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EXISTENCE AND PERMANENCE OF ALMOST PERIODIC
SOLUTIONS FOR LESLIE-GOWER PREDATOR-PREY MODEL
WITH VARIABLE DELAYS

TIANWEI ZHANG, XIAORONG GAN

ABSTRACT. By constructing a suitable Lyapunov functional and using almost
periodic functional hull theory, we study the almost periodic dynamic behavior
of a discrete Leslie-Gower predator-prey model with constant and variable
delays. Based on the permanence result, sufficient conditions are established
for the existence and uniqueness of globally attractive almost periodic solution.
A example and a numerical simulation are given to illustrate the our results.

1. INTRODUCTION

Leslie [12} 13] introduced a predator-prey model where the “carrying capacity” of
the predator’s environment is proportional to the number of prey. Leslie stresses the
fact that there are upper limits to the rates of increase of both prey and predator,
which are not recognized in the Lotka-Volterra model. These upper limits can be
approached under favorable conditions: for the predator, when the number of prey
per predator is large; for the prey, when the number of predators (and perhaps the
number of prey also) is small. In the case of continuous time, these considerations
lead to the model

2y = x1(r1 — iz — aya2),
.’EIQ :IL’Q(Tgfagﬂ), (11)
xy
which are known as Leslie-Gower predator-prey model [20]. System is one
of the simplest having maximum growth rates which each population approaches
under favorable conditions.

It is well known that time delays of one type or another have been incorporated
into mathematical models of population dynamics due to maturation time, cap-
turing time or other reasons. In general, delay differential equations exhibit much
more complicated dynamics than ordinary differential equations since a time delay
could cause a stable equilibrium to become unstable and cause the populations to
fluctuate. We refer to the monographs of Cushing [4], Gopalsamy [7], Kuang [I1] for
general delayed biological systems and to Beretta and Kuang [I} 2], Faria and Mag-
alhaes [6], Gopalsamy [8] [9], May [19], Song and Wei [23], Xiao and Ruan [24], Liu
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and Yuan [I7] and the references cited therein for studies on delayed predator-prey
systems. Some scholars have explored the dynamics of the following Leslie-Gower
models with constant delays [2, [I8] 25, 26| 27]:

2y (t) = 1 (t) (11 — by (t — 7) — arwa(t)),
Z‘Q(t)). (12)

wy(t) = 22(t) (r2 — a2

1 (t)
x’l(t) = LEl(t) (7’1 — bl.’ﬂl(t — 7') — al$2(t))7
a5 (t) sz(t)(rz—a2W); (13)
2y (t) = z1(t) (r1 — brz1(t) — arza(t)),
ajg(t — 7-) (1.4)
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where 7, 7 and 7, are nonnegative constants.

Firstly, in the real world, the delays in differential equations of biological phe-
nomena are usually time-varying. Thus, it is worthwhile continuing to discuss the
Leslie-Gower predator-prey model with time-varying delays. Secondly, many au-
thors [3], 12| 14} [15, [16], 21l 22] 28] B0] have argued that the discrete time models
governed by difference equations are more appropriate than the continuous ones
when the populations have nonoverlapping generations. Discrete time models can
also provide efficient computational models of continuous models for numerical
simulations. Thirdly, Leslie-Gower predator-prey models have not been well stud-
ied yet in the sense that most results are for models with constant environment
[2, 18, 25, 26, 27]. This means that the models have been assumed to be au-
tonomous, that is, all biological or environmental parameters have been assumed
to be constants in time. However, this is rarely the ease in real life, because many
biological and environmental parameters do vary in time (e.g., naturally subject to
seasonal fluctuations). When this is taken into account, a model must be nonau-
tonomous, which is more difficult to analyze in general. But, in doing so, one should
also take advantage of the properties of those varying parameters. For example,
one may assume the parameters are periodic or almost periodic for seasonal rea-
sons. Based on the above points, we consider the following discrete Leslie-Gower
predator-prey model with pure and variable delays:

z1(n+1) = z1(n)exp {r1(n) = bi(n)a1(n — [e1(n)]) — ar(n)za(n — [e3(n)])},
za(n — ch(n)J)}
VRS

xa(n+ 1) = z2(n) exp {rg(n) as(n) Py o oy

(1.6)
where {r;(n)}, {b1(n)}, {ai(n)} and {c;(n)} are bounded nonnegative almost peri-
odic sequences, i = 1,2, j = 1,2,3,4, |a] denotes the algebraically largest integer
which does not exceed a. Under the assumptions of almost periodicity of the co-
efficients of , our purpose of this paper is to establish sufficient conditions for

the existence and uniqueness of globally attractive almost periodic solution of (|1.6))
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by constructing a suitable Lyapunov functional and almost periodic functional hull

theory. Obviously, systems ([1.2])-(1.5)) are special cases of (1.6)).
For any bounded sequence {f(n)} defined on Z, let f* = sup,cz{f(n)}, f' =

HlfnGZ{f(n)}
Throughout this paper, we assume that
(H1) 0 <7t <ri(n) <7¥, 0 <al <a;(n) <a¥ and 0 < b} < by(n) < bY, ¥n € Z,
i=1,2.
Let ¢ := sup,czlci(n)], ¢; = infpezlei(n)], i = 1,2,3,4, co = Z?Zl ¢i. We
consider system (1.6]) together with the initial conditions

,’Ez(a) = <pz(9) >0, fe [—00,0]27 (pl(O) >0, =12 (17)
One can easily show that the solutions of (1.6)) with initial conditions (1.7) are
defined and remain positive for n € Z* := [0, +00)z.

