Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 08, pp. 1-10.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC
SOLUTIONS FOR NONLINEAR THIRD-ORDER
DIFFERENTIAL INCLUSIONS

TOUMA HADDAD, TAHAR HADDAD

ABSTRACT. In this article, we study the existence of anti-periodic solutions
for the third-order differential inclusion

u’(t) € Op(u’(t)) + F(t,u(t)) a.e. on [0,T]
w(0) = —u(T), '(0)=—u'(T), u"(0)=—u"(T),

where ¢ is a proper convex, lower semicontinuous and even function, and F' is
an upper semicontinuous convex compact set-valued mapping. Also uniqueness
of anti-periodic solution is studied.

1. INTRODUCTION

Existence and uniqueness of anti-periodic solutions for differential inclusions gen-
erated by the subdifferential of a convex lower semicontinuous even function appear
in several articles; see [2, Bl [, Bl 6 11} 12]. Okochi [13] initiated the study of anti-
periodic solutions of the differential inclusion

ft) e (t) + dp(u(t)) ae. tel0,T]

u(0) = —u(T)
in Hilbert spaces, where dy is the subdifferential of an even function ¢ on a real
Hilbert space H and f € L?([0,T], H). It was shown in [I4], by applying a fixed
point theorem for nonexpansive mapping, that ([L.1) has a unique solution. Later

Aftabizadeh and al [I] studied the anti-periodic solution of third-order differential
inclusion

(1.1)

u"'(t) € do(u'(t)) + f(t) a.e. t €[0,T)
w(0) = —u(T), u'(0) =—-u'(T), u"(0)=—u"(T),
by using maximal monotone operator theory.
The aim of this article is to study the existence of anti-periodic solutions for the
third-order differential inclusion
W (t) € Op(u'(t)) + F(t,u(t)) ae. te€l0,T)]
u(0) = —u(T), '(0)=—u(T), u"(0)=—u"(T),

(1.2)

(1.3)
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where ¢ : H —] — 00, +00] is a convex lower semicontinuous even function and
F :[0,T)x H — 2 is an upper semicontinuous convex compact set-valued mapping
bounded above by L? function. Furthermore, an existence and uniqueness result
when F' is single-valued is also studied.

2. PRELIMINARIES

Let H be a real Hilbert space with norm | - || and inner product (-,-). The
open ball centered at x with radius r is defined by B, () = {y € H : ||y — z|| < r},
where B, (x) denotes its closure. For a proper lower semicontinuous convex function
¢ : H —] — 00, +00], the set-valued mapping d¢ : H — 2 defined by

p(x) ={§ € H:p(y) —p(z) 2 (§,y —z),Vy € H}
which is the subdifferential of . Let us recall a classical closure type lemma from

i}

Lemma 2.1. Let H be a separable Hilbert space. Let ¢ be a convex lower semi-
continuous function defined on H with values in | — 00, 400]. Let (un)nenufoo} be
a sequence of measurable mappings from [0, T] into H such that u, — us point-
wise with respect to the norm topology. Assume that (£,)nen S a sequence in

L2([0,T], H) satisfying
En(t) € Op(un(t)) a.e. t€0,T]
for each n € N and converging weakly to o € L*([0,T], H). Then we have
€o(t) € Op(uno(t)) a.e. t €10,T].
Let us recall a useful result.

Lemma 2.2 ([15]). Let H be a real Hilbert space. Let u € WI})’CQ(R, H) be 2T-
periodic and satisfying fo t)dt =0, then

T
”“HLZ([O-,?T],H) < ;HUIHH([OQT],H)-

3. MAIN RESULTS

We state and summarize some useful results for anti-periodic mappings that are
crucial for our purpose.

