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WEAK SOLUTIONS FOR NONLOCAL EVOLUTION
VARIATIONAL INEQUALITIES INVOLVING GRADIENT
CONSTRAINTS AND VARIABLE EXPONENT

MINGQI XIANG, YONGQIANG FU

ABSTRACT. In this article, we study a class of nonlocal quasilinear para-
bolic variational inequality involving p(z)-Laplacian operator and gradient
constraint on a bounded domain. Choosing a special penalty functional ac-
cording to the gradient constraint, we transform the variational inequality to a
parabolic equation. By means of Galerkin’s approximation method, we obtain
the existence of weak solutions for this equation, and then through a priori
estimates, we obtain the weak solutions of variational inequality.

1. INTRODUCTION

In this article, we are concerned with the existence of weak solutions for nonlocal
(Kirchhoff type) parabolic variational inequality involving variable exponent. More
precisely, we shall find a function u € %" = {w(z,t) € V(Qr) N L>(0,T; L*(Q)) :
w(z,0) =0, |Vw(z,t)] <1 ae. (z,t) € Qr} satisfying the follow inequality

T
/ @(y—u) dxdt—i—/ a(t,/ |Vu|P(r)dm)/ IVuP@2VuV (v — ) dz dt
Qr ot 0 Q Q

> flv—u)dxdt,
Qr
(1.1)
for all v € V(Qr) with % e V'(Qr), v(z,0) =0, |Vo(z,t)| <1 ae. (z,t) € Qr,
where V/(Qr) is the dual space of variable exponent Sobolev space V(Qr) (see
Definition [2.3| below).

In recent years, the research of nonlinear problems with variable exponent growth
conditions has been an interesting topic. p(-)-growth problems can be regarded as
a kind of nonstandard growth problems and these problems possess very compli-
cated nonlinearities, for instance, the p(z)-Laplacian operator — div(|Vu[P(*) =2V )
is inhomogeneous. And these problems have many important applications in non-
linear elastic, electrorheological fluids and image restoration (see [9] 27, 30} 311 [32]).
Many results have been obtained on this kind of problems, see [T, 2} [5, 6], [T}, 12} T4,
151 [16, 25]. Especially, in [6l 25], the authors studied the existence and uniqueness
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of weak solutions for anisotropy parabolic variation inequalities in the framework
of variable exponent Sobolev spaces. Motivating by their works, we study a class
variational inequalities with gradient constrain and variable exponent. To the best
of our knowledge, there are no papers dealing with parabolic equalities involving
variable growth and gradient constraints. For the fundamental theory about vari-
able exponent Lebesgue and Sobolev spaces, we refer to [13] [21]. The basic theory
about Variational inequalities, we refer the reader to [7, [26] for the details.

The study of Kirchhoff-type problems has received considerable attention in
recent years, see [3 4 [T0, 19 18] 20, 28] 29]. This interest arises from their con-
tributions to the modeling of many physical and biological phenomena. We refer
the reader to [I7), 24] for some interesting results and further references. In [3| [4],
the authors discussed the asymptotic stability for Kirchhoff systems with variable
exponent growth conditions

u — M(Fut)Apayu+ Qt, x,u,up) + f(z,u) =0 in R x Q
u(t,r) =0 on R{ x 99,

where M(7) = a+br?~!, 7 > 0 with a,b > 0,a+ b > 0 and v > 1, and Fu(t) =
JolIDu(@, )@ fp(a) }do, Ay = div(|DulP®~2Du).

On the one hand, our motivation for investigating arises from reaction-
diffusion equations that model population density or heat propagation (see [8]). The
following equation describes the density of a population (for instance of bacteria)
subject to spreading

up = a(u)Au + F(u) in Q x (0,7),
u(z,t) =0 on 9Q x (0,7T),
u(x,0) = uo(z) in Q.

The diffusion coefficient a depends on a nonlocal quantity related to the total
population in the domain §2; that is, the diffusion of individuals is guided by the
global state of the population in the medium. From an experimentalist point view,
it certainly makes sense to introduce nonlocal quantities, since measurements are
often averages. The function F' describes the reaction or growth of the population.

On the other hand, we can use problem to describe the motion of a nonsta-
tionary fluid or gas in a nonhomogeneous and anisotropic medium and the nonlocal
term a appearing in can describe a possible change in the global state of the
fluid or gas caused by its motion in the considered medium.

This article is organized as follows. In section 2, we will give some necessary
definitions and properties of variable exponent Lebesgue spaces and Sobolev spaces.
Moreover, we introduce the space V(Qr) and give some necessary properties, which
provides a basic framework to solve our problem. In section 3, using the penalty
method, we consider class of parametrized parabolic equations, and obtain weak
solutions by Galerkin’s approximation. In section 4, we give the proof of main
theorem to this paper.

