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EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC
SOLUTIONS FOR NONLINEAR THIRD-ORDER

DIFFERENTIAL INCLUSIONS

TOUMA HADDAD, TAHAR HADDAD

Abstract. In this article, we study the existence of anti-periodic solutions

for the third-order differential inclusion

u′′′(t) ∈ ∂ϕ(u′(t)) + F (t, u(t)) a.e. on [0, T ]

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),

where ϕ is a proper convex, lower semicontinuous and even function, and F is

an upper semicontinuous convex compact set-valued mapping. Also uniqueness
of anti-periodic solution is studied.

1. Introduction

Existence and uniqueness of anti-periodic solutions for differential inclusions gen-
erated by the subdifferential of a convex lower semicontinuous even function appear
in several articles; see [2, 3, 4, 5, 6, 11, 12]. Okochi [13] initiated the study of anti-
periodic solutions of the differential inclusion

f(t) ∈ u′(t) + ∂ϕ(u(t)) a.e. t ∈ [0, T ]

u(0) = −u(T )
(1.1)

in Hilbert spaces, where ∂ϕ is the subdifferential of an even function ϕ on a real
Hilbert space H and f ∈ L2([0, T ], H). It was shown in [14], by applying a fixed
point theorem for nonexpansive mapping, that (1.1) has a unique solution. Later
Aftabizadeh and al [1] studied the anti-periodic solution of third-order differential
inclusion

u′′′(t) ∈ ∂ϕ(u′(t)) + f(t) a.e. t ∈ [0, T ]

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),
(1.2)

by using maximal monotone operator theory.
The aim of this article is to study the existence of anti-periodic solutions for the

third-order differential inclusion
u′′′(t) ∈ ∂ϕ(u′(t)) + F (t, u(t)) a.e. t ∈ [0, T ]

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),
(1.3)
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where ϕ : H →] − ∞,+∞] is a convex lower semicontinuous even function and
F : [0, T ]×H → 2H is an upper semicontinuous convex compact set-valued mapping
bounded above by L2 function. Furthermore, an existence and uniqueness result
when F is single-valued is also studied.

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉. The
open ball centered at x with radius r is defined by Br(x) = {y ∈ H : ‖y − x‖ < r},
where Br(x) denotes its closure. For a proper lower semicontinuous convex function
ϕ : H →]−∞,+∞], the set-valued mapping ∂ϕ : H → 2H defined by

∂ϕ(x) = {ξ ∈ H : ϕ(y)− ϕ(x) ≥ 〈ξ, y − x〉,∀y ∈ H}
which is the subdifferential of ϕ. Let us recall a classical closure type lemma from
[7].

Lemma 2.1. Let H be a separable Hilbert space. Let ϕ be a convex lower semi-
continuous function defined on H with values in ]−∞,+∞]. Let (un)n∈N∪{∞} be
a sequence of measurable mappings from [0, T ] into H such that un → u∞ point-
wise with respect to the norm topology. Assume that (ξn)n∈N is a sequence in
L2([0, T ], H) satisfying

ξn(t) ∈ ∂ϕ(un(t)) a.e. t ∈ [0, T ]

for each n ∈ N and converging weakly to ξ∞ ∈ L2([0, T ], H). Then we have

ξ∞(t) ∈ ∂ϕ(u∞(t)) a.e. t ∈ [0, T ].

Let us recall a useful result.

Lemma 2.2 ([15]). Let H be a real Hilbert space. Let u ∈ W 1,2
loc (R, H) be 2T -

periodic and satisfying
∫ 2T

0
u(t)dt = 0, then

‖u‖L2([0,2T ],H) ≤
T

π
‖u′‖L2([0,2T ],H).

3. Main results

We state and summarize some useful results for anti-periodic mappings that are
crucial for our purpose.

Proposition 3.1. Let H be a real Hilbert space. Let u ∈W 3,2([0, T ], H) satisfying
u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ), then the following inequalities
hold

(A1) ‖u‖C([0,T ],H) ≤
√
T
2 ‖u

′‖L2([0,T ],H);
(A2) ‖u‖L2([0,T ],H) ≤ T

π ‖u
′‖L2([0,T ],H);

(B1) ‖u′‖C([0,T ],H) ≤
√
T
2 ‖u

′′‖L2([0,T ],H);
(B2) ‖u′‖L2([0,T ],H) ≤ T

π ‖u
′′‖L2([0,T ],H);

(C1) ‖u′′‖C([0,T ],H) ≤
√
T
2 ‖u

′′′‖L2([0,T ],H).

