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ATTRACTORS FOR STOCHASTIC STRONGLY DAMPED
PLATE EQUATIONS WITH ADDITIVE NOISE

WENJUN MA, QIAOZHEN MA

ABSTRACT. We study the asymptotic behavior of stochastic plate equations
with homogeneous Neumann boundary conditions. We show the existence of
an attractor for the random dynamical system associated with the equation.

1. INTRODUCTION

Let © be a bounded open set of R” (n = 5) with a smooth boundary 9Q. We
consider the stochastic strongly damped plate equation with additive noise,

duy + du+ (f(u) + A%+ A%uy)dt = gdt + Y h;dWj,
j=1
u(z,0) = uo(z), w(x,0)=1uq(x), (1.1)
Ju
— e =0, t>0,
ulon = 7 -loo

for (z,t) € Q x [0,+00), where ug € HZ(Q) and u; € L?(Q2). Here u = u(z,t)
is a real valued function on Q x [0,+00),g € HZ(Q2) is a given external force.
The nonlinear term f is a C''-function with f(0) = 0, that satisfies the following
conditions:

1|n‘n inf @ > -\ VseR, (1.2)
If'(s)] < C(1+s|®), VseR, (1.3)
fls+w)=f(s), VseR,w>=0, (1.4)

where \; is the first eigenvalue of A% on HZ(f2) and C' is a positive constant. h; €
HA(Q) N HZ(Q) with 24 =0 on 9Q,j = 1,...,m, and {W,}", are independent
two-sided real-valued Wiener processes on a probability space (0,.%#,P), where

0 ={w=(w1,wa,...,wn) € C(R,R™) : w(0) =0}

is endowed with compact open topology, P is the corresponding Wiener measure,
and .Z is the P-completion of Borel o-algebra on ©.
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We identify w with (W, Wa, ..., W), as w(t) = (Wi(t), Wa(t), ..., Wy(t)) for

t € R. Define
Oiw(-) =w(-+1t) —w(t), teRweO.

A random attractor of a random dynamical system is a measurable and compact
invariant random set attracting all the orbits. When such an attracting set exists,
it is the smallest attracting compact set and the largest invariant set [4]. This
seems to be a good generalization of the now classical concept of a global attractor
for deterministic dynamical systems [I]. The notion of a random attractor is very
useful for many infinite-dimensional random dynamical systems (RDS), see [4, [5].

Many authors have studied the existence of a random attractor for an RDS. For
instance, Crauel and Flandoli in [5] introduced the notion of a random attractor and
obtained a general theorem on the existence of a random attractor for the RDS.
Their theorem has been successfully applied to the stochastic reaction-diffusion
equations and the stochastic Navier-Stokes equations. In [4] they generalized the
notion of a random attractor for the stochastic dynamical system introduced pre-
viously and considered the stochastic nonlinear wave equations. The asymptotic
behavior of solutions for stochastic wave equation has been studied by several au-
thors (see [3, [0, [7, (10, 14]). The existence of global attractor for plate equation
was studied in [8, [16]. And in [I3], the author have investigated the existence of
uniform attractor about the non-autonomous case. Recently, Yang and Kloeden
in [15] studied the existence of a random attractor for a class of stochastic semi-
linear degenerate parabolic equations. But there were no results on the random
attractor for the stochastic strongly damped plate equation with additive noise. It
is therefore necessary to investigate this problem. In this article, we consider the
asymptotic dynamics of the stochastic plate equation with homogeneous Neumann
boundary condition.

This article is organized as follows. In section 2, we recall some basic concepts
and properties for general random dynamical systems. In section 3, we first provide
some basic settings about and show that it generates a random dynamical
system in proper function space, and then we prove the existence of a unique
random attractor of the random dynamical system.

2. RANDOM DYNAMICAL SYSTEMS

In this section, we recall some basic knowledge about general random dynamical
systems (see [I] for details).