The organization of this article is as follows. In Section 2, we give some basic
definitions and necessary lemmas which will be used in later sections. In Section
3, permanence of is considered. In Section 4, global attractivity of is
investigated by constructing a suitable Lyapunov functional. In Section 5, some
sufficient conditions are established for the existence and uniqueness of almost pe-
riodic solution of by using almost periodic functional hull theory. An example
and numerical simulation are given in Section 6.

2. PRELIMINARIES

Let us state the following definitions and lemmas, which will be useful in proving
our main result.

Definition 2.1 ([29]). A sequence z : Z — R is called an almost periodic sequence
if the e-translation set of x,

Ele, 2} ={re€Z:|x(n+71)—x(n)| <e VneZ}

is a relatively dense set in Z for all € > 0; that is, for any given € > 0, there exists an
integer I(€) > 0 such that each interval of length I(¢) contains an integer 7 € F{¢, x}
such that

lz(n+7) —z(n)| <e€, VneZ.

The value 7 is called the e-translation number or e-almost period.

Definition 2.2 ([29]). Let f : Z x D — R, where D is an open set in C := {¢ :
[-7,0]z — R}. f(n, o) is said to be almost periodic in n uniformly for ¢ € D, or
uniformly almost periodic for short, if for any € > 0 and any compact set S in D,
there exists a positive integer (e, S) such that any interval of length i(e, S) contains
a integer 7 for which

[f(n+7,0) = f(n,¢)| <¢, VneZ ¢S

The value 7 is called the e-translation number of f(n, ¢).

Definition 2.3 ([29]). The hull of f, denoted by H(f), is defined by
H(f)={g(n,x): klim f(n+ 7, 2) = g(n,z) uniformly on Z x S}

for some sequence {74}, where S is any compact set in D.
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Definition 2.4. Suppose that (x1,z2) is any solution of (L.6). (x1,x2) is said to
be a strictly positive solution on Z if for n € Z,

0 < inf z;(n) <supz;(n) < oo, i=1,2.
nez nez

Lemma 2.5 ([29]). A sequence {x(n)} is almost periodic if and only if for any
sequence {h}.} C Z there exists a subsequence {hy} C {h}} such that x(n + hy)
converges uniformly onn € Z as k — +o0o. Furthermore, the limit sequence is also
an almost periodic sequence.
3. PERMANENCE
In this section, we obtain the following permanence result of (|1.6]).
Lemma 3.1. Assume that (H1) holds, then every solution (x1,x2) of (1.6) satisfies
limsupx;(n) < M;, i=1,2,

where
. Ty Wi expiri(ci +1)—1
M := min ((i) exp{r{(c1 + 1)}, piri( ;)l ) }>,
1
M (e 1)—-1
M2 -— min ((Q)uMl exp{,’,g(é2 + 1)}’ 1 eXp{ﬁ (il + ) })
ag CL2

Proof. Let (x1,x2) be any positive solution of (1.6)) with initial conditions (1.7]).
From the first equation of (|1.6) it follows that
x1(n+1) < zy(n)exp{ri(n)} < x1(n)exp{ri},
which yields
10— [er(m)]) > 22 (n) exp{—riar),

which implies

z1(n+1) < zqy(n)exp [r1(n) — by(n) exp{—r{ci }z1(n)]. (3.1)

First, we present two cases to prove that

limsup z1(n) < M.

n—oo

Case I. There exists a [y € ZT such that z1(lp + 1) > 21(lp). Then by (3.1)),
1 (lo) — bl (lo) exp{—ri‘él}xl(lo) Z 0,
which implies

71

x1(lo) < (b1

On the one hand, from (3.1)),

x1(lo + 1) < w1 (lo) exp{ry'} < (

) exp{ric} < M.

r
5 ) explri(en + D) (3:2)
on the other hand, from (3.1)),

b1(lo) exp{—rici}z1(lo)
by (l()) exp{—r?{él}
exp{ri(c; +1) — 1}
< b )
1

IN

z(lp+1) exp [r{ — b1(lo) exp{—ri'ci}z1(lo)]

(3.3)
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here we used

max x exp{r] — z} = exp{r} — 1}.
>0

Together with (3.2)-(3.3)), we have

1(lo + 1) < My := min ((%)uexp{wf(a + 1)},

Wi
exp{r} (CZ;— 1) —1} ) (3.4)
We claim that

$1(Tl) S Ml, vn Z lo.
In fact if there exists an integer ko > lo + 2 such that z1(kg) > M, and letting ;
be the least integer between [y and kg such that z1(1) = max;,<n<k,{21(n)}, then
1>1lp+2and x1(1) > x1(1—1), which implies from the argum?ang as that in
that

Il(l) S M1 < Il(ko).
This is impossible. This proves the claim.
Case II. 21(n) > x1(n+1), Vn € Z*. In particular, lim,, . x1(n) exists, denoted
by 1. Taking limit in the first equation of gives

Jim_ [ry(n) = by(n)z1(n = [e1(n)]) — ar(n)az(n — [e2(n)])] = 0.
Hence z; < (%)“ < M. This proves the claim.