Proposition 3.1. Let H be a real Hilbert space. Let u € W>2([0,T], H) satisfying

u(0) = —u(T), v (0) = =u/(T), u"(0) = —u"'(T), then the following inequalities

hold
(A1

A2) Jlullz2o,m,m) < E1W 220,11, 1)5

lulleqo.rymy < Y || 2 jo,r),00)7

)
(A2)
(BY) [ lleqory,z) < Y u” || L2 (o, 1,80)5
(B2) W r2qo, 11,0 < Zllu || 220,77, 105
(C1)

<*/j||u

C1 HUNHC([O,T],H = WHL2 ([0,T),H)-

Pro f. (A1) Since u(t) = u(0) + fo s)ds and u(t) = u(T ft s)ds, for all
e ,T] by adding these equalities, by antl perlodlclty7 we obtaln

2u(t):/0 u’(s)ds—/t u'(s)ds, Vte€0,T).
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Hence we have

t T T
mwmzlnwmm+[nwwmzﬁnwwm,Wemm

and so, by Holder inequality

T A
lulleqo,ry,my = sup [lu(t)]| < 7”“ 22 (0,77, 1)
te[0,T]

)

(A2) For the sake of simplicity, we use the same notation u(t),t € R, to denote
the anti-periodic extension of u(t), t € [0, 7], such that

wlt+T)=—u(t) and u'(t+7T)=—u'(t), forteR.
Then wu is 27T-periodic function since
wt+2T) =u(t+T+T)=—u(t+T)=u(t).

Also, since

/OQTu(t)dtz/(JTu(t)dt+/T2Tu(t)dt:/OTu(t)dt_/OTu(t)dt:Q

so, by Lemma [2.2]
2T T2 2T
/ lu)2de < = [ ).
0 7™ Jo

Let us observe that ||u(t)||? and ||u'(t)||> are T-periodic because |lu(t + T)||*> =
| = u(®)]* = [u(®)|]* and similarly [[o(t+ T)[* = || — o' @) = [lu'(£)]*.
Hence we deduce that

2T T 2T T
[ luide=2 [ ju@ie ad [ wePa=2 [ o]
0 0 0 0

Finally we get the required inequality

T T2 T
/mw%sﬁ/met
0 ™ Jo

Similarly, we prove (B1), (B2) and (C1), using «'(0) = —u/(T'), and v”(0) = —u" (T
respectively. (Il

The following result deal with convex compact valued perturbations of a third-
order differential inclusion governed by subdifferential operators of convex lower
semicontinuous functions with anti-periodic boundary conditions. First, to simplify
we will assume that H = R9.

Theorem 3.2. Let H = R, ¢ : H —] — 0o, +0c0] be a proper, convex, lower
semicontinuous and even function. Let F : [0,T] x H — 2H be a convexr compact
set-valued mapping, measurable on [0,T] and upper semicontinuous on H satisfying:
there is a function a(-) € L*([0,T),Ry) such that

F(t,x) CT(t) :==Bu)(0) for all (t,x) € [0,T] x H.
Then the problem
u"'(t) € Op(u' (t)) + F(t,u(t)) a.e te]0,T],
u(0) = —u(T), '(0)=—u'(T), u"(0)=—u"(T),
has at least an anti-periodic W32([0,T], H) solution.
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Proof. Recall that a W32([0,T], H) function u : [0,T] — H is a solution of the
problem under consideration if there exists a function h € L2([0,7T]; H) such that
u"'(t) € Op(u'(t)) + h(t) ae. te[0,T],

h(t) € F(t,u(t)) a.e. tel0,T],
uw(0) = —u(T), «'(0)=—u(T), u"(0)=—u"(T).

Let us denote by S2 the set of all L?([0,T]; H)-selection of I’
SZ.={fe L*[0,T],H): f(t) € T(t) ae. t €[0,T]}.