2. PRELIMINARIES

In this section, we first recall some important properties of variable exponent
Lebesgue spaces and Sobolev spaces, see [12, [13], 21] for details.
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2.1. Variable exponent Lebesgue space and Sobolev space. Let Q C RY be
a domain. A measurable function p : Q — [1,00) is called a variable exponent and
we define p~ = essinf,cq p(z) and p* = esssup,cqp(x). If pT is finite, then the
exponent p is said to be bounded. The variable exponent Lebesgue space is

LP@(Q) = {u: Q — R is a measurable function; Pp(z)(u) = / lu(z)|P®dz < oo}
Q

with the Luxemburg norm
l[ull o) (@) = A > 02 ppey (A u) < 13,

then LP(*) (©) is a Banach space, and when p is bounded, we have the following
relations

. - + - +
mln{”uuip(z)(g)? ‘|u||12p(m)(g)} < Pp(z) (u) < maX{||u||Z£p(m)(Q)7 ||u||ip(z)(Q)}‘

That is, if p is bounded, then norm convergence is equivalent to convergence with
respect to the modular p,(,). For bounded exponent the dual space (LP(*)(Q))’

can be identified with L”/("’”)(Q), where the conjugate exponent p’ is defined by
p = p%l. If 1 < p~ < p™ < oo, then the variable exponent Lebesgue space
LP(®)(Q) is separable and reflexive.
In the variable exponent Lebesgue space, Holder’s inequality is still valid. For
all uw € LP)(Q), v e LP'®)(Q) with p(z) € (1,00) the following inequality holds
1 1
/Q luv|de < (Z? + W)HUHLP(E)(Q)||’UHLP’(1')(Q) < 2||ull Lo (@ 1]l Lo @) () -

Definition 2.1 ([I1} 12]). We say a bounded exponent p : & — R is globally
log-Hélder continuous if p satisfies the following two conditions:

(1) there is a constant ¢; > 0 such that
C1
et+ly—2")

) 2] < o

for all points y, z € §;
(2) there exist constants ¢z > 0 and po, € R such that
€2

P(Y) — Poo| £ T—F—
P =Pl = gt )

for all y € Q.
The Variable exponent Sobolev space W1P(*)(Q) is defined as
WhP@)(Q) = {u € LP@(Q) : |Vu| € LP@(Q)}
and equipped with the norm
[ullwrre @) = llullLre @) + VUl Loe o))

then the space WP(#)(Q) is a Banach space. The space W&’p(m)(Q) is defined as
the closure of C§°(Q) with the norm of || - [y 1.ee) (). If 1 < p~ < pt < oo, then
the space W1 P(®)(Q) is separable and reflexive.
Theorem 2.2 ([I1, 12]). Let @ C RY be a bounded domain and assume that
p: RY — (1,00) is a bounded globally log-Hélder continuous exponent such that
p~ > 1, then for every u € Wol’p(x)(Q) we have

[ull Lo (@) < ediam(Q)[|Vaull Lo ),
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where the constant ¢ only depends on the dimension N and the log-Holder constant
of p.

2.2. Variable exponent Sobolev space V(Qr).

Definition 2.3. Let Q2 C R” be a bounded domain with smooth boundary. Denote
Qr =2 x(0,T),0 < T < oo. Suppose that p(z) is a bounded globally log-Holder
continuous function on Q with p~ > 1, we set

V(Qr) = {u € L*(Qr) : |Vu| € LX) (Qr),u(-t) € WaP™(Q) ae. te (0,T)},
with the norm
[ull = llullz2(@r) + IVUll o) (@r)-

Remark 2.4. Following the standard proof for Sobolev spaces, we can prove that
V(Qr) is a Banach space, and it’s easy to check that V(Qr) can be continuously

embedded into the space L"(0,T; Wy? (Q) N L2(Q)), where r = min{p~,2}. Tt is
worth to mention the paper [6] where the space V(Qr) is defined in a similar way.

By the same method in [I1], we have the following theorem.
Theorem 2.5 ([I1]). The space C§°(Qr) is dense in V(Qr).

Since C§°(Qr) C C*(0,T;C§(R)), we have the following result.
Lemma 2.6. The space C*(0,T;C§°(?)) is dense in V(Qr).

Let V'(Qr) denote the dual space of V(Qr).
Theorem 2.7 ([6,[11]). A function g € V'(Qr) if and only if there exist g € L?(Qr)
and G € (L @(Q7))N such that

/ godrdt = / g dx dt + GV dx dt. (2.1)
Qr Qr Qr

Remark 2.8. It follows from the proof of Theorem [2.7]that V (Q7) is reflexive and
V'(Qr) — L (0,T; W5 (Q) + L3(Q)), where s = max{p",2}.
Similar to that in [I1], we give the following definition.