Let (X,] - |lx) be a separable Hilbert space with Borel o-algebra #(X) and let
(0, F,P, (0;)tcr) be a metric dynamical system.

Definition 2.1. Let (0, %,P, (6;):cr) be a metric dynamical system. Suppose
that the mapping ¢ : RT x QO x X — X is (B(R1) x F x B(X), Z(X))-measurable
and satisfies the following two properties:

(1) ¢(0,w)x =z, and

(2) #(s,01w) 0 p(t,w)z = ¢(s +t,w)z
for all s,t € RT,z € X and w € ©. Then ¢ is called a random dynamical system
(RDS). Moreover, ¢ is called a continuous RDS if ¢ is continuous with respect to
zfort>0and we 0O.

To study the asymptotic behavior of the RDS determined by (1.1]), we first need
to recall some definitions and properties.
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A set-valued mapping B : © — 2% is called a random closed set if B(w) is
closed, nonempty, and w +— d(z, B(w)) is measurable for all x € X for each w € ©.
A random set B := {B(w)}weo is said to tempered if

tlim e " diam(B(0_w)) =0
for a.e. w € © and all > 0, where diam(B) := sup,, ,cp d(¥,y).

Let 2 be the collection of all tempered random sets in X. We will only deal

with the system 2 of tempered random sets in this article.

Definition 2.2. A random set o := {A(w)},co € X is called a P-random attrac-
tor for an RDS ¢ if

(1) & is a random compact set, i.e. A(w) is nonempty and compact for a.e.
w € 0 and w — d(z, A(w)) is measurable for every x € X;

(2) o is ¢-invariant, i.e. ¢(t,w, A(w)) = A(Gw), for all T > 0 and a.e. w € ©;

(3) & attracts all tempered random sets B € 2 in the sense that

tlim dist(o(t, 01w, B(0_iw)), A(w)) =0, a.e. we€ O.

Theorem 2.3. Let ¢ be a continuous random dynamical system over dynami-
cal system (Q, F,P, (6;)tcr). Suppose that there exists a P-random absorbing set
{B(w)}weq which absorbs every tempered random set D € 9. Then,

¢ has a unique Z-random attractor o = {A(w)}weq, which is unique in the class
of tempered random sets with

A(w) = m7—20Ut27—¢(t, Q—twa B(e—tw))7 w e Q

3. ATTRACTOR FOR THE STRONGLY DAMPED PLATE EQUATION

3.1. Basic settings. In this subsection, we give some basic settings about (1.1
and show that it generates a random dynamical system.

Let A = A?, then D(A) = {u € H*(Q) N HZ(Q) : 5%|sq = 0}. Clearly, A is a
self-adjoint, positive linear operator with the eigenvalues {\; }ien:

O=X <A< <<\ >4+ (Z—>+OO)

Let E = H3(2) x L2(£2), which is a separable Hilbert space endowed with the usual
norm
1Y Nz 2 = (AUl + o))/ for Y = (u,0) T, (3.1)
where || - || denotes the usual norm in L?(Q) and T stands for the transposition.
For our purpose, it is convenient to convert the problem (1.1 into a determin-

istic system with a random parameter, and then show that it generates a random
dynamical system. Consider Ornstein-Uhlenbeck equations

dzj + zjdt = dW;(t), j={1,2,...,m}, (3.2)
and Ornstein-Uhlenbeck processes
0
zj(Orw;) = —/ e®(fw;)(s)ds, teR.