From the two claims above, limsup,,_, . x1(n) < M;. For arbitrary € > 0, there
exists ng € Z1 such that

z1(n) < My +¢€ for n > ng.
For n > ng + 2¢g, from the second equation in ([1.6)), we have

ol 1) S ) e () — 2R Y < o) e

which yields
z2(n — [e2(n)]) = w2(n) exp{—rica},
which implies

2o(n + 1) < z9(n) exp [ro(n) — ag(n) eXP{_WQLQ}%(n)]'

M1 + €
Similar to the above argument as x1, we can easily obtain that
M e +1) -1
limsup z2(n) < My := min ((r—z)“Ml exp{ri(ca + 1)}, — exp{ry (?l +1) })
n—oo az a2
This completes the proof. (I

Lemma 3.2. Assume that (H1) and the following condition hold:
(H2) r{ > a¥Ms.
Then every solution (z1,x2) of (L.6) satisfies

lim inf z;(n) >m;, i=1,2,

n—oo
where
_ asy M: _
a:=exp ([bBi My +af My —ri]é1), B :=exp{[ in 2 —rh)e,
1
l u l U
= a M, THmMy ay BMy
my = —1—= bll‘olz exp{rt — a¥My — b¥aM}, my = ,(27’a12‘ exp{r} — 2m1 }.
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Proof. From the definition of M;, we obtain

b= bY My — a¥ My <l —bvMy <l — bqf(g—l)“ <rl—ru <o,
1
which implies a > 1.
By Lemma [3.1] and (H2), for an arbitrary e > 0, there exists ny € Z* such that

zi(n) < Myj+e, 1t >a¥(My+e), VYn>ny, i=1,2
For n > nq + ¢g, from the first equation of 7 we have
z1(n+1) > 21 (n) exp{rl — b (M + €) — a*(My + €)}.
So
z1(n — [e1(n)]) < @i(n)exp {[bY (My + €) + af (M + €) — r{]e1 } = z1(n)afe),
where
ale) = exp {[BY (M1 + ¢) + af (Mo +¢) —ri]er | > 1.
From the first equation of , we have
z1(n 4 1) > z1(n) exp{rt — a¥(My + €) — b ale)z1(n)}, VYn>ng+co. (3.5)
Next, we present two cases to prove that

lim inf x1(n) > m;.
n—oo

Case I. There exists a Iy > ng + ¢g such that 21 (lo + 1) < x1(lp). Then from (3.5)),
b —a%(My +€) — b a(e)zi(lo) <0,

which implies
rt—a¥(My + ¢€)
ri(ly) > L 12 T
(o) 2 by a(e)

In view of (3.5), we can easily obtain that
rt —a¥(Ms + €)
bie(e)

l w( M.

- a‘l( 2+ 6)

= < = -~ = 7
mq (€) bra(e)

z1(lo+1) > exp{rt — a¥(My + €) — bYa(e)(M; + €)}

We claim that

x1(n) > mq(e) forn > ly.
By way of contradiction, assume that there exists a py > lp such that z1(pg) <
mi(e). Then py > lgp+ 2. Let p1 > lp + 2 be the smallest integer such that
21(po) < mq(e). Then z1(p1 — 1) > x1(p1). The above argument produces that
x1(p1) > mi(e€), a contradiction. This proves the claim.
Case II. We assume that z1(n) < z1(n+1), for all n > ng+co. Then lim,, o z1(n)
exists, denoted by z;. Taking limit in the first equation of gives

Jim [r1(n) = bi(n)z1(n — [e1(n)]) — a1 (n)z2(n — [c2(n)])] = 0.

l — u . . .
Hence z; > % > my(€) and lim._,gmy(€) = my. This proves the claim.
From the two claims above, liminf, . x1(n) > m;. There exists two positive
constants ¢y and ngy such that

mi(n)SMi+60, xl(n)>m1760>0, VYn >ng +co, t =1,2.
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From the second equation of (|1.6)), we have
a¥(Mas + €p)

xza(n+ 1) > z2(n) exp {r2 P
1= €

b, V> no+ e

So
ra(n — ea(n)]) < wa(n)exp {[ZRRTD) hey gy (m)B(e)

mi — €
for all n > ngy + cg, where

ay(Ma + € _
Bleg) := exp{[iz( 2t ) Té]CQ} > 1.
mi1 — €
From the second equation of (|1.6)), we have
za(n + 1) > zo(n)exp {rh — %} Vn > ng + co. (3.6)
1— €0

Similar to the above analysis for x;, we can obtain

M.
lim inf xa(n) > mg = r2m1 { Ty — GQﬂ 2}

n—0oo

The proof is complete. (I
By Lemmas 3.1 and [3:2] we can easily show the following result.

Theorem 3.3. Assume that (H1)—(H2) hold, then every solution (x1,x2) of (1.6))
satisfies
m; <lim inf N;(n) <limsup N;(n) < M;, i=1,2.

n—00 n— o0
That is, (1.6]) is permanent.
4. GLOBAL ATTRACTIVITY

In this section, we investigate the global attractivity of (1.6)). Define a function
X : [0,00)z — {0,1} as follows:

(s) = 0, ifs=0,
TN s e 1, 00)

Let
l
asm
w1 = exp{r{ — bllml - allmz}a po = exp{ry — ?\4 : h
1
V= max{ul, 1}7 vy 1= max{,ug, 1}7
CL%MQ

01 := max{r{,b¥ My + a¥Ms}, Iz := max{ry,

1.

Theorem 4.1. Assume that (H1)—(H2) hold. Suppose further that

(H3) there exist two positive constants A1 and Ay such that min{©1,02} > 0,
where

: 2 u u —\= (= U (= \=
@1 = )\1 mln[bll, M — bl] - /\1M1,u1(b1 )ZX(C1)01(01 —C + 1) — )\11/151()1)((01)61
_ ex(@2)ea(Ca — ey + 1) MFps(ag)®  Aaaf(Cq — ¢y + 1) Mo

3 2
my m3
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and
l 2 ay )\Qaux(ég)égugég
Oy = \ S I A e VA ST e )
2 2m1n[M1 M2 ml] mi
Aax(€2)éa(Ca — ¢y + 1) M. a¥)?
_ 2X(C2)C2(C2 7;52 ) Mapz(a3) — MMty (e1)er (63 — cq + 1)
1

— /\1&%(53 —Cc3+ 1).
Then (1.6 is globally attractive.