Definition 2.9. We define the space W(Qr) = {u € V(Qr) : %—“j e V'(Qr)} with

the norm
ou
lulhwiar) = lullviar) + | elly oy

where % is the weak derivative of w with respect to time variable ¢ defined by

@apdwdt = f/ ua—('o dxdt, for all ¢ € C5°(Qr).
Qr ot Qr ot

Lemma 2.10 ([II]). The space W(Qr) is a Banach space.
By the method in [II], we have the following result.
Theorem 2.11. The space C*°(0,T;C§°(2)) is dense in W(Qr).

The following theorem can be proved similarly to that in [I1], thus we omit its
proof.
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Theorem 2.12 ([I, 11]). W (Qr) can be embedded continuously in C(0,T; L?(Q2)).
Furthermore, for allu,v € W(Qr) and s,t € [0, T the following rule for integration
by parts is valid

t t
/ /%vdxdrz/u(x,t)v(sc,t)dx—/u(sc,s)v(x,s)dx—/ /u@d:ﬂdr
s Ja O Q Q s Jo Of

The following theorem gives a relation between almost everywhere convergence
and weak convergence.

Theorem 2.13 ([9]). Let p(z) : Q7 — R be a bounded globally log-Hélder contin-
uous function, with p~ > 1. If {u,}°, is bounded in LP™)(Qr) and u, — u a.e.
(z,t) € Qr asn — oo, then there exists a subsequence of {uy} still denoted by {u,}
such that w, — u weakly in LP®)(Qr) as n — oco.

We will give a compact embedding for V(Qr) in the following.

Theorem 2.14 ([23]). Let By C B C By be three Banach spaces, where By, By
are reflexive, and the embedding By C B is compact. Denote W = {v : v €
LP(0,T; By), % € LP1(0,T; B1)}, where T is a fized positive number, 1 < p; < oo,
1=0,1, then W can be compactly embedded into LP°(0,T; B).

Theorem 2.15. Let F be a bound subset in V(Qr) and % cu € F} be bounded
in V'(Qr), then F is relatively compact in L"(0,T; L?(£2)).

Proof. Since p~ > 22 (N > 2), the embedding WyP (Q) — L*(Q) is compact.

By Remarks and the embeddings V(Qr) — L"(0,T; Wy (Q) N L*())
and

V/(@Qr) = L¥ (0, Ts W' (Q) + L2(Q)) — L (0, T3 W A(@)
are continuous, where A = min{2, (p™)’'}. As the embedding L?(Q) — W~1*(Q)
is continuous, by Theorem F is relatively compact in L"(0,T; L*(Q)). O

3. EXISTENCE OF SOLUTIONS FOR PARABOLIC EQUATIONS

In this section, for € € (0, 1), we consider the following nonlocal parabolic equa-
tion with Diriclet boundary-value conditions:

0 ,
8—1; - a(t,/Q |Vu\p(’“)dx> div(|Vu[P@~2Vy)
1
- g div ((‘vu|p(I)72 - 1)+vu) = f((E,t), (xvt) € x (OvT)’ (31)
u(z,t) =0, (z,t) € 9Qx (0,T),
u(z,0) =0, z€Q,
where (|[Vu[P(®)=2 — 1)* = max{|Vu[P(®)=2 — 1,0}. We assume that

(H1) a(t,s) :[0,00) x [0,00) — (0,00) is a continuous function and there exists
two positive constants ag and aq such that

ag < a(t,s) <ay foreach (¢, s) € [0,00) x [0,00).

(H2) p(z) : @ — (1,00) is a global log-Holder continuous function. Denote

p
p~ =inf g p(x), pt =sup, g p(z). And there holds
2<p <plxr)<pt <oo foreachze Q.
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(H3) f eV (Qr).

Definition 3.1. A function u. € V(Qr) N C(0,T;L*(Q)) with %% € V'(Qr) is
called a weak solution of (3.1]), if

9 T
ua(pdxdt—&—/ a(t,/ |VuE|P(x)dx)/ |Vus|p(x)_2VuEVgpdmdt
Qr ot 0 Q Q
1
+/ ~(|VuP®=2 1) Vu Vodrdt = fodzdt,
Qr ¢ Qr

for all p € V(Qr).

Since f € V/(Qr), there exists a sequence f,, € C§°(Qr) such that lim,, o fr, =
fin V'(Qr). Similar to that in [I4] [I5], we choose a sequence {w;}22, C C§°(12)

such that C§°(R2) C U;O:anc “
L2(2), where V;, = span{wy,wa, ..., w,}.

and {w;}%2, is a standard orthogonal basis in

Theorem 3.2. Let assumptions (H1)—(H3) hold and let € € (0,1) be fized. Then
there exists a weak solution for equation (3.1]).