Proof. (A1) Since u(t) = u(0) +
∫ t

0
u′(s)ds and u(t) = u(T ) −

∫ T
t
u′(s)ds, for all

t ∈ [0, T ], by adding these equalities, by anti-periodicity, we obtain

2u(t) =
∫ t

0

u′(s)ds−
∫ T

t

u′(s)ds, ∀t ∈ [0, T ].
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Hence we have

2‖u(t)‖ ≤
∫ t

0

‖u′(s)‖ds+
∫ T

t

‖u′(s)‖ds =
∫ T

0

‖u′(s)‖ds, ∀t ∈ [0, T ],

and so, by Holder inequality

‖u‖C([0,T ],H) = sup
t∈[0,T ]

‖u(t)‖ ≤
√
T

2
‖u′‖L2([0,T ],H).

(A2) For the sake of simplicity, we use the same notation u(t), t ∈ R, to denote
the anti-periodic extension of u(t), t ∈ [0, T ], such that

u(t+ T ) = −u(t) and u′(t+ T ) = −u′(t), for t ∈ R.
Then u is 2T -periodic function since

u(t+ 2T ) = u(t+ T + T ) = −u(t+ T ) = u(t).

Also, since∫ 2T

0

u(t)dt =
∫ T

0

u(t)dt+
∫ 2T

T

u(t)dt =
∫ T

0

u(t)dt−
∫ T

0

u(t)dt = 0,

so, by Lemma 2.2, ∫ 2T

0

‖u(t)‖2dt ≤ T 2

π2

∫ 2T

0

‖u′(t)‖2dt.

Let us observe that ‖u(t)‖2 and ‖u′(t)‖2 are T-periodic because ‖u(t + T )‖2 =
‖ − u(t)‖2 = ‖u(t)‖2 and similarly ‖u′(t+ T )‖2 = ‖ − u′(t)‖2 = ‖u′(t)‖2.
Hence we deduce that∫ 2T

0

‖u(t)‖2dt = 2
∫ T

0

‖u(t)‖2dt and
∫ 2T

0

‖u′(t)‖2dt = 2
∫ T

0

‖u′(t)‖2dt.

Finally we get the required inequality∫ T

0

‖u(t)‖2dt ≤ T 2

π2

∫ T

0

‖u′(t)‖2dt.

Similarly, we prove (B1), (B2) and (C1), using u′(0) = −u′(T ), and u′′(0) = −u′′(T )
respectively. �

The following result deal with convex compact valued perturbations of a third-
order differential inclusion governed by subdifferential operators of convex lower
semicontinuous functions with anti-periodic boundary conditions. First, to simplify
we will assume that H = Rd.

Theorem 3.2. Let H = Rd, ϕ : H →] − ∞,+∞] be a proper, convex, lower
semicontinuous and even function. Let F : [0, T ] ×H → 2H be a convex compact
set-valued mapping, measurable on [0, T ] and upper semicontinuous on H satisfying:
there is a function α(·) ∈ L2([0, T ],R+) such that

F (t, x) ⊂ Γ(t) := Bα(t)(0) for all (t, x) ∈ [0, T ]×H.
Then the problem

u′′′(t) ∈ ∂ϕ(u′(t)) + F (t, u(t)) a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),

has at least an anti-periodic W 3,2([0, T ], H) solution.
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Proof. Recall that a W 3,2([0, T ], H) function u : [0, T ] → H is a solution of the
problem under consideration if there exists a function h ∈ L2([0, T ];H) such that

u′′′(t) ∈ ∂ϕ(u′(t)) + h(t) a.e. t ∈ [0, T ],

h(t) ∈ F (t, u(t)) a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ).

Let us denote by S2
Γ the set of all L2([0, T ];H)-selection of Γ

S2
Γ := {f ∈ L2([0, T ], H) : f(t) ∈ Γ(t) a.e. t ∈ [0, T ]}.