Proof. From condition (H3), there exist small positive constants ¢ < min{m, ms}
and A such that
2

@1(6) = )\1 min [bll, m

—b{] — M (M + €)pa(e) (b)) x(e1)er (61 — ¢y + 1)

(81 (OB x(E)er — 2 X200 = ea + D(Ms + ) pa () (a)”

(m1 —€)3
_ )\2@12’(54 -Gt 1)(2]\/-’2 teo) N
(m1 —e€)
1 u u = \=
. . as 2 _ay B a¥x(C2)ara(€)da(€)
62(6) T Alen [M1+6,M2+6 ml—e] A2 my — €
) X(C2)e2(C2 — cp + 1) (My + €)pa(€)(al)?
’ (m1 —€)?

— )\1(M1 + e)ul(e)a’flffx(él)él(ég —Cc3+ 1) — /\1&%(53 —Cc3+ 1) > ),
where

a’l2(m2 — 6) }7

() = exp{ry = by(m1 =€) —di(mz — )}, pa(€) = exp{ry — ==

vi(e) := max{pui(e), 1}, wa(e) := max{pus(e), 1},
61(€) := max{r{,b{ (M, +€) + af (M2 +€)}, d2(e) := max {r¥, %}
Suppose that (z1,z2) and (y1,y2) are two positive solutions of . By Theorem
there exists a constant Ny > 0 such that

m; —e < z;(n), yi(n) < M;+¢€, n>Ny, i=12.
Let

Vii(n) = |Inzy(n) — Inyr (n)].

In view of , we have

Viiln+1)=|lnz1(n+1) —Iny; (n+ 1)|
= [nai(n) —Inyi(n)] - bi(n )[l’l(n* Lea(n
—ay(n)[zz(n — [es(n)]) —ya2(n — [es(n)])
(n) = Inyi(n)] = br(n)[z1(n ) yi(n
+bi(n)x (@) ([e1(n) = z1(n — [er(n) )] + [y1(n) = y1(n = [er(n)])])
s(n)]) —

—ai(n)[ze(n — |c ya(n — Les(n)))]].

)= yi(n—[ea(n)])]
|
= |[lnx1 ]

)
]
)
[

n)]
(4.1)
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Define

Pi(n) :==ri(n) —bi(n)z1(n — [e1(n)]) — a1 (n)z2(n — [c3(n)
Q1(n) :==r1(n) = bi(n)y1(n — [e1(n)]) — a1(n)ya(n — [c3(n)

), Yne€Z,

]
1), ¥YneLZ.
In view of (1.6]), we obtain

|[z1(n) = 21(n = [er(m) )] + [y1(n) — y1(n — [ex () )]

= | i: [xl(s +1) —yi(s+ 1)] - 2_: [xl(s) — y1(s)] |

s=n—[c1(n)] s=n—lc1(n)]
n—1 n—1

=Y [P ()@@ = 3 [ms) —m(s)]|
s=n—[e1(n)] s=n—[e1(n)]

_ | Z 21(s) [6P1(S) _ 6Q1(S)] + Z [xl(s) _ y1(8)] [te(S) _ 1]|
s=n—[c1(n)] s=n—lc1(n)]

< Z 1(8)€1(5) [b1(8)]z1(s = Ler(s)]) = wa(s = [e1(s)])]

+ai(s)|2(s — Les(s)]) — ya(s — Lea(s)))]]
+ Y G(9)|rils) = bi(s)yi(s — [ea(s)))

—al( )yz(S— Les(s)])||z1(s) — pa(s)]

Z ZM1+€N1 )bt |z1(s — k) — yi(s — k)|

s=n—c1 k= Cq

C3
+ Z ZM1+€M1 a1’1‘25— ygs—k)‘

s=n—c1 k= C3

-+ Z 1/1 51 |’£1 (8)‘

s=n—=Cy

n—k—1 C1

< > Y (Mt eum(ebifei(s) — yi(s)]

s=n—k—c1 k=c,

n—k—1 C3
+ > Y (M + eua(e)at|aa(s) — ya(s)]

snkclkc3

+ Z vi(€)d1(e)|z1(s) —ya(s)|, (4.2)

s=n—ci

where &(s) lies between ef1(*) and e@1(5)| & (s) lies between €?1(®) and 1, s =
n—|lci(n)],...,n—1, forn > Ny + c.



