — ty. (2.4)
and derivative it, we have
W) =2t} = 2wy (2.5)
i=1 i=1

Using the fact |x| < |y| and Cauchy-Schwartz inequality, we verify that

h'(t) >0 (2.6)
when ¢ > 1. Using this inequality, we conclude
(/0=
(ayara=a Y
> (2)*/0=|z —y|
= min({a)*/ 17, () 1=z —y.

)/ (4= — (o 1=y | = ()l Gy
(2.7)

On the other hand,
(@) /=g — () Oy | < ()@ O — () O[] + () =Dz — y].

By mean-valued theorem and the fact |z| < |y|, one can verify that

()07 — ()= S o — y[(y) ™= (2.8)
Since |z| < |y| < (y), so we have
(@) ) — () O] < o —yl{y)>/ ), (2.9)

() @/ A=) — () Oy S () B — () O |z] + | () > O~ — |
S )/ |z -y
= max((z)*/ 1) (y)*/ 07|z —y|.
0

By the position lemma, we can conclude that there exists a positive constant c;
independent of x and k, such that

ey (k)= g — k| < [(2)®/ =Ny — () A=, (2.10)
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In fact, if |k| > 2|x|, we have
3
o~ k] < [o] + [K] < SJK], (211)

then
[}/ 0= — (/e

\%

(k) =k — [(2) /=

v

1 1
(k0= ] — 2 (k) A=k = 2 (k) 1=

Vv

1 [e% — 1 « —Q
5+ 3l o — k| = S [(R)* | — K.

W N

If |k| < 2|x|, then
[(2)*/ =D — (k) 07D k| > min((a)*/ 07, (k) 1) — k|
> min(ea (1)2/0-), (R)2/0-)p — k| (2.12)
2 (k) |z — k.

Similarly, for a fixed constant G > 0, we can find a constant cs only depend on G,
such that if |z — k| < G,

@)/ A=) g — (k) /A= ) < e (B)/ A=) | — k. (2.13)

This can be easily concluded by position lemma.
We set a map J, from R” to R"

Jo(z) = (2)*/ =g, (2.14)
Using inequality , we can take R sufficiently large such that Rc; > 2C, thus
supp 7 C B((k)*/ 1=k ¢; (k)= R) C J,(B(k, R)). (2.15)
Similarly, we can choose r small enough such that rcy < C, thus
Jo(B(k,r)) € B((k)*/ =9 ey (k) A=) < suppng. (2.16)
So we have
Jo(B(k,r)) C suppnp C Jo(B(k, R)), (2.17)
and

{(4,5) = suppn Nsuppnf # 0} C {(i,7) : Jo(B(i, R)) N Jo(B(j, R)) # 0}
={(i,4) - (B(i, R) N B(j, R)) # 0}.

So, in some sense, the a-modulation space is as regular as modulation space up

to a transform J,. We recall some estimates of oscillatory integrals, which can be

deduced by principle of stationary phase. One can find the methods in [12] and
[T1]. We use p(€) to denote the symbol of the Littlewood-Paley operator Ag.

(2.18)

Lemma 2.2. If0 < (§# 1, then
7 B 1T —-n
| [ e pereimeae] < o> (219)
If 6 =1, then
[ epeesag| < v (220)
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We omit the proof of the above lemma, and refer the reader to [20]. This lemma
can be also concluded by a lemma by Littman [I7]. Then we will show another
inequality which will be used in the proof of Theorem one can find the proof
in [20] for the case that o = 0.

Lemma 2.3. If0< 3<2 and 8 # 1, then
| [ sl e ag] 5 0y e (2.21)

Proof. We only prove the case 3 < 2. One can easily find a one dimension smooth

bump function ¢(§) such that [];", (b(%)ng = np for every k € Z™.

Then we have

‘/ it S 1i\5L\5H¢ & — 7/1(1 )a)’”vl m-ad&‘
. o o (2.22)
_ RICTRIE=11S 1~ 1
_1:[‘/ i(w1-&1£t16|° ) ( BRI )d&‘
i(er. sy € Lye/(A-a)
‘/e< véktlal?) g 8! <I§>2/ — l)d@‘
Eya/(1— a)k —& —(k >a/(1—a)k
< oiP (&) & — (k) Ly / iP_ (&) 1— .
o [ ot +| o Gl ).