Proof. (i) Galerkin approximation. For each n € N, we want to find the ap-
proximate solutions to problem (3.1)) in the form

n

wn(@,t) = Y (ma (1)) jw; ().

j=1

First we define a vector-valued function P, (¢,v) : [0,1] x R™ — R™ as

(P(t,v)); = a(t,/ |Zuijj|p(”“')dx)/ |ZVijj|p(””)_2(ZVijj)Vwidx
o = Q o

j=1
IR P2 (%
- Vw; -1 Vw; ) Vw;dz,
DAL ) (X 1Py Vunde
Jj=1 Jj=1
where v = (v, -+, v,). Since a and p are continuous, from the definition of P, (¢, v),

P, (t,v) is continuous with respect to ¢ and v.

We consider the following ordinary differential systems
") + P,(t,n(t)) = F,,

1(t) (t,n(t)) (3.2)

n(0) =0,

where (F,); = [, fawidz.
Multiplying (3.2]) by 7n(t), we arrive at the equality

' () (t) + Pu (t,0() n(t) = Fan(t).

Since

Pn(tﬂ])n = Cl(t,

“J,

S

n n
1> leij|p(x)d$) / DA
Q “
j=1

j=1
(12 vy Vg P72 — 1)+ S vy Yy 2 > 0,
j=1

Jj=1

M| =
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by Young’s inequality, there holds

19|n(t)? 1 9 1 2
— < < — — .
LIUDE <\ o)) < 2172 + S0

Then integrating with respect to t from 0 to ¢, we obtain

t
P < Cot [ no)ds.
0
By Gronwall’s inequality, we obtain that |n(t)| < C,,(T). We denote
e Cn(T)
= max F,— P,(t,n)|, 7, =min{T, ,
(t,m€[0,T1xB(n(0),Cn(T)) | (& { L, )

where B(n(0), C,,(T)) is the ball of radius C,,(T") with the center at the point 7(0)
in R". By Peano’s Theorem we know that admits a C! solution in [0, 7,,]. Let
n(7,) be a initial value, then we can repeat the above process and get a C'! solution
in [tn,27,]. Without lost of generality, we assume that 7' = [=- -7 + (%)Tn,O <
(%) < 1, where [;] is the integer part of = = (;) is the decimal part of % We
can divide [0, T] into [(i — 1)7y,i7,], 4 =1,..., L and [L7,,T] where L = [%], then
there exist C' solution 7%, (t) in [(i — 1)7p,i7n], i = 1,..., L and nEt1(¢) in [L7,, T).
Therefore, we obtain a solution 1, (t) € C'[0,T] defined by

nk(t), ift € [0,7,],
77% (1), if t € (70, 270],

N(t) =1 ...
nk(t), ifte (L —1)m, Ln],
nEkri(t), ifte (Lr,, 7).
Thus, we obtain the approximate solutions sequence u, = > 7_; (n.(t));w;().

From (3.2)), for 1 < i < n, we have

/Qaaut"wzdera /|Vu |p(z)dx /|Vu P@) =2y, Vw;dx

/ ~(|Vun [P =2 = 1) Vu, Vw;dz (3.3)

/ frw;dax.

Multiplying by (1, (t));, summing up 4 from 1 to n, and integrating with respect to
t from 0 to 7, where 7 € (0,7, we obtain

/ /—undxdt—i—/ a(t,/ \Vun|l'(w)dm)/ |Vun|”(‘”) dr dt
Q Q

+/ /f(|Vun|p(w)_2—1)+|Vun|2dxdt (3.4)
0o JO €&

:/ /fnund:vdt.
o Ja

Remark 3.3. The approximate solutions u,, depends on ¢; For convenience, we
omit the e. For all p € C1(0,T;V4), k < n, there holds

/ /%s&dmdt-F/ a(t,/|Vun\p(w)Vundm>/|Vun|p(w)_2vu”v‘pdxdt
o Jo Ot 0 Q @
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T 1
+/ / ~(|Vun|P®=2 — 1)*Vu, Vo dz dt
o Ja¥¢€

:/ /fncpdxdt.
0o Ja

(ii) A priori estimates. By (3.4), assumption (H1) and integration by parts,
we arrive at the inequality

1 T
3 [ e = e 0o +ao [ [ [V, dedt < 1l e,
0

where @, = Q x (0,7), 7 € (0,T]. Since u,(z,0) = 0 and f,, — f in V'(Qr),
Il fnllvi(@ry < C, where C independent of 7 and n. Thus, we obtain

/ ui(m, T)dx‘f'ao / / |vun|p(x) dr dt < C(||un||Lz(QT)+HVunHLp(m)(QT)). (3.5)

Q o Jo

Without lost generality, we assume that ||[Vup || pre) g,y > 1. Then
HVUTL”ZI)‘;(JC)(QT) < \/672 \Vun|p(w) dx dt.