10 T. ZHANG, X. GAN EJDE-2013/105

By and (4.2)), we have
AVH(TZ) = V11(n + 1) — Vn(n)
< —|Inzi(n) =y (n)] + |[Inz1(n) — Iy (n)] = bi(n)[z1(n) —y1(n)]|
+bi(n)x(@)|[zi(n) — z1(n — [er(n) )] + [y1(n) — 1 (n — [ea(n))])]]
+ai(n)|zz(n — [es(n)]) —y2(n — Les(n)])]

oy Ty
+ Z D (M + )pa () (08)*x (@) |21 (s) — ya(s)]
s=n—k—c, k_cl
n—k—1 C3
+ Z M1 +e Ml a1b1X C1 |332 —92(3)|
s=n—k—¢c; k_c3
n—1 a—
+ Y m@a@bix(e)|n(s) —n(s)|+ Yo atfea(s) - ua(s)

< —min [0}, = bi]]1(n) — y1(n)]

2
M +e
n—k—1 c1
+Y Y (Mt u(e01) x(@)]i(s) = yi(s)|

s=n—k—¢c; k=c,
n—k—1 C3
+ Z Z (M + G)Ml(ﬁ)a%bqfx(élﬂﬂfz(s) - 3/2(3)|
s=n—k—c1 k=cq

n—1 n—Cg

+ Z V1(€)51(€)b?x(51)’$1(5)_y1(5)|+ Z alf|$2(3)_y2(5)|»

s=n—Cy s=n—=cs

here we used
|z1(n) — y1(n)] = o1(n)[Inz1(n) — Inyi (n)],

where o1 (n) lies between z1(n) and y1(n), ¥n > Ny + ¢o. Let

Via(n Z Z Z My + €)pa (e) (b)) x(E1) |21 (s) — w1 (s)],

t=0 s=n—k—ci1+t k=c;

c1—1 n—1 C3

Viz(n) = Z Z Z (M + €)1 (€)aidi x(é1)]xa(s) — y2(s)],

t=0 s=n—k—c1+t k=cg4

Vig(n Z Z v1(€)d1(€)byx(@1)|z1(s) — y1(s)],
t=0 s=n—c1+t

C3—Cg n—1

Vis(n) = > af|za(s) = ya(s)].

t=0 s=n—c3+t
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Also we obtain
AVig(n) = Vig(n + 1) — Via(n)

= (My + )i () (b1)*x(1)a (@1 — ¢ + 1)|a1(n) — y1(n)]|

n—k—1 c1 (44)
= Y D (M + () (8)*x(@)|wa(s) — va(s)],
s=n—k—c1 k=c,
AVlg(n) = Vlg(n + 1) — Vig(’ﬂ)
= (M1 + E)Ml (E)aququ(El)El (ES —C3+ 1)’-752(77‘) - yQ(n)|
n—k—1 C3 (45)
- Z Z (My + €)pa(e)aidix(er)|z2(s) — y2(s)],
s=n—k—c1 k=cg
AVia(n) = Via(n + 1) — Via(n)
= V1(6)51(6)bqfx(51)51|9€1(n) - yl(n)‘
o (4.6)
— Z, V1(€)51(6)5?X(51)|$1(5) - y1(8)|,
AVis(n) = Vis(n+1) — Vis(n)
S 4.7
= af(e3 — c5 + 1)|z2(n) — ya(n)| - Z_ af |z2(s) — y2(s)|- o

Define
1% (n) = Vu(n) + Vlg(n) + Vm(n) + V14(TL) + V15(1’L).

From (4.3)-(4.7) it follows that

AVi(n) < ~{min o, 5 = 8] = O + (OB Pxlen)er(er — ¢, +1)

- V1(6)51(6)bqfx(51)51}|331(n) - y1(“)|

+{(Mi1 + e)pa(e)atbix(cr)er(Cs — ¢z + 1)

+ai(E3 — cg + 1)} za(n) — xg(n)}, Yn > Ny + co.

(4.8)
Let
Vo1(n) = |Inze(n) — lnya(n)|.
From , we have
Vor(n+1) = |Inza(n+1) —Inyz(n + 1)|

Nl 2o (1) — Tn s ()] — as(n z2(n—|e2(n)])  y2(n — |e2(n)])
= |2 (n) — ()] = ax() [ 2 —

Further, it follows that
[w2(n —lea(n)])  wa(n— L@(n)J)]
z1(n—lea(n)])  yi(n — [ea(n)])
_ xa(n = [ea(n) Ny (n = [ea(n)]) = ya(n — [ca(n) )1 (n — [ca(n)])
z1(n — Lea(n)])yr(n — [ea(n)])
_ 20— (™)) —y2(n — [e2(n)])]
z1(n — [ea(n)])
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~p2(n— [ea(m)])[z1(n — [es(n)]) —yr(n — [ea(n)])]

z1(n — [ea(n) )y (n — [ca(n)])
which from implies

Va4 1) < [Inaa(n) ~ (] - 2020 L0 e~ LD,
N az(n)ya(n — [ca(n)|)|z1(n — [ca(n)]) — y1(n — [ca(n)])]
z1(n — |ea(n)])yi(n — [ea(n)])
az(n) [532(”) - yg(n)]
< |[Inwa(n) — Inys(n)] — 21 (n — latm)])
N az(n)x(e2)|[z2(n) — z2(n — [c2(n)])] + [y2
z1(n — ea(n)])
N az(n)ya(n — [ca(n)|)|w1(n — [ca(n)]) — y1(n — [ca(n)])]
z1(n — [ca(n)])yr(n — |ca(n)])

|
() = 2(n— Les(m)))]

(4.10)
Define
i) — ey @2n = LeamD)
Py(n) :=r2(n) 2( )x1(n—LC4(n)j)’ Vn € Z
e ) — a2 = leam))
B e T M

By , we obtain
|[z2(n) — 2(n — [e2(n) )] + [y2(n) — ya(n — [c2(n)])]]

n—1

n—1
= ‘ Z 1‘2(5) [ePz(s) _ eQz(s)] + Z

[22(s) — y2(s)] [e92¥) — 1]
s=n—[ca(n)]

s=n"—lca(n)]
< 5 moremolE= 0 - SR
+ Z & (6)1ra(s) — ax(s) 22 () — )
< _Z ea(s)€] (52205112200 _xﬁwfc 4—(;123 ~ lea(s)))]
’ _Z e e
+ Z &5 (6)1ras) — ax(s) 22 ()~ s

n—k—1 Co

<y > B OmlI ), ) )

s=n—k—¢ca k=c,
n—k—1 C4

b3 3 BRI ) - i)

s=n—k—¢cz k=c,
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n—1

+ 5 w(€)0(0)]wa(s) — a(s)], (4.11)

s=n—Csp

where € (s) lies between e2(*) and e@2(*)| ¢ (s) lies between ¢22(*) and 1, s =
n—|ce(n)],...,n—1, for n > Ny + co.