When k; # 0 (k; is large), we have |P{(&)] = t(<k>°‘/(1_°‘)kzl) ~7, we use Van de
Corputs lemma to deduce

‘/ i(-&£|€| )¢(§l (k >a/(1_a)kl)d§l‘

() /(—a)
S H(q&( l_<;§;€a>(/l(/1(1;)kl0 1 (Uﬂ)a/(l_“)kl)@_ﬁ)/z It~ 1/2 (2.23)
o () ()

When k; = 0 (k; small), we have
i(z B gl
‘/ IRIE=2191 )¢(< >a/(1 5 )d&‘

/ez<<k>a/<1—a>xl~5li< ) e e 'o(&)d&|.
R

Let ¢;(§) = »(£/27) be the symbol of one dimension Littlewood-Paley operator
Aj, we use Lemma one dimension version) and dilation to deduce that

/ei((k>“/“‘“)mz~€zi< ) e oy 0;(&)dg| < 270 )<k>ﬁ¥|t|fl/27
R

— <k>a/(17a)

<k>a/(1foc)

then

<k>a/(1—a)

/ el’((’@)“/(l’“)wr&zi(k)%t\ﬁz\ﬁ)(b(&)d&
R



8 W. GUO, J. CHEN EJDE-2013/118

< 20: 2]'(1—'3

Jj=—00
ORI
(2-p)/2
S (=)

Using above estimates and the fact that || % ~'n¢||z: < 1, we complete the proof.
([

3. PROOF OF MAIN RESULTS

Proof of Theorem We prove only the case that 5 < 2. Let ¢; = cp(Q%) be
the symbol of the littlewood-paley operator A;. Using dilation and Lemma[2.2] we
can deduce that

‘/ eitlf\ﬁw( wfd&“‘ gin(1-45 )|t| n/2 (3.1)
so we have
105 S e < ST 11ATge A £ e
j<c
< 2D =20 £ (3.2)
j<c

S 2105 il S 1721l oy
For k # 0, we have

0 AYB/2
TR A Fllpe S > 12,052 £ e
supp @; Nsupp 1y #0 (3.3)
S > RO .
supp ¢;Nsupp ng #0

Using the almost orthogonality property and 27 ~ <k>ﬁ, we can deduce that

o it(—A)B/2 p=2 N\ T"/2
[ P (oA ) B T (3.4)
On the other hand, we have
itl€)? o ix- « —a_pn _a (_ -n/2
| [ e e e < gl £ 7 = (=) L )
The above two estimates imply that
o i B/2 _a (_ B=2 -n/2
1T A e S (W™= W) Il (36)
When k& = 0, we have
o it(— B/2 —n/2
136 S fllg < (L 1) (1F (3.7)
and the energy estimate
a it( /3/2
1052 Fllez S MIfllzz, (3.8)

we can use Lemma [[.2]to deduce that
, B2
I35 2 fllrre S lee,
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IIDS/ I B ds| ey SNFI| oy
s<t v
Using Lemma [2.2] one can easily verify that
JA0e O fll < (14 |t]) 2 (3.9)
and deduce that
120" Fllupnr S N1 F2,

(t—s)(— B/2
1A / =" B\ dsl| e S IF oy
s<t e

Using dilation, we obtain

n

popp < 2]’((5*%*%”
t i Y

)/3/2 2-8
T

1A, =2 | N2, (3.10)
i(t—s)(—A)B/2
I8y [ eI Playds]
s<t

< (G- -PFE-F-+2-AG+7) [Fall

(3.11)
L't

When (r,p) is sharp §-admissible, we have

||D%eit(fA)5/2f”L€L£ 5 Z HAjeit(fA)ﬁ/Qf_”L;Lg
supp @, Nsupp ng #0 (3.12)
s Y 2T e
supp ¢;Nsupp 07 #0

1

Using the almost orthogonality property and 27 ~ (k)T== we can deduce that

1 (27

a it(—A)P/2 8
IO A fll e S ()25 f 2 (3.13)

Similarly, we can deduce that

o i(t—s)(—A)B/2 1 (9_gy(l41
05 [ eI ps)ds] s S (BRI
s<t

L;’LZ Lf, Lg/ (314)

for all sharp 4-admissible pairs (r,p). When (r,p) is nonsharp %-admissible; that
is, % + % < 5. Combining with and energy estimate, we have

5/2 3 (

it(— _a (. B=2 - 1_%)
1T " fllpg < ((0) ™52 + () 211 Il (315)
So

« i(t—s)(—A)P/?
fa / =D B(g) s

R
_a (_ B=2 -501-2)

SIL (W™= @ =e—sl) © T IE) ]y ds] (3.16)

R ® *

—a_(—2) B=2 _%(1_%)
S (10702 + () =2 Iy Iy
One can check that
o - —5(1-2) 5(rp)
| (W=D W =2p) 7 e S 0T (3.17)
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then deduce that

26(r,p)

e i(t—s)(—A)P/?
10 [ OIS Rl S 0 FE PGy (338)