By [2, Theorem 2.1], for all f ∈ S2
Γ, there is a unique W 3,2([0, T ], H) solution uf of

u′′′f (t) ∈ ∂ϕ(u′f (t)) + f(t) a.e. t ∈ [0, T ],

uf (0) = −uf (T ), u′f (0) = −u′f (T ), u′′f (0) = −u′′f (T ),

such that
‖u′′′f ‖L2([0,T ],H) ≤ ‖f‖L2([0,T ],H). (3.1)

For each f ∈ S2
Γ, let us define the set-valued mapping

Ψ(f) := {g ∈ L2([0, T ], H); g(t) ∈ F (t, uf (t)) a.e. t ∈ [0, T ]}.
Then it is clear that Ψ(f) is a nonempty convex weakly compact subset of S2

Γ, here
the nonemptiness follows from [10, theorem VI.4]. From the above consideration,
we need to prove that the convex weakly compact set-valued mapping Ψ : S2

Γ → 2S
2
Γ

admits a fixed point. By Kakutani-Ky Fan fixed point theorem, it is sufficient to
prove that Ψ is upper semicontinuous when S2

Γ is endowed with the weak topology of
L2([0, T ], H). As L2([0, T ], H) is separable, S2

Γ is compact metrizable with respect
to the weak topology of L2([0, T ], H). So it turns out to check that the graph
gph(Ψ) is sequentially weakly closed in S2

Γ × S2
Γ. Let (fn, gn)n ∈ gph(Ψ) weakly

converging to (f, g) ∈ S2
Γ × S2

Γ. From the definition of Ψ, that means ufn
is the

unique W 3,2([0, T ], H) solution of

u′′′fn
(t) ∈ ∂ϕ(u′fn

(t)) + fn(t) a.e. t ∈ [0, T ],

ufn
(0) = −ufn

(T ), u′fn
(0) = −u′fn

(T ), u′′fn
(0) = −u′′fn

(T ),

with fn ∈ S2
Γ and gn(t) ∈ F (t, ufn

(t)) a.e. t ∈ [0, T ]. Taking into account the
antiperiodicity of u′′fn

, u′fn
and ufn

, proposition 3.1 gives

‖u′′fn
‖C([0,T ],H) ≤

√
T

2
‖u′′′fn

‖L2([0,T ],H),

‖u′fn
‖C([0,T ],H) ≤

T
√
T

2π
‖u′′′fn

‖L2([0,T ],H),

‖ufn‖C([0,T ],H) ≤
T 2
√
T

2π2
‖u′′′fn

‖L2([0,T ],H).

for all n ≥ 1. Using the estimate (3.1), we have

‖u′′′fn
‖L2([0,T ],H) ≤ ‖fn‖L2([0,T ],H) ≤ ‖α‖L2([0,T ],R) < +∞.

We may conclude that

sup
n≥1
‖u′′fn

‖C([0,T ],H) < +∞,

sup
n≥1
‖u′fn

‖C([0,T ],H) < +∞,
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sup
n≥1
‖ufn

‖C([0,T ],H) < +∞.

By extracting suitable subsequences, we may assume that (u′′′fn
) converges weakly

in L2([0, T ], H) to a function γ ∈ L2([0, T ], H) and (u′′fn
) converges pointwise to a

function w, namely

w(t) := lim
n→+∞

u′′fn
(t) = lim

n→+∞
(u′′fn

(0) +
∫ t

0

u′′′fn
(s)ds)

= lim
n→+∞

u′′fn
(0) +

∫ t

0

γ(s)ds, ∀t ∈ [0, T ].

Then

v(t) := lim
n→+∞

u′fn
(t) = lim

n→+∞
(u′fn

(0) +
∫ t

0

u′′fn
(s)ds)

= lim
n→+∞

u′fn
(0) +

∫ t

0

w(s)ds, ∀t ∈ [0, T ].

So we have

u(t) := lim
n→+∞

ufn
(t) = lim

n→+∞
(ufn

(0) +
∫ t

0

u′fn
(s)ds)

= lim
n→+∞

ufn
(0) +

∫ t

0

v(s)ds, ∀t ∈ [0, T ].

We conclude that u ∈ W 3,2([0, T ], H) with u′ = v, u′′ = w and u′′′ = γ and
satisfying the anti-periodic conditions u(0) = −u(T ), u′(0) = −u′(T ) and u′′(0) =
−u′′(T ). Furthermore, we see that u′fn

converges pointwise to u′ and u′′′fn
converges

to u′′′ with respect to the weak topology of L2([0, T ], H). Combining these facts
and applying Lemma 2.1 to the inclusion

u′′′fn
(t)− fn(t) ∈ ∂ϕ(u′fn

(t)) a.e. t ∈ [0, T ]

it yields
u′′′(t)− f(t) ∈ ∂ϕ(u′(t)) a.e. t ∈ [0, T ].