By (4.10) and (4.11)), we have

AVai(n) = Var(n + 1) — Var(n)

< —|lnzs(n) —Inys(n)| + Hlnxz(n) —Inyx(n)] - x1(n — [ca(n)])

L @2Wx@)|lz2(n) = @2(n — [e2(n) D] + [y2(n) = galn — [ea(m) )]
z1(n — [ea(n)])
(n)ya(n — [e2(n)])|z1(n — [ea(n)]) — ya(n — [ca(n)])]
z1(n = [ea(n) )y (n = [ea(n)])

a
+ 2

1 az(n) za2(n) —ya(n
< [0—2(71 |02(n) z1(n — Lc4(n)J)H| 2() =)
"IN & (@) (M + ) pa(e) (al)?
3D S LU LD SRR
s=n—k—cs k:E2
I S (@) (M + €)2 (e ay)?
. 3 X )(M<m+1—)53( NGB |11 (5) - (s)]

n 20200 11 6) 1)
eI
a 24 ay
< —min[ 2 2 ”332(”)_1/2("”

M1+€7M2+6_m1—6

n—k—1 & = v)2
v 3 3 MR ) - o)

s=n—k—¢cz k=c,

P SN (@) (Ms + €)2pa(€) (k)2
LS gh e (m+1_>53< NID” 11 (5) = ya(s)]
s=n—k—¢cz k=c,

. S ayx(Ca)va(€)d2(e) }xz(s) - y2(8)|
+ a(é‘n(lfl\fit)g) _Zf |21(s) = y1(s)]- e

Here we used that

|z2(n) = y2(n)| = oa(n)[Inzz(n) — Inys(n)],
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where o9(n) lies between xo(n) and y2(n), for n > Ng + ¢o. Let
Va1(n) + Vaz(n) + Vag(n) + Vaa(n) + Vas(n),

Vz(n) =
where
R S S S e IURE]
t=0 s=n—k—=ca+t k:
Go1 n—1 M2+€) MZ(G)<Q§)2‘JZ1(S)—y1(S) ’

Vas(n) = - ) Z e (m1 —€)?
K k—c

t=0 s=n—k—co-+t
Varl) = 3 Z (I 1 (5) — (o).
t=0 s=n—ca+t

Cq— C4

Vas(n) = (gMi—:e > Z |z1(s) — (s

t=0 s=n—cy4+t

By a similar argument as that in (4.8]), we obtain

o) < ~tmin [ s - o) - “5"‘(53355”3‘?“@
_ x(C2)C2(Ca — 02(;11)_(]\64)22+ €)pa(€) }|x2 i )}
n {x(62)62(54 —cyt 1)(M2‘+ €)2pia(€) (a2)? (4.13)
(m1 — 6)5
+= e (:rler—le))(MQ e Hei(n) = y1(n)],  Vn > No+ co.

We construct a Lyapunov functional as follows

Vi(n) = AVi(n) + A2Va(n),

which from (4.8)) and (4.13)) implies
— bﬂ M (M +€)u
(C2)2(Ca — ¢4 + 1) (Ma + €)?pa(€) (a5)*

AV(n) < —{A min [1, ﬁ OB x(@)er (e — ¢ +1)

=~ A (3 (b x(E)e — A X iy — o
ay(Cy —cy +1)(Ma +¢€)
— N2
? (my — €)? e )

! 2 a¥ ) a¥x(Ca)Cara(€)da(€)

a
— o mi 2 _ _
{len[Ml—‘rE’Mg-i-E mip — € 2 myp — €

1\ (G2)22(Ca — ¢o + 1)(Mz + €)pz(e) (a})?
’ (m1 —e)?

— M (My + €)ui(e)atbyx(cr)er(Cs —c3 +1)

X |5€2(n) - yz(”)|

y1(n)| + |z2(n) —

—Aaj(ez —cg + 1)}

y2(n)|],  Vn > No+ co. (4.14)

< —)\Hxl(n) —
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Taking ny € (Ng + ¢, )z, and adding on both sides of (4.14) over [ns,n]z, we
have

Vin+1)+ A Z |z1(s) —y1(s)| + A Z |z2(s) — y2(s)] < V(ng) < oco.

S5=no s=n2
Therefore,
n n V
i sup 3 fon(s) — o))+l sup D faa(s) — ()] < L2 <o
S=no S=ng

From the above inequality one could easily deduce that
i foa(s) —pals) =0 and L [ea(s) — ya(s)] = 0.
This completes the proof. ([l
When ¢; = ¢; = 0, system reduces to
z1(n +1) = z1(n) exp{ri(n) — bi(n)x1(n) — ar(n)za(n — [es(n)])},
za(n + 1) xg(n)exp{rg(n)ag(n)11(n??TZj(n)J)}. (4.15)
From Theorem we can easily obtain the following theorem.