By (3.5) and Young’s inequality, there holds

[@nda+ 2 [ [ 9P dodt < Clunllioie,) +
Q 2 0 Q

By Gronwall’s inequality, we obtain |u, ||z, 1;z2(0)) < C. Therefore,

[t | oo 0,1302()) + unllv(@r) < C (3.6)
Combining assumption (H1), with (3.6)), we have

J.,

'(z)
a(t,/ \Vun|p(””)dx) \Vun|p(m)_2Vun : dedt < C.
Q

/ |(| Ve, [P =2 — 1)V, [P @) de dt < C(e),

T

where C(g) is a constant independent of n on € and C(e) — o0 as € — oco. Thus
we obtain

p(z) p(z)—2
la, /Q [V [P0 d) [Vt D2V |1 0 < C o)

H(|vu”|p(I)72 - 1)+VU”HLP’(I)(QT) < C(E)'

By Lemma for all ¢ € V(Qr), there exists a sequence ¢,€C*(0,T;V;,) such
that ¢, — ¢ strongly in V(Q7). By Remark we have

ouy,
’ —gpndxdt‘
L,
= ‘ —/ a(t,/ |Vun|p(x)dac)|Vun|p(”’)_2VunV<pnda:dt
Qr Q

1
— [ Tl 1) Vg drds +
€ Qr

SC(Ha(u/ﬂ\Vun|p(’”)dac)|Vun|p(l)_2Vun

futon da i

Lr' @0 (Qr) ||Vg0n HLP(I) (Qr)
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1 _
(VP2 = 1) Vit e 0, IVl + v [9allvi@n)
< C@lgnllvian:

where C(e) is a constant independent of n on €. We immediately get that

ouy,
||WHV/(QT) < C(e). (3.8)

(iii) Passage to the limit. From (3.6)-(3.8), we obtain a subsequence of {u,}
(still denoted by {u,}) such that
up — ue  weakly* in L°°(0,T; L(Q)),
Up — ue  weakly in V(Qr),

a(t,/ |Vun|p(z)dx)\Vun|p(“")*2Vun — ¢ weakly in (L”/(””)(QT))N,
Q

(IVun [P®) =2 = 1)t Vu, =5 weakly in (L @) (Qr))N
ou,, N Ou,
ot ot

Since [, uZ(x,T)dx < C, there exist a subsequence of {uy,(x,T)} (still denoted
by {u,(z,T)}) and a function @ in L?(Q) such that u, (z,T) — @ weakly in L?(Q).
Then for any ¢(x) € C§°(£2) and n(t) € C1[0,T], there holds

T
Ouy,
pndzdt
/0 /Q ot

:/wun(x,T)gon(T)dx—/Qun(x,O)gmy(O)dx—/OT/Qungon’(t) dx dt.

Letting n — oo, by integration by parts, we obtain

[ @l T)(T)eds + [ (e 0n(O)ods = .
Q Q

Choosing n(T) = 1,7(0) = 0 or n(T) = 0,n7(0) = 1, by the density of C§°(Q) in
L?(Q), we have @ = uc(x,T) and uc(z,0) = 0 for almost every x € . That is
Un (2, T) — uc(x, T) weakly in L?(Q2), as n — oo, thus
/ug(x,T)d:vgliminf/ui(x,T)d:c. (3.9)
Q Q

n—oo

weakly in V'(Qr).

In view of Remark for all ¢ € C*(0,T;V;) where k < n, letting n — oo
there holds

P 1
U L eVt qVededt= | fodrdt, (3.10)
Qr 8t g Qr

since C! (O,T; Uzozl‘/k) is dense in C1(0,T;C'(Q)), the above equality is valid for
all o € CH0,T;C5°(R)). Moreover, for all ¢ € V(Qr), the above equality is valid.
Thus, we can take ¢ = u.. By integration by parts, we have

1 1
f/ |ue (2, T)|*dx +/ EVu. + —nVu dax dt = fue dz dt. (3.11)
2 Jo Qr € Qr

We denote
Y, = / a(t,/ |Vun|p(z)d:c) (|Vun|p(‘”)72Vun - \Vus|p(x)72Vus)
Qr Q
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X (Vun — Vua) dx dt
1

+ g/ ((|Vun\p(‘"”)_2 - 1)*Vu, — (\Vug|p(x)_2—)+VuE) (Vu, — Vu.) dz dt.

