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BLOW-UP OF SOLUTIONS FOR A NONLINEAR WAVE
EQUATION WITH NONNEGATIVE INITIAL ENERGY

WENJUN LIU, YUN SUN, GANG LI

Abstract. In this article, we study a wave equation with nonlinear bound-

ary damping and interior source term. We prove two blow-up results with

nonnegative initial energy; thus we extend the blow-up results by Feng et al
[5].

1. Introduction

In this article, we study the following wave equation with nonlinear boundary
damping and interior source term

ytt(x, t)− yxx(x, t) = |y(x, t)|p−1y(x, t), (x, t) ∈ (0, L)× (0, T ),

y(0, t) = 0, yx(L, t) = −|yt(L, t)|m−1yt(L, t), t ∈ [0, T ),

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ [0, L],

(1.1)

where (0, L) is a bounded open interval in R, m > 1, p > 1. The wave equation with
interior damping term has been extensively studied and several results concerning
existence, asymptotic behavior and blow-up have been established. When m =
1, Levine [7, 8] proved that the solution blows up in finite time with negative
initial energy. When m > 1, Georgiev and Todorova [6] extended this result and
established a global existence result if m ≥ p and a blow-up result if m < p for
sufficiently large initial data. Later Messaoudi [12] improved [6] by considering only
negative initial energy. The wave equation with boundary source term has also been
extensively studied. Vitillaro [15] proved the existence of a global solution when
p ≤ m or the initial data are inside the potential well. In [19], Zhang and Hu
proved the decay result when the initial data are inside a stable set, and the blow-
up result when p > m and the initial data is inside an unstable set. For other wave
equations with nonlinear source and damping terms, we can also refer the reader
to [1, 2, 3, 4, 10, 11, 13, 16, 17, 18] and references therein.

Recently, Feng et al [5] considered (1.1) and obtained the blow-up results with
one of the following conditions: (A) 2m < p + 1 and E(0) < 0; (B) 2m ≥ p + 1,
E(0) < 0, and L > 4p

(p−1)(p+1) . Later, Li et al [9] studied the interaction between the
interior damping yt(x, t) and the boundary source |y(L, t)|p−1y(L, t) + by(L, t) and
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established three sufficient conditions for the blow-up results with some necessary
restriction on b when the initial energy is positive or negative.

Motivated by [9], we intend to extend the results in [5] with nonnegative initial
energy. For this purpose, we use an improved relationship between E1 and ‖y‖p+1

p+1

which is given in Lemma 3.1 below. This article is organized as follows. In Section
2, we present some notation needed for our work and state our main results. In
Section 3, we give the proof of Theorem 2.2. Section 4 is devoted to the proof
Theorem 2.3.

2. Notation and main results

We define the following functionals

E(t) =
1
2
‖yt(t)‖22 +

1
2
‖yx(t)‖22 −

1
p+ 1

‖y(t)‖p+1
p+1, (2.1)

I(t) = ‖yx(t)‖22 − ‖y(t)‖p+1
p+1, (2.2)

and as in [5] we introduce the notation: ‖ · ‖q = ‖ · ‖Lq(0,L) and the Hilbert space

H1
left(0, L) := {u ∈ H1(0, L) : u(0) = 0}. (2.3)

Set
E1 :=

(1
2
− 1
p+ 1

)
α0, α0 := C

− 2(p+1)
p−1

∗ , (2.4)

where C∗ is the optimal constant of the Sobolev embedding ‖y‖p+1 ≤ C∗‖yx‖2, for
any y ∈ H1

left(0, L).
Next, we give a the existence of a local solution.

Theorem 2.1 ([5, Theorem 2.1]). Assume that (y0, y1) ∈ H1
left(0, L) × L2(0, L).

Then (1.1) has a unique local solution y(x, t) satisfying

y(x, t) ∈ C(0, Tm;H1
left(0, L)), yt(x, t) ∈ C(0, Tm;L2(0, L)),

yt(L, t) ∈ Lm+1(0, Tm)

for some Tm > 0, and the energy equality

E(t) +
∫ t

0

|yt(L, τ)|m+1dτ = E(0) (2.5)

holds for 0 ≤ t < Tm.

Our main results are as follows.