Theorem 4.2. Assume that (H1)-(H2) hold. Suppose further that

(H4) there exist two positive constants A1 and g such that min{A;, A2} > 0,
where

. 2 “ Aoa¥ (¢4 — ¢y + 1) Mo
Al = )\1 min [ba, M — bl} — 2 m%4 ;
ray 2 af i
A2 = )\2 min [E, E - m71] - )\1(11 (CS _23 + 1)

Then (4.15) is globally attractive.

5. ALMOST PERIODIC SOLUTION

In this section, we study the existence and uniqueness of a globally attractive
almost periodic solution of by using almost periodic functional hull theory.

Let {71} be any integer valued sequence such that 7, — oo as k — oo. By
Lemma taking a subsequence if necessary, we have

ri(ntm) = ri(n),  ai(n+m) —ai(n), bi(n+my) — bi(n), c;(n+m) — ci(n)

ask —ooforneZ,i=1,2, 5=1,2,3,4. Then we get a hull equations for (1.6
as follows:

I‘Q(

xa(n+ 1) = zo(n) exp{ri(n) — a3(n) (
T

(5.1)
By the almost periodic theory, we can conclude that if (1.6)) satisfies (H1)-(H3),
then the hull equations (5.1)) of (1.6) also satisfies (H1)-(H3).
By [29] Theorem 3.4], it is easy to obtain the following lemma.

Lemma 5.1. If each hull equation of (1.6) has a unique strictly positive solution,
then (1.6) has a unique strictly positive almost periodic solution.
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By using Lemma[5.1] we obtain the following result.

Lemma 5.2. If (1.6)) satisfies (H1)-(H3), then (1.6) admits a unique strictly pos-
itive almost periodic solution.

Proof. By Lemma [5.1] to prove the existence of a unique strictly positive almost
periodic solution of , we only need to prove that each hull equation of
has a unique strictly positive solution.

Firstly, we prove the existence of a strictly positive solution of any hull equations
(5.1). By the almost periodicity of {r;(n)}, {b1(n)}, {a:(n)} and {c;(n)}, there
exists an integer valued sequence {7} with 7, — 0o as k — oo such that

ri(nt1e) = ri(n), aj(ntmp) —ai(n), bi(ntm) — bi(n), c(n+m) — cj(n)

ask —ooforneZ,i=1,2,j=1,2,3,4. It is not difficult to see that solutions of
equations with initial conditions are well defined for all n > 0 and satisfy
x;(n) >0, i =1,2. Suppose that (z1,z2) is any positive solution of hull equations
(5.1). Let € be an arbitrary small positive number. It follows from Theorem
that there exists a positive integer Ny such that

m; —e<uzi(n) < M;+e Vn>N, i=1,2.
Write 2 (n) = z;(n +n,) for n > Ny —n,, p=1,2,..., i = 1,2. For any positive
integer ¢, it is easy to see that there exist sequences {z7(n) : p > ¢} and {z5(n) :
p > ¢} such that the sequences {7 (n)} and {2(n)} have subsequences, denoted
by {z}(n)} and {25(n)} again, converging on any finite interval of Z as p — oo,
respectively. Thus we have sequences {y1(n)} and {y2(n)} such that

z¥(n) — yi(n), VYn€Zasp— oo, i=1,2.

K3

Combining this convergence with
af(n+ 1) = 2 (n) exp{ri(n + np) — bi(n + np)a1(n+ np — [ci(n +mp)])
—aj(n+np)ra(n+mp — [c3(n +mp)])},
za(n +mp — [c3(n + 77p)J)}
z1(n+np — Lei(n+1p)])

w3 (n +1) = wy(n) exp{rs (n +np) — az(n + np)
gives

y1(n +1) = y1(n) exp{ri(n) = b1(n)y1(n — [c1(n)]) — ai(n)yz2(n — [c3(n) )},
y2(n — LC%(H)J)}
yi(n = [ei(n)]) ™
We can easily see that (y1,y2) is a solution of hull equations and m; —e <
yi(n) < M; + ¢ for n € Z, i = 1,2. Since € is an arbitrary small positive number,
it follows that m; < y;(n) < M; for n € Z, i = 1,2, which implies that each hull
equations of has at least one strictly positive solution.

Now we prove the uniqueness of the strictly positive solution of each hull equa-
tions . Suppose that the hull equations has two arbitrary strictly positive
solutions (z7,x3) and (y7,ys), which satisfy

y2(n +1) = y2(n) exp{ry(n) — az(n)

Similar to Theorem we define a Lyapunov functional
Vi (n) = MV (n) + V5 (n),
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where
Vit(n) = Vii(n) + Vis(n) + Vi5(n) + Vig(n) + Vis(n),
Vi (n) = V31 (n) + Vaa(n) + Vas(n) + Vay(n) + Vo (n).
Here

Vii(n) = [Inai(n) — Inyy(n)],

c1—1 n—1

Viz(n Z Z Z My (b3)*x ()] (s) — wi (s)],

t=0 s=n—k—c1+t k=c,

c1—1 C3

Vis(n Z Z Z M pnaibix (@) |5 (s) — vs(s)|,

t=0 s=n—k—c1+t k=cy

c1—1 n—1

Vian) =Y Z noibix (@)1 (s) — i (s)],

- 2 = u\2
. x(C2) Mapz(a . .
Viy(n) = Sy MMl ) ),
t=0 s=n—k—ca+t k_g2 1
co—1 n—1 Cq _
. x(C2) M5 pa(a . .
CIOED DD DD PR (L N TR R
t=0 s=n—k—co+t k_g4 1
ol x(2)v26
" 2)V202 | "
Vas(n) = Z 2 2( )_92(5)}7

t=0 s=n—ca4+t

Similar to the argument for (4.14)), one has
AV® < =Azi(n) —yi(n)] = Alzz(n) —y3(n)], V€ Z.