By (3.4), we obtain

1
0<Yo= [ futn =5 [ fn(o. D = fun(a,0)do
Qr Q
—/ a(t,/ |Vun|p(:”)dx>|Vun|p(I)_2VunVu5dxdt
T Q

—/ a(t,/ |Vun|p(m)da:)|Vu5|p(m)_2VuE(Vun—Vue)dxdt (3.12)
Qr Q

*}i/ (|Vun |P® =2 — 1) Vu, Vu, dz dt

€ T

1
- f/ (|Vue|P® =2 — 1) Vu (Vu, — Vu.) de dt

€ T

By assumption (H1), the sequence {a(t, [, |Vu,[P(®)dz)}52, is equi-integrable and
uniformly bounded in L'(0,T). Therefore, there exist a subsequence of {u,,} (still
denoted by {u,}) and a(t) such that

a@/ﬁmm@m)eawa&tepﬂ
Q
As

p'(z

)
%{u/ﬂvme%m)vmw@%ﬁv%) < OV P € LYQr),
Q

by the Lebesgue dominated convergence theorem, we obtain

/1 [a@t/\vunw@%m)-4uwpvugﬂz*2vug
T Q

a(t,/ |Vun|p(‘”)dx)|Vu5|p(”“')_2Vu€ — a(t)|Vue|P®2Vu, in (Lp/(“)(QT))N.
Q

p'(z)
‘ da dt — 0.

That is,

(3.13)
Thus, from (3.9), (3.11)-(3.13)), we obtain
1
0 <limsupY, < fudzdt — f/ |u(z, T)|*dx
n—0o0 Qr 2 Ja
1
— / EVue dx dt — f/ nVue dz dt = 0;
T € T
therefore lim,,_, ., Y;, = 0. Furthermore, by assumption (H1), there holds
/ﬂQv%wﬂﬁwm—W%Pwﬂv%ﬂv%—v%MMﬁao
Qr
Since p(z,t) > p~ > 2, as n — oo, there holds
/ |V, — Vu [P dz dt
’ (3.14)

< C’/ (|Vtn [P 72V u, — [Vue P2V, ) (Vu, — Vaue) de dt — 0.
T
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Therefore, from (3.14)), we obtain Vu, — Vu. in (LP®)(Qr))N. Thus, there
exists a subsequence of {u,,} still denoted by {u,} such that

/ 'V, — VuPDde — 0 ae. te[0,T]. (3.15)
Q

Since

’/ |V, [P@) — |Vu5|p($)dm‘
Q

< [ p@) 190l + 0007, = (9 " Pt | = P
< C||\Vun|p(“")’1 n |vu5|p(x)leLp,(z)(Q)||Vun — VugHLp(z)(Q),
where 0 < 6 <1, by 7 we have
/ |V, [P@) — / Vu [P @dz  ae. tel0,T].
Thus, by the contingzlity of a, we obst)ain that
a(t) :a(t, /Q |vu5|p<m>dx) a.e. t €0,7]

Since Vu, — Vu. in (LP®)(Qr))N, there exists a subsequence of {u,} (still
labeled by {uy}) such that Vu,, — Vu, for a.e. (z,t) € Qr, then

a (t, / \Vun|p(x)dx) \Vun|p(m’t_2)Vun
Q

~aft, / Vue PO ) [Vue POV, ae. (2.0) € Qr.
Q

By Theorem we obtain ¢ = a(t, [, |Vu:[P®dz)|Vu |[P®~2Vu,.. Similarly,
n = (|Vu P@H=2 - 1)*Vu,.
It follows from ([3.10) that

T
/ a(;vj:godxdt—i—/ a(t,/ \Vun|p("”)dx>/ |VulP® 2Ty, Ve
Qr 0 Q Q

1
+ g(|VuE|”("‘”’t)_2 — 1)"Vu.Vodrdt = fodzdt,
Qr

for all ¢ € V(Qr). Since u € V(Qr) and %1; € V'(Qr), by Theorem [2.12] up to a
set of measure zero, we have u € C(0,T; L*(£2)). O

4. EXISTENCE OF SOLUTIONS FOR THE VARIATIONAL INEQUALITY
In this section, we prove our main theorem.
Theorem 4.1. Under assumptions (H1)—(H3) there exists a function u(x,t) € H
such that

T
@(v —u)dxdt —|—/ a(t,/ |Vu|P($)dx) / IVuP@=2VuV (v — ) de dt
Qr ot 0 Q Q

> flo—w)dzdt
Qr
for allv € V(Qr) with ¥ € V'(Qr), v(z,0) =0, |[Vv| <1 ae. (z,t) € Qr.
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Proof. We will prove this theorem in three steps.
(Step 1) A priori estimates. In Definition we take ¢ = u.x(0,r) as a test
function, where x(o,;) is defined as the characteristic function of (0,7), 7 € (0,77,

then
/ %us dxdtJr/ a(t,/ |Vu€|p(z)d1’)|Vu€|p(””)
Qr ot Q- Q

1
+ g(|vu5|z’<ﬂv>*2 — 1)t Vue|? dz dt

= f(z, t)ue dx dt,
QT

where @, = Q x (0, 7). Similar to Section 3, we have
/ lue (z, 7)|2dz + / |Vu [P dedt < C, for all T € [0,T).
Q Q-

Therefore,

1
7/ (|Vue P72 — 1) [V, [ do dt + ||u.