From [2], it is known that the random variable |z;(w;)]| is tempered, and there is a
O-invariant set © C © of full P measure such that ¢ — z;(6,w;) is continuous in ¢
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for every w € © and j =1,2,...,m. Put
z(bw) = z(z, bw) = Zh zj(0rw;), (3.3)

which is a solution to
dz + zdt = h;dW;.
=1

Lemma 3.1 (
O—RFI=11,

|z(6:w)]| < eelt‘r(w), e_elt‘r(w) < r(fw) < eelt‘r(w),
HA(l)z(Gtw)H < ee\tlr(l)(w), e*élt\r(l)(w) < T(l)(gtw) < eeltha(l)(w)7

[T1]). For any ¢ > 0, there exist tempered random variable r,r®
, 1, such that for allt € R,w € O,

where 1@ (w) = 3270 75 (wi) | AV
It is convenient to reduce (1.1)) to a evolution equation of first order in time

U =v,

@z—Av—Au—v—f(u)—l-g-i-Zthj, (3.4)
j=1
u(z,0) = up(x),v(x,0) = u1(x),z € Q,

re (Z) M= (—OA _AI—I>’

0
F t7w,Y = m ’ .
( ) (—f(u) +9+Zj:1 thj>
Then problem (3.4) has the simple matrix form
Y = MY + F(t,w,Y). (3.5)

Let 11 = u, 1y = v — z(0yw), then (3.4) can be rewritten as the equivalent system,
in F,

Let

Y1 = s + 2(Bw),
o = — Ay — Athg — by — (1) + g — Az(0,w), (3.6)
P1(2,0) = uo(x), P2(x,0) =ur(z) — 2(w), =€,
which has the vector form
= M + F(Opw, ), (3.7)

where

V= @) P, v) = (fwl) i?w)Azwth 38)

We will consider (3.5)) or (3.7) for w € O and write © as © from now on. From
[9], M is an unbounded closed operator on E with domain D(M),

D(M) = {(u,v)" :u,v € H3(Q),u+v € D(A)}. (3.9)
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Moreover, the spectral set of M consists of only following points

M+ 1)/ +1)2—4)\
9 )
and M generates a C°-semigroup of bounded linear operators {e? t}iso on E.

Let F(t,1) := F(Ouw, 1), it is easy to verify that F(-,-) : [0,400) x E — E
is continuous in ¢ and globally Lipschitz continuous in v for each w € ©. By the
classical semigroup theory on the existence and uniqueness of the solutions [12], we
have the following theorem.

Theorem 3.2. Consider (3.7). For each w € © and each ¥y € FE, there ex-
ists a unique function (-, w,vy) € C([0,+00); E) such that ¥(0,w,vy) = g and
Y(t,w,g) satisfies the integral equation

—
M =

i=0,1,2,... (3.10)

t
1/)(75,%1/)0) = €Mt1/10 +/ eM(tis)F(aswa'lp(svw; ¢0))d57 (311)
0

P(t,w, 1) is jointly continuous in t,1g, and is measurable in w. Furthermore, if
Yo € D(M), there exists (-, w, 1) € C([0,+00); D(M)) N C([0, +00); E), which
satisfies (3.7). Hence the solution mapping

S(t,w) : tho = P(t,w, o) (3.12)
generates a random dynamical system.
Define a mapping S(¢,w) by
S(t,w) : Yo =10+ (0,2(w)) " = Y(t,w,Y0) = $(t,w, ) + (0, 2(6w)) ", (3.13)

where Yy = (ug,u;)’ and ¢y = (ug,u1 — 2(w))". Then S(t,w) is a continuous
random dynamical system associated with the problem (3.5) or (L.1) on E. S(t,w)
has the following relation with S(¢,w)

S(t,w) = R(Oiw)S(t,w) R~ (Oyw), (3.14)

where R(6,w) : (a,b) " + (a,b— 2z(6w)) T is a homeomorphism of E.
We will also use the transformation

p1r=u=1v1, p2=v+eu—z(0w),
where € is a given positive number. Then the (3.7]) can be rewritten as

¢ = Mep + Fe(01w, 9), po(,0) = (uo(@), ur(x) + eup(z) — 2(w)), (3.15)
where
1 —el T
‘P(iz)’ Ms<5(1—5)[i—5A—A (5_1)I_A>7 (3.16)
I _ z(0rw)
Fe(bw,p) = (—f(%) + g+ ez(bw) — Az(gtw)) : (3.17)
Then the mapping
S (t,w) = TeS(t,w)T—c : o — @(t,w, o), (3.18)

generates a random dynamical system associated with (3.15)), where o = (ug, u1 +
eup — 2(w)) ", and T; : (a,b) T — (a,b+ea)’ is a isomorphism of E.