By uniqueness [1, Theorem 2.1], we have u = uf . Further using the inclusion

gn(t) ∈ F (t, ufn(t)) a.e. t ∈ [0, T ]

and invoking the closure type Lemma in [10, theorem VI.4], we have

g(t) ∈ F (t, uf (t)) a.e. t ∈ [0, T ].

We may then applying the Kakutani-Ky Fan fixed point theorem to the set-valued
mapping Ψ to obtain some f ∈ S2

Γ such that f ∈ Ψ(f) or

f(t) ∈ F (t, u(t)) a.e. t ∈ [0, T ].

This means that

u′′′(t) ∈ ∂ϕ(u′(t)) + f(t) a.e. t ∈ [0, T ],

f(t) ∈ F (t, u(t)) a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ).

The proof is complete. �
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A more general version of the preceding result is available by introducing some
inf-compactness assumption [2] on the function ϕ.

Theorem 3.3. Let H be a separable Hilbert space, ϕ : H → [0,+∞] be a proper,
convex, lower semicontinuous and even function satisfying: ϕ(0) = 0 and for each
β1, β2 > 0, the set {x ∈ D(ϕ) : ‖x‖ ≤ β1, ϕ(x) ≤ β2} is compact. Let F :
[0, T ]×H → 2H be a convex compact set-valued mapping, measurable on [0, T ] and
upper semicontinuous on H satisfying: there is α(·) ∈ L2([0, T ],R+) such that

F (t, x) ⊂ Γ(t) := Bα(t)(0) ∀(t, x) ∈ [0, T ]×H

Then the problem

u′′′(t) ∈ ∂ϕ(u′(t)) + F (t, u(t)) a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),

has at least an anti-periodic W 3,2([0, T ], H) solution.

Proof. Using the notation of the proof of Theorem 3.2, we have

u′′′fn
(t)− fn(t) ∈ ∂ϕ(u′fn

(t)) a.e. t ∈ [0, T ],

for every fn ∈ S2
Γ. The absolute continuity of ϕ(u′fn

(·)) and the chain rule theorem
[9], yield

〈u′′′fn
(t), u′′fn

(t)〉 − 〈fn(t), u′′fn
(t)〉 =

d

dt
ϕ(u′fn

(t)),

for every fn ∈ S2
Γ, so that

+∞ > sup
n≥1

∫ T

0

|〈u′′′fn
(t), u′′fn

(t)〉 − 〈fn(t), u′′n(t)〉|dt = sup
n≥1

∫ T

0

∣∣ d
dt
ϕ(u′fn

(t))
∣∣dt.

Further applying the classical definition of the subdifferential to convex function ϕ
yields

0 = ϕ(0) ≥ ϕ(u′fn
(t)) + 〈0− u′fn

(t), u′′′fn
(t)− fn(t)〉

or
0 ≤ ϕ(u′fn

(t)) ≤ 〈u′fn
(t), u′′′fn

(t)− fn(t)〉.
Hence

sup
n≥1
|ϕ(u′fn

)|L1
R([0,T ]) < +∞.

For all t ∈ [0, T ], we have

ϕ(u′fn
(t)) = ϕ(u′fn

(0)) +
∫ t

0

d

dt
ϕ(u′fn

(s))ds ≤ ϕ(u′fn
(0)) + sup

n≥1
|ϕ(u′fn

)|L1
R([0,T ]).

Now we assert that ϕ(u′fn
(t)) ≤ β2 for every t ∈ [0, T ], here β2 is a positive constant.

Indeed for all t ∈ [0, T ], we have

ϕ(u′fn
(0)) ≤ |ϕ(u′fn

(t))− ϕ(u′fn
(0))|+ ϕ(u′fn

(t))

≤
∫ T

0

| d
dt
ϕ(u′fn

(t))|dt+ ϕ(u′fn
(t)).