Summing both sides of the above inequality from n to 0, we have

0
A lxi(s) —y |+AZ|@~2 s)| < V*(n)—V*(1), V¥Yn<O.

Note that V* is bounded. Hence we have

Z |21 (s) — y1(s)] < o0, Z |25 (s (s)] < oo,

S=—00 S=—00

which imply that

lim [z7(n) —yi(n)| =0, lim |z5(n) —y;5(n)| = 0.

n——oo n——oo
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Let
1
PO = Al{mil + 40(2)(00 + 1)M1,LL1(b1f)2X(51) + Cgl/lélblfx(él) + 60(00 -+ 1)(1111}

)X(EZ)M2M2(05)2 + 28X ()20
m? oy

1
+ /\g{m— +4c%(co +1
2

ay M.
+ colco + 1) 2 .
)

For arbitrary € > 0, there exists a positive integer Ny such that
€

Py’

€

—No.
PO, Vn < 2

21 (n) —yi(n)] < |z5(n) —yz(n)| <

Hence, one has
€
miPy’

* * _ €
Vi5(n) + Vis(n) < 4cg(co + 1)M1,u1(b1f)2x(cl)ﬁo, Vn < —Na,

Vl*l(n) < Vv2*1(n) < T p Vn < _N27

m2P0

€
Vii(n) < cAvi6ibix(é1) =, Vn < —Na,

PO’
Vis(n) < coleo + Daf 5. ¥n < —No,
0
= M u\2
Vi (n) + Vis(n) < dcd(c + )X CM22(@)” € gy
my PO
V* (’I’L) < CQG‘QX(EQ)V262L Vn < N2
24 0 my P07 5
asMs €
Vi (n) < 1)—2"=2—, VYn<—N,,
55(n) < coco + 1) ) n )

which imply

Therefore,
lim V*(n)=0.

Note that V*(n) is a nonincreasing function on Z, and then V*(n) = 0. That is,
z1(n) =yi(n), x3(n) =yz(n), VneZ

Therefore, each hull equation of has a unique strictly positive solution.

In view of the above discussion, any hull equation of has a unique strictly
positive solution. By Lemma system has a unique strictly positive almost
periodic solution. The proof is complete. ([l

By Theorem 1] and Lemma we obtain the following theorem.

Theorem 5.3. Suppose that (H1)—(H3) hold, then (1.6) admits a unique strictly
positive almost periodic solution, which is globally attractive.

By Theorem [£.2] and Lemma [5.2] we have the following theorem.

Theorem 5.4. Suppose that (H1), (H2), (H4) hold, then (4.15) admits a unique
strictly positive almost periodic solution, which is globally attractive.
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Corollary 5.5. Assume that (H1)—-(H3) hold. Suppose that the non-negative co-
efficients {ri(n)}, {b1(n)}, {ai(n)} and {c;(n)} are periodic of period w, i = 1,2,
7 =1,2,3,4, then system admits a unique strictly positive periodic solution
of period w, which is globally attractive.

Corollary 5.6. Assume that (H1), (H2), (H4) hold. Suppose further that the non-
negative coefficients {r;(n)}, {b1(n)}, {ai(n)} and {c;(n)} are periodic of period w,
1=1,2,7=1,2,3,4, then admits a unique strictly positive periodic solution
of period w, which is globally attractive.

6. AN EXAMPLE
Example 6.1. Consider the following discrete Leslie-Gower predator-prey model
with variable delay:
z1(n+1) = z1(n) exp {0.05[1 + cos?(v/2n)] — 0.2z (n — |1 — 0.5(—1)"))

—0.001z2(n) }, (6.1)

xzo(n+ 1) = z2(n) exp {0'1 —0.2(1+ |sinn|)x1(n)

Then this system is permanent and has a unique globally attractive almost periodic
solution.

Corresponding to system , r=0.1,7, =0.05, 7% =74 =0.1, 0% = b, =0.2,
a}*:all:0.001,a§‘=O.4,a2=O.2,E1:1,g1=0,62:g2263:Q3:E4=
¢, = 0. By easy calculations, we have M; < 0.6, My < 0.33, m1 > 0.21, mo > 0.03,
p1 < 1.1, 11 < 1.1, and §; < 0.12. Taking Ay =1, Ay = 3—10, we have

©; > 0.2 -0.0528 — 0.0264 — 0.1 = 0.0208 > 0,
Oy > 0.011 — 0.000132 — 0.001 ~ 0.01 > 0,

which implies that condition (H3) of Theorem is satisfied. It is easy to verify
that (H1)-(H2) hold and the result follows from Theorem [3.3|and Theorem [5.3] (see
Figure [1f).

‘M

LA

1N AU

Kl
i

sﬁev’w

\
LEI

10 20 30 a0 50 60 70 80 %0 100
n

FIGURE 1. Solutions of (6.1]) with initial values z1(—1) = 1(0) =
22(0) = 0.35, 0.375 and 0.40, respectively
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Conclusion. The aim of this article is to give sufficient conditions for the exis-
tence, uniqueness and global attractivity of positive almost periodic solution in a
discrete Leslie-Gower predator-prey model with pure and variable delays. Based
on the permanence result, the global attractivity of the above model is obtained by
constructing a suitable Lyapunov functional. In addition, one makes use of almost
periodic functional hull theory to show that the above model has a unique positive
almost periodic solution.
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