Notice that all the above random dynamical systems S(t,w), S(t,w), S:(t,w) are
equivalent. Hence, we only need to consider the random dynamical system S(t,w).
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Let po = (@,0)" = wny € Ey, then Mpy, = 0. Thus, by the periodicity of
function f, the random dynamical system S(t,w) is po-translation invariant in the
sense that

w(tvwawo +p0) = w(t7w7¢0) +p0at 2 va S @>¢0 S Ea (319)

which implies that the average of the first component of ¥ (t,w, vy + po) will be
unbounded in E; (corresponding to the direction of 7y with respect to 0 eigen-
value), hence S(¢,w) is unbounded in the direction of 1y in Ej, which means that
it is impossible to obtain a bounded attractor for S(¢,w) as usual. So we need
to introduce a random dynamical system ®(¢,w) defined on cylinder induced from
S(t,w) according to po-translation invariance of S(t,w). To this end, we introduce
some space and notation.
For any u € L%(Q), define the spatial average of u as

v
u=— [ u(z)dz. (3.20)
12 Jo
Let
L2Q)={ueLl?(Q):a=0}, HZQ)=HZQ)NL*Q),Eyxn = H(Q) x L}(Q)
By (3.10), M has two real eigenvalues 0 and -1 with eigenvectors 7y = (1,0)" and
n_1=(1,-1)T. Let
Ey =span{no}, E_i=span{n_1}, En=E ®E_=R? Ey=E & Es.
Then
E=E 1 ®E»=R*®Ey»=FE ®E_ ®Ex»=E & E», (3.21)
and F is positive invariant under M.
Let T! = El/p()Z and E=T' @ FEy = T! @ E_{ @® FEyy = Tt x E_1 x Fsy. For
Uy = po(modpy) = o+ poZ C E denotes the equivalence class of ¥y, which is an
element of E. And the norm on E is denoted by

Y = inf .
IPolle = nf o +yle
Note that, ¥ (t,w,¥o + kpo) = ¥(t,w, o) + kpo, for all k € Z for t > 0,w € © and
Yo € E. With this, we define
B(t,w) : Uo = U(t,w, o) = ¥(t,w, 1) (modpo). (3.22)

It is easy to see that ®(¢,w) is a random dynamical system on E.
Similarly, the random dynamical system S(¢,w) also induces a random dynamical
system ®(¢,w) on E defined by

O(t,w): Yo Y(t,w,Yo) =TU(tw,Po)+ Z(0:w)(modpo), (3.23)
where Y = Yy(modpy), Z(6;w) = (0, Z(0yw)) " and ¥y = Yo — Z(w)(modpo).
We introduce a new norm which is equivalent to the usual norm || - ||z, 2 on
Ein B1). For Y; = (uj,v;) " € E11,i=1,2, let
(Y1,Y2),,

(L (3:20)
=1 1,Uz) + <2U1 + U1, o U2 + v2),
where (-,-) denotes the inner product on L?(Q), and for Y; = (u;,v;)" € Fao,i =
1,2, let

(Y1, Ya) By = m(AVPur, AV us) + (01, 02), (3.25)
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where A2 = A and p is chosen such that g =1—¢ € (1,1) in which ¢ € (0,1) is
a small positive number. By the generalized Poincaré inequality
[AY2ull? > NP ul?, - Vu € H(),

Expression (3.25) is then positive definite. A bilinear form on E can be induced
from (8.24) and (3.25),

<X’ Y>E - <Y> ?>E11 + <X - ya Y - ?>E223 (326>
where X = X+X-XcE,Y =Y+Y-Y € E,withX,Y € Ej;and X—X,Y-Y ¢
Fs. Tt is easy to obtain the following fact.