Hence

ϕ(u′fn
(0)) ≤ sup

n≥1

∫ T

0

| d
dt
ϕ(u′fn

(t))|dt+
1
T

sup
n≥1

∫ T

0

ϕ(u′fn
(t))dt < +∞.
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Whence we have

β1 := sup
n≥1

sup
t∈[0,T ]

‖u′fn
(t)‖ < +∞, β2 := sup

n≥1
sup
t∈[0,T ]

ϕ(u′fn
(t)) < +∞.

So that (u′fn
(t)) is relatively compact with respect to the norm topology of H

using the inf-compactness assumption on ϕ. The proof can be therefore achieved
as Theorem 3.2 by invoking Lemma2.1 and a closure type lemma in [10, Theorem
VI-4]. �

Here is an existence and uniqueness result related to Theorem 3.3 when the
perturbation is single-valued.

Theorem 3.4. Let H be a separable Hilbert space, ϕ : H → [0,+∞] is a proper,
convex, lower semicontinuous and even function satisfying: ϕ(0) = 0 and for each
α, β > 0, the set {x ∈ D(ϕ) : ‖x‖ ≤ α,ϕ(x) ≤ β} is compact and f : [0, T ]×H → H
is a Carathéodory mapping satisfying :
(H1) ‖f(t, u) − f(t, v)‖ ≤ L‖u − v‖ for all (t, u, v) ∈ [0, T ] × H × H, for some
positive constant L > 0.
(H2) There is a L2([0, T ]; R+) integrable function α : R→ R+ such that ‖f(t, u)‖ ≤
α(t) for all (t, u) ∈ [0, T ]×H. If 0 < T < π

3√
L

, then the inclusion

u′′′(t) ∈ ∂ϕ(u′(t)) + f(t, u(t)) a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),

admits a unique W 3,2([0, T ];H)-anti-periodic solution.

Proof. Existence of at least one W 3,2([0, T ];H)-anti-periodic solution is ensured by
Theorem 3.3. Indeed, we put F (t, u) := {f(t, u)} for all (t, u) ∈ [0, T ]×H, As f is
a Carathéodory function, then: u 7−→ f(t, u) is continuous, for almost all t ∈ [0, T ]
and t 7−→ f(t, u) is Lebesgue measurable, for all u ∈ H. More, by assumption;
there is a L2([0, T ]; R+) integrable function α(·) such that

‖f(t, u)‖ ≤ α(t) for all (t, u) ∈ [0, T ]×H.

Therefore, F satisfies hypotheses of Theorem 3.3.
To prove uniqueness, we assume that (u1) and (u2) are two solutions of the

inclusion under consideration.

u′′′1 (t) ∈ ∂ϕ(u′1(t)) + f(t, u1(t)) a.e. t ∈ [0, T ],

u1(0) = −u1(T ), u′1(0) = −u′1(T ), u′′1(0) = −u′′1(T ),

and

u′′′2 (t) ∈ ∂ϕ(u′2(t)) + f(t, u2(t)) a.e. t ∈ [0, T ],

u2(0) = −u2(T ), u′2(0) = −u′2(T ), u′′2(0) = −u′′2(T ).

For simplicity, let us set

v1(t) = u′′′1 (t)− f(t, u1(t)), ∀t ∈ [0, T ],

v2(t) = u′′′2 (t)− f(t, u2(t)), ∀t ∈ [0, T ].

Then we have

v1(t)− v2(t) = u′′′1 (t)− u′′′2 (t)− f(t, u1(t)) + f(t, u2(t)), a.e. t ∈ [0, T ]. (3.2)
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Multiplying scalarly (3.2) by (u′1 − u′2) and integrating on [0, T ] yields∫ T

0

〈v1(t)− v2(t), u′1(t)− u′2(t)〉dt

=
∫ T

0

〈u′′′1 (t)− u′′′2 (t), u′1(t)− u′2(t)〉dt

−
∫ T

0

〈f(t, u1(t))− f(t, u2(t)), u′1(t)− u′2(t)〉dt

(3.3)

As v1 ∈ ∂ϕ(u′1) and v2 ∈ ∂ϕ(u′2) by monotonicity of (∂ϕ), (3.3) implies∫ T

0

〈u′′′1 (t)− u′′′2 (t), u′1(t)− u′2(t)〉dt

≥
∫ T

0

〈f(t, u1(t))− f(t, u2(t)), u′1(t)− u′2(t)〉dt.
(3.4)

By antiperiodicity, we have∫ T

0

〈u′′′1 (t)− u′′′2 (t), u′1(t)− u′2(t)〉dt

= 〈u′′1(T )− u′′2(T ), u′1(T )− u′2(T )〉 − 〈u′′1(0)− u′′2(0), u′1(0)− u′2(0)〉

−
∫ T

0

〈u′′1(t)− u′′2(t), u′′1(t)− u′′2(t)〉dt

= −
∫ T

0

‖u′′1(t)− u′′2(t)‖2dt.