Then homogeneous estimate follows by using TT™* method, standard duality
argument and the almost orthogonality property of a-modulation space. For the
inhomogeneous part, for every %-admissible pairs (r,p) and (7, p), there exist two
constant p; and py such that (r,p1) and (7, p1) are sharp. Combining the following
inequalities

a 1 1 o
105 fllze S (k)Y T=" %0 2|02 £l o
102 £l v S YT OR 1
with (3.14]), we have

a i(t—s)(—A)P/2
HDk/ el (=8) F(s)ds|| ;e
s<t

¢
< ()T R) Da/ =)= poVdsll v
S [ (s)ds] ;.2 6519
S R [ Y
< <k>7 (*—*)<k>ﬁ(2—ﬂ)(%+%)<k>ﬁ”(ﬁ—%)||FHLF/Lﬁ,_
Recall that pll =3 - % and p% =3 - %, so we have
e / I Plo)ds| < (0)ESFY| (3.20)
s<t toe

Then the inhomogeneous estimate (1.21)) follows by the definition and almost or-
thogonality property of c-modulation space.

Remark 3.1. In the case (r,p) is nonsharp F-admissible, one can also deduce the
estlmates of ||DO‘ (= A)B/szLer and [|O0F [, _, eit=) (=8 p(g )ds|| Lz by using
and (3.11)) respectively, but it will lose more regularity.

Proof of Theorem [1.6, We prove only the case § < 2. Using Lemma [2.3] and
the fact that

7 n B iz « _a _a (. -n/2
| [ ermisial i eivae] S gl S (07 = ((072=2) " e
we have
o ity (D) < ({112 (-2) =2, \7"/?
IO P f e S (BT 4 ®Z2) Il (3:22)

When k = 0 we can deduce the estimates as the proof of Theorem [I.5] When & # 0,
we can also obtain the homogeneous estimates for nonsharp pair (r,p) by
TT* method and standard duality argument.

For the case that (r,p) and (7,p) are sharp, we use dilation argument, but it’s
a little different from the proof Theorem Let S; = Zzgj Ay, oo = ngo 05,
using Lemma 2.3 with k£ = 0, we can deduce

| [ ensiasiel pyg)ein e S 1o, (3.23)
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SO
IS0 fllzee S (14 [¢) ™21 fll - (3.24)
Using Lemma we can obtain the following estimates:

||Soeiw(D)fHL;L£ S llee,
IISo/ " IPIR(s)ds|| e SNF N oo
s<t '

A dilation argument then yields
156 fllrzp <25 | £l e

||Sj/ ei(t—s)w(D)F(s)dS”L,{Lg < 9i(2=B)(++%)
s<t

|F||Lf'Lp

Then we use S; to cover [} to deduce

IO ) flppp S (k)=

155 [ e O )l g S (1)) ?*ﬂanLf/L

for any sharp §-admissible pairs (r, p) and (7, p).
The remain case is that inhomogeneous estimate ([1.24)) for nonsharp admissible
pairs, it can be deduced like the proof of Lemma we omit the details.

Proof of Theorem [1.3] We need to prove only the following estimates:

10 Buwg 2 S (k) T2 ol e, (3.25)
Leit=a o=t
0% ﬁwl\ rrre S (k)T flwil Lz, (3.26)
eit=s)V=24 O(rp) +OG ) -1
0% > ﬁF(S)dSHL{LQ S (k) 1 - (3.27)

Using the same techniques as before, we can deduce and
05 [ e SRl S )

If & # 0, then and will then follow by
IR (=8) 72 llez < (k)= 1] 2

If £ = 0, we do not have energy estimate for the operator e\;TAA , SO we can not use

M

1]

7 rpl .
LT'LE

the TT™* argument. One can deduce

| [ etelelto(epet=<g| s o2
R’n

| [ el et ag] < a2

by principle of stationary phase as in Lemma then Lemma will yield
itV

€
180~ Fllezee S Iz,

ez’(t—s)\/—A
s<t \% —-A

140 Fds|lpyry SIIF

= 5.
/TP
L} Ly
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Using a dilation argument, we obtain

and

NN . .
HAfVTthﬂgsyz p | fll e

eilt—s)vV=4 i(n—1—m_1_n_1)

||Aj/ s Pdsluy 52 PR
s<t -

—%—1—1>Oandn—1—ﬁ—l—ﬁ—l>0,WecanuseAj to cover LJ§

r p r p T
get the estimates (3.26) and (3.27) for & = 0.

-]

7 rpl .
LT'LY

Remark 3.2. If we take @ = 0 in Theorem 1.1 — 1.3, we obtain the Strichartz esti-
mates in the frame of modulation spaces. The Strichartz estimates of Schrodinger
equation in the frame of o modulation spaces is the case that § = 2.
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