Lemma 3.3. Ezpressions (3.24) and (3.25)) define inner products on E11 and Faa,
respectively. Meanwhile, (3.26|) defines an inner products on E, and the correspond-

ing norm || - || g is equivalent to the usual norm || - || gz 2 in (3.1).

Under the inner product (-,-)g, By LE_1, E11 L Eoy, By L E5. Denote by P, Q and
Q@ the projections from F into Fq, E_1 and Fs9, respectively:

PY = (“5”’) cE, QY= (:}”) €E, QV=Y-YV-= (“:Z) € B,

v
where Y = (u,v) T € E. Sometimes we write Qu = u — u for u € L?(12).

3.2. Random attractor. First we consider the boundedness of the component
Qv of solution 9 of (3.7) in E_;. Taking the average of (3.6]), by Green’s formula
and Neumann boundary condition ([1.2]), and take the second equation, we have

Dy = =y — J(1) + 7, 6(0) = — 2(w), (3.27)

then
L a(t,0) < ~[Ba(0,0)P + (e2 +[31)2 1 >0, (3.29)
thus,
(8, )| < [1h(0,w)Pe™ + (e1 + [g])* = [ur — 2(w)Pe™" + (1 + [g])*, ¢ >0.
So if [u; — z(w)]| is tempered, then there exists ¢y > 0 such that
ot )| < 2(er + 1), t>to. (3.29)

This show the uniformly boundedness of Qi) = (—1,,%5) of solution of in
one-dimensional subspace E_; of R?, which implies that Qv possesses a compact
absorbing set {B_1(w)} in E_;.

Next we prove that Qv of solution 1 of possesses a compact attracting set
in EQQ.

Lemma 3.4. There exists a small positive constant 0 < o < € such that
1 1
(M.QY,QY)p < —o| QY5 — QHAWQUII2 - 5llQul? (3.30)
forY = (u,v)" € E, and
1 1
(M-QY, AQY ) < —ol|A"2QY |[f — S| AQu]* — §||A1/2Qv||2f07"y
= (u,v)" € D(M)NE.
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The proof of the above lemma is similar to that of [I7, Lemma 1], and it is
omitted.

Lemma 3.5. Assume that 7 and g € H3(Y) hold. Then there exists a
random ball {By(w)} € Z centered at 0 with random radius o(w) > 0 such that for
any {E(w)} € 9, there is a Tg(w, 0) > 0 such that for any po(0_w) € B(6_,w)
satisfies for a.e. w € O,

1Qu(t,0_tw, po(0_1w))||e < o(w) Vt=Tg(w, o) (3.31)
Proof. By and QM. = M.Q, we have
Qp = M.Qp + QF (1w, ¢), (3.32)
where
— _ Qz(6sw)
QFe(Orr¢) = (Q[f(U) g+ ex(bw) — Ax(Bw)]) (3.33)
Taking the inner product (-, ) g of with Qp € Fss, we note that
1(AV2Qz(0w), A2 Q1) < pl| A2 2(0w)|| - [|AY Qe |
[ op
< %|\1‘11/22(9tw)||2 + 7”141/2@@1”27
1
(=(F(w) = F(u)), Qp2) < 2C(p1 + [1]”) - [ Q2] < (2C(p1 + |1 ")) + L1IQe2 |,

(9—7,Qv2) < llg — Il - 1Qe2ll < 4llgl* + *IIQ@HQ,
(e(2(0w) — 2(0w)), Qepa) < |le(2(Buw) — 2(0w)) || - |Qep2 |

g2 o
< ;Hz(é’tw)”z + §||Q<P2H2,

1 1
(Az(0,w), Qp2) < | A22(0:0)| - | A2 Q2| < S A22(0) | + S| A2 Qe P,

1 1
(M.Qp, Qo) < ~0lQllh - 5141°Qual® - 5 Qs

From the above inequalities we have

||Q<P||E +20]|Qpl% < 2Ro(0uw), (3.34)

where

+o g?
Ro(rw) = L||A1/23(9tw)||2+(20(|901|+|901|9))2+4H9||2+;||Z(9tw)||2~ (3.35)