Theorem 2.2. Let y(x, t) be a solution of problem (1.1). Assume that 2m < p+1,
I(0) < 0 and for any fixed 0 < θ < 1, 0 ≤ E(0) < θE1. Then the solution blows up
in finite time.

Theorem 2.3. Let y(x, t) be a solution of problem (1.1). Assume that 2m ≥ p+1,
I(0) < 0 and for any fixed 0 < θ < 1, 0 ≤ E(0) < θE1. Furthermore, we assume
that

L >
4p+ 2p(p−1)

p+1−θ(p−1)

(p− 1)(p+ 1)[1− 2
p+1−θ(p−1) ]

, (2.6)

then the solution blows up in finite time.

Remark 2.4. When E(0) < 0, the blow-up results have been proved in [5]. So, we
consider here only the case E(0) ≥ 0.
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Remark 2.5. In the case 2m ≥ p+ 1, we note that the similar restriction on L as
(2.6) has been used in [5], which means that the larger the interval (0, L) is, the less
the boundary damping effect. It is still the case when I(0) < 0 and 0 ≤ E(0) < θE1.

3. Proof of Theorem 2.2

In this section, we consider the blow-up result in the case 2m < p+ 1. For this
purpose, we give the following lemmas first.

Lemma 3.1. Let y(x, t) be a solution of problem (1.1) with 0 ≤ E(0) < θE1 and
I(0) < 0. Then there exists a positive constant 0 < β < 1 such that

E1 < β
p− 1

2(p+ 1)
‖y(x, t)‖p+1

p+1, ∀t > 0. (3.1)

Proof. We adopt the manner which was first introduced in [14]. From (2.1) and
Sobolev embedding, we have

E(t) ≥ 1
2
‖yx‖22 −

1
p+ 1

‖y‖p+1
p+1 ≥

1
2
‖yx‖22 −

Cp+1
∗

p+ 1
‖yx‖p+1

2 .

Let h(ξ) = 1
2ξ −

Cp+1
∗
p+1 ξ

p+1
2 , then

E(t) ≥ h(ξ) with ξ = ‖yx‖22.
It is easy to see that h(ξ) is strictly increasing on [0, α0), strictly decreasing on
(α0,+∞) and takes its maximum value E1 at α0.

Since I(0) < 0, we have

‖y0
x‖22 < ‖y0‖p+1

p+1 ≤ Cp+1
∗ ‖y0

x‖
p+1
2 ,

which leads to
‖y0
x‖22 > α0, for α0 defined by (2.4).

Furthermore, since

E1 > E(0) ≥ E(t) ≥ h(‖yx‖22), ∀t ≥ 0,

there exists no time t∗ such that ‖yx(t∗)‖22 = α0. By the continuity of ‖yx‖22, we
obtain

‖yx‖22 > α0, ∀t ≥ 0.
On the other hand, we have

1
p+ 1

‖y‖p+1
p+1 ≥ −E(0) +

1
2
‖yt‖22 +

1
2
‖yx‖22 > −θE1 +

1
2
α0 =

(p+ 1
p− 1

− θ
)
E1,

which gives

E1 <
p− 1

2(p+ 1)
2

(p+ 1)− θ(p− 1)
‖y‖p+1

p+1.

Taking β = 2
(p+1)−θ(p−1) ∈ (0, 1), inequality (3.1) follows. �

Set
H(t) = θE1 − E(t),

then it is clear that H(t) is increasing, H(t) ≥ H(0) > 0 and

H(t) ≤ θβ(p− 1) + 2
2(p+ 1)

‖y‖p+1
p+1. (3.2)
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Lemma 3.2. Under the assumptions of Lemma 3.1, there exists a positive constant
C such that

‖y‖sp+1 ≤ C‖y‖
p+1
p+1, (3.3)

for any 2 ≤ s ≤ p+ 1.