- <C. (4.1)

HLOO(O,T;L2(Q)) + H“EHV(QT)
T

Since

/ |a(t,/ |Vu€|p(m’t)dx>|Vu€|p(w)_2VuE|p/($) dx dt
Q

T

<C | |Vu P dadt
Qr

< Cmax{HVusH ||Vu5|| } <

P- P+
Lr=@) (Qr)’ Lr@) (Qr)

there holds
H‘a(t,/ |Vu5\p(”)dm>|Vu€|”(‘”)_2Vus|
Q

<
LY (®)(Qr)
(Step 2) Passage to the limit. By (4.1)-(??), there exists a subsequence of
{ue teso, still denoted by {u.}c>0, such that

ue —u  weakly * in L>(0,T; L*(Q2)),
ue — u  weakly in V(Qr), (4.2)
a(t,/Q |Vu5|p(m)dm)|Vu6\p(z)_2Vu5 — A weakly in (L ®)(Qp))N.
For all ¢ € V(Qr), there holds
/Q [(|Vue P2 — 1) Vu, — ([Vp|P® =2 — 1) T V| (Vu. — V) dzdt > 0.
T

Since

/ |(|Vue P& =2 = 1)V [P @) de dt < / (|Vue |P@ =2 — 1)*|Vu,|? dz dt,

T T
by (4.1I), we obtain that [, (| Ve [P@) =2 — 1)V [P dz dt — 0 as e — 0; that
is, [|(IVue P72 = 1) Ve || 1oy gy — 0. From Vue = uweakly in (LP™)(Qr))N,
we have

/ (VP =2 — 1) " V(Vu — V) dedt <0

T
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We take ¢ = u 4+ Aw, where 0 < A < 1 and w € V(Qr), then

/ (IV (u + Mw)[P@ =2 — 1)FV (u + Mw)Vw dz dt < 0.
T

Since |(|V(u 4 Aw)[P®) =2 —1)¥V(u+ Iw)Vw| < C(|Vu|P®) + |Vw|P®) € LY (Qr)
and (|V(u+ Aw)|P@ =2 — )TV (u + Mw)Vw — (|[Vu[P®) =2 — 1)*VuVw as A — 0,
by the Lebesgue Dominated Convergence Theorem and the arbitrariness of w, we
obtain

/ (|Vu|P®=2 — 1)+ |Vu|? dedt = 0
T
Thus, |Vu| <1 ae. (z,t) € Qr.

Taking ¢ = v — u. as a test function in (3.1]), where v € V(Qr), % e V(Qr),
v(z,0) =0 and |Vv| <1 ae. (z,t) € Qr, then

ov (v —ue) + a(t,/ |Vu6|17(90)dx) IV POV V(v — u.)
Q

or Ot
— f(z,t) (v — ue) dz dt
- 8(;: (v—us)+ a(t,/ |VuE|P(r)dx) IV [P 2V V(v — )
Qr Q
— flz,t) (v — u.) de dt + / W(v — ug) dx dt

T

1
_ 7/ (IVoP®=2 — 1)+ Vo — (Va2 — 1)+ Vu,) (Vo — Vu,) dedt

€ T

O(v — ue)
—~ = (y = >
_|_/T n (v uE) dzx dt > 0,

and further

/ a(t,/ |Vu€\p(z)d:c)|VuE|p(z) dx dt
Qr Q
<

/ a(t,/ |Vu5|p(””)dx) V. |P@)=2Vu, Vu dz dt (4.3)
T Q
ov
+ — (v —ue)dedt — flz,t)(v — ue) dx dt.
T ot Qr

For k > 0, we denote

k, u< —k,

u™ = Qu, |ul <k,
k, u>k,
(o)

and u (2,t) = ;Afot ety (K) (2, 5)ds. Tt’s easy to check that aa’; = pu(u® —
u&k)) From that in [6], we obtain u&k) — u®) strongly in L?(Qr) and weakly in

V(Qr) as p — oo. Denote Ay = {(z,t) € Qr : |u| < k}, then u® = u in Ay and
Lk)) = sgn(u — u&k)) in Qr \ Ay (because |ufﬁ)| < k). Thus,

3’“&) k
(P — ) da dt
/T ot "

sgn(u®) —u
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k k k
zu/ (ut® —Uﬁ))(u,ﬁ) —u)dx dt
T

= —u/ (u—uﬂ“))dedt—u/ (u® —uftk))(u—uftk))dxdtgo.
Ay, Qr\Ayg

By a diagonal rule, we obtain a sequence denoted by v such that vy, — u strongly in
L?*(Qr) and weakly in V(Qr) as k — oo, and lim sup;,_, . fQT Bg,’t’“ (vp—u)dx dt <0.
Taking v = v in (4.3)), we obtain

limsup/ a(t,/ \Vu€|p(x)dx)|Vu€\p(x) dx dt
Qr Q

e—0

g/ AVudx dt + %(vk —u)dz dt — f(z,t)(vg — u) dx dt.