Applying the Gronwall lemma, for all ¢ > 0, we have

1Qe(t, w, po(w))lIE < e™* o (w) T + 2/ Ro(0sw)e2 =) ds. (3.36)
0

By replacing w by 6_;w, we get from (3.36|) that, for all ¢t > 0,

t
1Qe(t, 01w, 0o (0-w))lIE < e [lpo(0-w)|% + 2/ Ro(0—w)e 7= ds
0

0
= e 2o (0_sw)||% + 2/ Ro(0,w)e?7dr.
—t
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By Lemma [3.1] with € = ¢, we have that
0 0o __ 0o
/ Ro(0,w)e* Tdr < / Ro(7,w)e* Tdr < / Ro(7,w)e*7dr < 400, (3.37)
—t —t —00

where
n+o

2
Eaps € Eap.
7 (1 D ()2 + (20 (g + 1)) + Al + e

E;)(T,w) =

Note that {B(w)} € Z is tempered, then for any @o(0_w) € B(0_w),

lim e™27| o (0—,w)||% = 0.
t——+o00

Hence, there exists a Tz(w, 0) > 0 such that for any oo (0_;w) € E(ﬁ,tw) satisfies
for a.e. w € O,

Qe (t, 01w, po(0—1w))lle < o(w) forallt = Tg(w, 0), (3.38)

where o
0*(w) = 2/ Ro(7,w)e> " dr. (3.39)
So, the proof is complete. O

We now construct a random compact attracting set for RDS S.(t,w). For this
purpose, we split the solution ¢ of the system (3.7) with the initial value ¢y =

(ug,vo + eup — z(w)) T into two parts ¢ = @ + @ = (u, v® +eu®) T + (ub, v’ +

eu’ — 2(w)) T, where ©® solves

$7 = Mg, 0§ = (uo, vo + ug) T, (3.40)

and ¢’ solves -
PP = Mg® + Fe(Oi0,0), 95 = (0,—2(w)) " (3.41)

Lemma 3.6. Assume that (1.2)—(1.4) and g € HZ(Q) hold. Then there exists a
random variable 01 (w) > 0 such that for any {B(w)} € Z and po(w) € B(w), there
is a Tg(w, 01) > 0 such that for any ¢ of the system (3.7) satisfies for a.e. w € ©,

1@ (8, 01w, 5 (O-w) |2 < e > 0f(0—w)llE — 0, ast— +oo,  (3.42)

and
|AY2Q"(t, 0 1w, £} (0—1w)) e < 01(w), V= Tx(w, 01), (3.43)

where Qu® and Q® satisfy (3.40) and (3.41)).
Proof. By (3.40)), we have

Qe = M.Qe". (3.44)
Take the inner product (-,-)g of (3.44) with Qp®. By Lemma [3.5 we obtain
1Qe" (£, 0w, 0 (0—w))| T < ™7 [l (0—1w)I5- (3.45)

Then, the first assertion is valid.

From ([3.41)), we have
Q" = M.Qy" + QF:(0ww, ¢"). (3.46)
Take the inner product (-,-)g of (3.46) with AQy’. By Lemma we have

1 1
(M=Q¢", AQ¢")p < —a | AV2Qe|I% — S AQUSI — 114 2Qe51%. (3.47)
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By the Cauchy-Schwarz inequality, we obtain
A2 Qz(0,w), A2 AQEY) < p| AQz(0w)|| - | AQY |
p ap
< o 42011 + -1l AQet 1%,
1
(QF(#1), AQus) < A2QF (PD)] - 1 A2Qesl| < A2 F (DI + 7142 Qes 1%,
1
(Qg, AQy3) < || A9l - [ AV2Qus || < 1A 2gll” + 1142 Qe |,
(eQ2(0,w), AQp) < [|leAV2Q2(8,w) |l - [|1AV2Qw3 |
e? o
< A2 (0w) I + ZIAQeI,
1
(QA2(0w), AQps) < [|QAz(0w)] - [[AQys]| < [[Az(0iw)]* + 5 lIQARS|*.