Proof. If ‖y‖p+1
p+1 ≥ 1, then ‖y‖sp+1 ≤ C‖y‖

p+1
p+1, since s ≤ p+ 1. If ‖y‖p+1

p+1 < 1, then
‖y‖sp+1 ≤ ‖y‖2p+1, since 2 ≤ s. Using the Sobolev embedding inequality, (2.1), and
Lemma 3.1, we have

‖y‖2p+1 ≤ C∗‖yx‖22 ≤ 2C∗
(
E(t)+‖y‖p+1

p+1

)
≤ 2C∗

(
E1 +‖y‖p+1

p+1

)
≤ C‖y‖p+1

p+1. (3.4)

This completes the proof. �

As in [5], we choose a constant r such that

0 < max
{ 2
p+ 1

,
m

p+ 1−m
}
< r < 1. (3.5)

Then we infer that

2 ≤ m+ 1,m
r + 1
r

,
p+ 1

2
(1 + r) < p+ 1. (3.6)

Lemma 3.3. Under the assumptions of Lemma 3.1, there exists a positive constant
C such that

|y(L, t)|m+1 ≤ C
[
‖y‖m+1

p+1 + ‖y‖m
r+1
r

p+1 + ‖y‖
p+1
2 (1+r)

p+1

]
. (3.7)

Proof. By using Lemme 3.2 and the proof of [5, Lemma 3.2], we obtain (3.7). �

Set

L(t) = H1−σ(t) + ε

∫ L

0

y(t)ytdx, (3.8)

for ε small to be chosen later and

0 < σ < min
{ p− 1

2(p+ 1)
,
p−m
m(p+ 1)

,
1
m
− 1 + r

r(p+ 1)
,

1
m
− 1 + r

2m
}
. (3.9)

Then we have the following lemma.

Lemma 3.4. Under the assumptions of Lemma 3.1, there exists a positive constant
C such that

Hσm(t)|y(L, t)|m+1 ≤ C‖y‖p+1
p+1, (3.10)

for any 2m < p+ 1.

Proof. By using (3.2), Lemma 3.3, Lemma 3.2 and the proof of [5, Lemma 3.3], we
complete the proof. �

Now, we are ready to proof our first main result.

Proof of Theorem 2.2. Computing a derivative of (3.8) yields

L′(t) ≥ (1− σ)H−σ(t)|yt(L, t)|m+1 + 2ε‖yt(t)‖22 + 2εH(t)− 2εθE1

− ε|yt(L, t)|m|y(L, t)|+ ε
p− 1
p+ 1

‖y(t)‖p+1
p+1.

(3.11)
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Using Young’s inequality and (3.1), we have

L′(t) ≥ (1− σ)H−σ(t)|yt(L, t)|m+1 + 2ε‖yt(t)‖22 + 2εH(t)

+
ε(p− 1)(1− θβ)

p+ 1
‖y(t)‖p+1

p+1 −
mε

m+ 1
δ−

m+1
m |yt(L, t)|m+1

− ε

m+ 1
δm+1|y(L, t)|m+1.

(3.12)

Let δm+1 = k−mHσm for k > 0 to be chosen later, then from (3.12) and Lemma
3.4 we obtain

L′(t) ≥
(

1− σ − kmε

m+ 1

)
H−σ(t)|yt(L, t)|m+1 + 2ε‖yt(t)‖22

+ ε
[ (p− 1)(1− θβ)

p+ 1
− Ck−m

m+ 1
]
‖y(t)‖p+1

p+1.

(3.13)

Choose k large enough so that

(p− 1)(1− θβ)
p+ 1

− Ck−m

m+ 1
> 0,

then (3.13) reduces to

L′(t) ≥
(

1− σ − kmε

m+ 1

)
H−σ(t)|yt(L, t)|m+1 + εγ

[
‖yt(t)‖22 + ‖y(t)‖p+1

p+1

]
.

where γ > 0 is the minimum of coefficients of ‖yt(t)‖22 and ‖y(t)‖p+1
p+1. We continue

the remaining part as that of [5, Theorem 2.2] to finish the proof. �

4. Proof of Theorem 2.3

In this section, we consider the blow-up result in the case of 2m ≥ p+ 1. Set

G(t) = E1 − E(t) + ε

∫ L

0

xyx(t)yt(t)dx+ ρε

∫ L

0

yt(t)y(t)dx, (4.1)

with ρ ∈
(

2+
β(p−1)

2
(p−1)(1−β) ,

L(p+1)
2p

)
, where β is given in the proof of Lemma 3.1 and ε is

a small and positive constant satisfying

G(0) = E1 − E(0) + ε

∫ L

0

xy0
xy

1dx+ ρε

∫ L

0

y1y0dx > 0. (4.2)