The inequality (3.4) gives∫ T

0

‖u′′1(t)− u′′2(t)‖2dt ≤
∫ T

0

〈f(t, u2(t))− f(t, u1(t)), u′1(t)− u′2(t)〉dt

≤ L
∫ T

0

‖u1(t)− u2(t)‖ ‖u′1(t)− u′2(t)‖dt.

By Holder’s inequality, we obtain

‖u′′1 − u′′2‖2L2([0,T ],H) ≤ L‖u1 − u2‖L2([0,T ],H)‖u′1 − u′2‖L2([0,T ],H).

Using the estimates (A1) and (A2) in proposition 3.1, we obtain

π2

T 2
‖u′1 − u′2‖2L2([0,T ],H) ≤ L

T

π
‖u′1 − u′2‖2L2([0,T ],H)

or

‖u′1 − u′2‖2L2([0,T ],H) ≤ L
T 3

π3
‖u′1 − u′2‖2L2([0,T ],H).

It follows from the choice of T that ‖u′1 − u′2‖2L2([0,T ],H) = 0. By inequality (A2) in
lemma 2.2, we conclude that u1(t)− u2(t) = 0 for all t ∈ [0, T ]. This completes the
proof. �
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4. Applications

Let Ω be a bounded domain in Rn with a smooth boundary ∂Ω. Let γ be a
maximal monotone operator on R such that γ = ∂j, where j : R → [0,+∞] is
proper, convex, lower semicontinuous and even with j(0) = 0. We are concerned
with the third-order boundary-value problem

−uttt(t, x)−∆xut(t, x) + f(t, u(t, x)) = 0 in [0, T ]× Ω,
∂ut
∂ν

(t, x) ∈ γ(ut(t, x)) on [0, T ]× ∂Ω,

u(0, x) = −u(T, x), ut(0, x) = −ut(T, x) utt(0, x) = −utt(T, x) in Ω,

(4.1)

where ∂
∂ν denotes outward normal derivative, ∆x =

∑n
i=1

∂2

∂x2
i
, and f : [0, T ]×R→

R is a Carathéodory function satisfying:
(i) |f(t, u)− f(t, v)| ≤ L|u− v| for all (t, u, v) ∈ [0, T ]× R2, for some positive

constant L > 0,
(ii) There is an L2([0, T ]; R+) integrable function α : [0, T ] → R+ such that
|f(t, u)| ≤ α(t) for all (t, u) ∈ [0, T ]× R.

Let H = L2(Ω), and define ϕ : H → [0,+∞] by

ϕ(u) =

{
1
2

∫
Ω
| gradu|2dx+

∫
∂Ω
j(u)dσ, if u ∈ H1(Ω) and j(u) ∈ L1(∂Ω),

+∞, otherwise.

According to Brézis [8, Theorem 12], ϕ is proper, convex and lower semicontinuous
on H, with ∂ϕ(u) = −∆xu, and D(ϕ) = {u ∈W 1,2(Ω) : −∂u∂ν ∈ γ(u), a.e. on ∂Ω}.
We consider u = u(t, x) = u(t)(x) and we rewriter the problem (4.1) in the abstract
form

−u′′′(t) + ∂ϕ(u′(t)) + f(t, u(t)) 3 0 a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ),

or

u′′′(t) ∈ ∂ϕ(u′(t)) + f(t, u(t)) a.e. t ∈ [0, T ],

u(0) = −u(T ), u′(0) = −u′(T ), u′′(0) = −u′′(T ).

We remark that ϕ(0) = 0, ϕ is even and that the inf-compactness condition on ϕ
holds because W 1,2(Ω) is compactly imbedded in L2(Ω). Then, we can applying
Theorem 3.4 to derive the existence of a solution to (4.1). If 0 < T < π

3√
L

, then the
solution is unique.
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