Qr ot Qr
Letting £ — oo, we have

limsup/ a(t,/ |Vu5|p(:”)dx)\Vus|p(I) dx dt
Qr Q

e—0
< / AVudz dt = lim a(t, / |Vu€|p(x)dx)|Vu€\p(”)_2Vu5Vudxdt;
T =0JQr Q
that is,

limsup/ a(t,/ \Vus|p("“’)dx)|Vu€|p(7”)*2Vu5V(uE —u)dzdt <O0. (4.4)
T Q

e—0

As the sequence {a(t, fQ |Vu5|p(”)dx)} is uniformly bounded and equi-integrable
€

in L'(Qr), there exist a subsequence of {u.} (for convenience still relabeled by {u.}

) and a* such that a(t, Jo |Vu€|p(””)dx> — a* for almost every ¢ € [0,7T]. Since

(ot [ V) o) [gup@ 29" < C1vap € 2 @n),
by the Lebesgue dominated convergence theorem, we obtain
a(t,/Q |Vu5|p(m)dx) [VulP®) 2y — o |[VuP®)—2Vu  strongly in LP ®)(Qr).
Since
0< /Q at, /Q Ve /) (| Ve P>V, — [Vuf’®)>Vu)(Vu, — V)
T

:/ a(t,/ \Vus|p(x)dz)|Vu€|p(m)72Vu5(VusfVu)
T Q

- a(t,/ |Vu5|p(””)dx) \VulP@=2Vu(Vu, — Vu) de dt,
Q

we have
limi(r)lf/ a(t,/ \Vug|p(m)dx) |V |P@ =2V V(u. — u)dedt > 0. (4.5)
e— - Q

From ([#4)-(@.35) and Vu. — Vu weakly in (LP®)(Q7))N, there holds

lim a(t,/ |Vu5\p(z)dx> (|Vue|P@2Vu, — |VulP D ~2Vu)V (v, — u) dzdt = 0.
Qr Q

e—0
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Similar to Section 3, we have Vu. — Vu strongly in (LP®)(Qr))N as ¢ — 0.
Thus there exists a subsequence of {u.}, still labeled by {u.} such that Vu., —
Vu ae. (z,t) € Qr and [, |Vu:[P@dz — [, |Vu|P@dz ae. t € [0,T]. Thus, we
obtain that

A= a<t7/ |Vu|p(x)dx)|Vu|p(w)*2Vu.
Q

(Sep 3) Existence of weak solutions. By Fatou’s Lemma,

liminf/ a(t,/ |Vu5|p(1)dx)|Vue\p(z) dz dt
T Q

e—0

2/ a(t,/ |Vu|p(x)dm)|Vu\p(") dz dt.
Qr Q

For all v € V(Qr) with % e V'(Qr), v(z,0) =0, |[Vv| <1 ae. (x,t) € Qr, we
take p = v — u. as a test function in (3.1)), then

?(v —us) + a(t,/ |Vu€|p(:r)d;v> |V |P@ =2V V(v — u.)
Qr t Q

— flz,t)(v —ue) de dt

1
= g/ (VP72 = 1) Vo — ([Vue [P0)72 = 1) V) (Vo — V) da dt
O(v — )
(v — >
+/T 5 (v —ue)dxdt >0,

and furthermore,

liminf/ @(v7u5)+a(t,/ \Vu€|p($)d:£>|Vu5\p(z)*2Vu5V”u

e—0

— f(z,t) (v — ue) dx dt

2/ a t,/ |Vu|p(x)da:>|Vu\p(:”) dzx dt.
Qr Q

Since

a(t,/ |Vu5|p(””)dac>|Vug|p(w)_2Vu€ —\a(t,/ |Vu\p(”)dm)|Vu|p(w)_2Vu
Q Q

weakly in (L” @) (Qr))N, and u. — u weakly in V(Q7), there holds

T
/ %(v_u) dxdt+/ a(t,/ IVu\”(“”’”dl‘)/ |VuPO 2TV (v — u) de dt
Qr 0 2 °

> flz,t)(v —u)dzdt.
Qr

Thus we have proved our main theorem. O
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