Lemma 4.1. Under the assumptions of Theorem 2.3, we have G(t) > 0 for all
t ≥ 0. And there exists a positive constant η > 0 such that

G′(t) ≥ η[|yt(L, t)|2m + |yt(L, t)|2 + |yt(L, t)|p+1]. (4.3)
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Proof. As in [5], using (1.1), (2.1) and Lemma 3.1, we arrive at

G′(t) ≥ |yt(L, t)|m+1 +
L

2
ε|yt(L, t)|2 +

L

2
ε|yt(L, t)|2m +

Lε

p+ 1
|y(L, t)|p+1

− [ε+ 2ρε](E(t)− E1) + 2ρε‖yt(t)‖22 − ρε|yt(L, t)|m|y(L, t)|

+ ε[
p− 1
p+ 1

ρ− 2
p+ 1

]‖y(t)‖p+1
p+1 − [ε+ 2ρε]E1

≥ |yt(L, t)|m+1 +
L

2
ε|yt(L, t)|2 +

L

2
ε|yt(L, t)|2m +

Lε

p+ 1
|y(L, t)|p+1

+ 2ρε‖yt(t)‖22 − ρε|yt(L, t)|m|y(L, t)|

+ ε
[p− 1
p+ 1

ρ− 2
p+ 1

− β(1 + 2ρ)(p− 1)
2(p+ 1)

]
‖y(t)‖p+1

p+1.

(4.4)

Using the choice of ρ and Young’s inequality, we obtain

G′(t) ≥ L

2
ε|yt(L, t)|2 +

L

2
ε|yt(L, t)|2m +

Lε

p+ 1
|y(L, t)|p+1

− pρε

p+ 1
|yt(L, t)|m

p+1
p − ερ

p+ 1
|y(L, t)|p+1.

(4.5)

Then by repeating similar computations as that of [5, Lemma 4.1], we complete the
proof. �

Set

F (t) := G1−α(t) + µ

∫ L

0

yt(t)y(t)dx with α =
p− 1

2(p+ 1)
, (4.6)

where µ is small enough to be chosen later.

Proof of Theorem 2.3. (Sketch) By repeating similar computations as that of [5,
Theorem 2.3], from (3.1) we obtain

F ′(t)

≥ (1− α)G−α(t)
(
η − µCK

1
1−α
)
[|yt(L, t)|2m + |yt(L, t)|2 + |y(L, t)|p+1]

+ 2µ‖yt‖22 − 2µ(E(t)− E1)− 2µE1 − µαK−
1
αG1−α(t) + µ

p− 1
p+ 1

‖y(t)‖p+1
p+1

≥ (1− α)G−α(t)
(
η − µCK

1
1−α
)
[|yt(L, t)|2m + |yt(L, t)|2 + |y(L, t)|p+1]

+ 2µ‖yt‖22 − µαK−
1
αG1−α(t) +

µ(p− 1)(1− β)
p+ 1

‖y(t)‖p+1
p+1,

where K > 0 to be chosen later. Applying the Cauchy-Schwarz inequality, the
Sobolev embedding and Lemma 3.1 to (4.1), we obtain

G(t) ≤ E1 − E(t) + Lε

∫ L

0

|yx(t)||yt(t)|dx+ ρε

∫ L

0

|yt(t)||y(t)|dx

≤
(Lε

2
+
ρε

2
− 1

2

)
‖yt(t)‖22 +

(Lε
2

+
ρc20ε

2
− 1

2

)
‖yx(t)‖22

+
2 + β(p− 1)

2(p+ 1)
‖y(t)‖p+1

p+1,

(4.7)
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where c0 is the Sobolev embedding constant of ‖y‖2 ≤ c0‖yx‖2. From (2.1) and
Lemma 3.1 it follows that

‖yt(t)‖22 + ‖yx(t)‖22 = 2E(t) +
2

p+ 1
‖y(t)‖p+1

p+1

< 2E1 +
2

p+ 1
‖y(t)‖p+1

p+1

<
2 + β(p− 1)

p+ 1
‖y(t)‖p+1

p+1.

(4.8)

Combining (4.7) and (4.8), we obtain

G(t) ≤ C‖y(t)‖p+1
p+1. (4.9)

Continuing as in the proof of [5, Theorem 2.3] we can complete the proof. �
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