From the above inequalities and (3.47)), we have

d

ZIA2Q 1% + 20 AV2Qu"|F < 2B (61), (3.48)

where

420
20

By Gronwall’s lemma, for all ¢t > 0,

1A2Qe" (¢, w, () I

t
<A +2 [ Raw)e s
0

R1 (Htw) =

2
3
142(0) |” + |42 F (DI + [ A 2g]1* + (1A 22(000) 1.

(3.49)
t
= 2| A2 % + 2 / Ru(0sw)e—200=5)ds.
0
Replacing w by 6_sw, in (3.49)) we obtain that for all ¢t > 0,
142 Q" (t, 01w, 0 (0—10)) I
t
<e 27 AY22(0_,w)|? + 2/ Ry(05_w)e 20t=3%) g
|AY22(6_0) | | F(0sw) (3.50)
0
= e 2| AV22(0 )| % + 2/ Ry (0,w)e* T dr.
—t
By Lemma [3.1] with € = ¢, we have
lim e 27| AY22(0_,w)|? < lim e 27t (edIT(1/2(w))2 =0,
t—+oo t—+o0
0 0o __ o __
/ Ri(0,w)e*Tdr g/ Ri(1,w)e* "dr g/ Ry (7,w)e* Tdr < 400,
—t —t -0
where
5 +20, o - g2 o|r
Ri(r,w) = E (eI ()2 | A2 F)IP + 429 + o (372 w)2.
Set

0
02 (w) = 2/ Ry (7,w)e* "dr, (3.51)
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Hence, there exists a Tz(w, 0) > 0 such that for any ¢ of the system (3.7) satisfies
for a.e. w € O,

JAY2Qu (L, 04w, P4 (0_w))||E < 01(w), Yt = Tz(w, 01), (3.52)

So, the second assertion is valid. O

Notice that
147206 10w b 0-)lis = | (eid) [, 2 & (eetd)|

AV2Qeh A2Qub
= a(lAQut|I? + |AY2Qu3]1%) 2,
which along with (3.31)), yields that for ¢g(w) € B(w) € 2,
1Q° (¢, 01w, 9o(0—1w)) | iz < Kolo1(w) + o(w)), (3.53)

for all t > Tz(w, 01) + Tg(w, o) for a constant Ky > 0. Let {Bi(w)} be a closed
ball of E:

HZxL?

Bi(w) = {bw) € E: [|Qb(w)|l maxmz < Ko(o1(w) + o(w))}- (3.54)
By (). (53, and
Qcp(t, Q,tw, %0 (H,tw)) = Qwa (ta G,tw, %o (H,tw)) + Q‘pb(t, eft"‘% @O(G*tw)% (355)

we have for a.e. w € O,

dE(‘)D(tv 01w, BO(G—tw))a Bl(w)) —0 ast— +oo, (356)
this implies that for a.e. w € ©,
dE(T—EQO(ta o—twa BO(Q—tw))a T—EBl (w)) — Oast — —+00, (357)

where QT_.B;(w) C Eas is bounded in the norm of H*(Q) x HZ(Q) by and
(354). By the compact embedding of E = H*(Q) x HZ(Q) into E, {QT_.B1(w)}
is compact in Eas, which imply that w — By(w) := (B1(w) + B_1(w))(modpy) is
a tempered random compact attracting set for ®(¢,w). Thus for Theorem we
have the following result.

Theorem 3.7. Assume that (1.2)—(1.4) and g € H3(QY) hold. Then the random
dynamical system ®(t,w) defined in (3.5) has a unique random attractor { o/ (w)}
in E, where

%(w) = mt>0u‘r>t\I}(7—v G,Tw,BO(G,Tw)),w € Qv

in which {Bo(w)} is a tempered random compact attracting set for ®(t,w).
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