By [2, Theorem 2.1], for all f € S3, there is a unique W32([0, T, H) solution uy of

uf' (t) € dp(uy(t)) + f(t) a.e. te[0,T],

wp(0) = —ug(T), wj(0) = —uj(T), w}(0) = —}(T),
such that
W7 | 2o,m0,8) < W fllL2qo,my,m)- (3.1)
For each f € SZ, let us define the set-valued mapping
U(f):={ge L*[0,T),H);g(t) € F(t,us(t)) ae.tel0,T]}

Then it is clear that W(f) is a nonempty convex weakly compact subset of S3, here
the nonemptiness follows from [10, theorem VI.4]. From the above consideration,
we need to prove that the convex weakly compact set-valued mapping ¥ : S2 — 25¢
admits a fixed point. By Kakutani-Ky Fan fixed point theorem, it is sufficient to
prove that ¥ is upper semicontinuous when S2 is endowed with the weak topology of
L3([0,T],H). As L*([0,T], H) is separable, S3 is compact metrizable with respect
to the weak topology of L%([0,T], H). So it turns out to check that the graph
gph(¥) is sequentially weakly closed in S& x S&. Let (fn,gn)n € gph(¥) weakly
converging to (f,g) € SE x SZ. From the definition of ¥, that means uy, is the
unique W32([0,T], H) solution of

u (t) € dp(uly, (1)) + fult) a.e. t €[0T,
uf, (0) = —uy, (1), u}, (0) = —uf (T), uf (0)=—uf (T),

with f, € S and g, (t) € F(t,uy, (t)) a.e. t € [0,T]. Taking into account the
antiperiodicity of v} , u’ and uy, , proposition ﬂ gives

VT

1w, lleqo,r),m) < THU/f/;”LQ([O,T],H)a
VT

I, Nleqo.r e < —5 =Ml llezqo.ry. s
VT ,,

lur,
for all n > 1. Using the estimate (3.1)), we have

c([o,1],H) < TonZ ([ L2([0,T],H) -

n

w22 o,m,8) < I fullz2qo,r),m) < llellz2o,r),r) < +00.

We may conclude that

sup [|[uf, lleqo,1),m) < +00,
n>1

sup [|uf, lleqo,m1,m) < +oo,
n>1
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sup [uy, le(o,1], 1) < +o0.
n>1

By extracting suitable subsequences, we may assume that (u’]{; ) converges weakly

in L*([0, 7], H) to a function v € L*([0,T], H) and (u} ) converges pointwise to a
function w, namely

w(t):= lim uf (t)= lim (u;ﬁn(O)—i—/O u! (s)ds)

n—-+4oo n—-+oo

t
= lim ol (0)+ /0 Y(s)ds, Vit e [0,T].

n—-—+o0o
Then
t
v(t) := nEIJIrloo u’y, (t) = nErJIrloo(u'fn (0) + /0 u’y (s)ds)
t
=l (0)+ /0 w(s)ds, Vi e [0,T].
So we have

n—-+00 n—-+00

u(t) = lim uy ()= lim (uy (0)+ /0 oy ()ds)

t
= lim ufn(O)Jr/O v(s)ds, Vte[0,T].

n—-+4oo

We conclude that v € W2([0,7], H) with v/ = v, v = w and " = v and
satisfying the anti-periodic conditions u(0) = —u(7T), v/(0) = —u/(T") and u”(0) =

—u”(T). Furthermore, we see that u’, converges pointwise to v’ and u/{/ converges

to u”’ with respect to the weak topology of L?([0,T], H). Combining these facts
and applying Lemma [2.1] to the inclusion

uf (t) = fu(t) € Dp(ufy (1)) a.e. te[0,T]
it yields
u"'(t) — f(t) € 0p(u/(t)) a.e. te0,T].
By uniqueness [I, Theorem 2.1], we have u = uy. Further using the inclusion
gn(t) € F(t,ug,(t)) ae. tel0,T]
and invoking the closure type Lemma in [I0, theorem VI.4], we have
g(t) € F(t,us(t)) a.e. te][0,T].

We may then applying the Kakutani-Ky Fan fixed point theorem to the set-valued
mapping ¥ to obtain some f € S2 such that f € ¥(f) or

f@) € F(t,u(t)) ae. tel0,7T].
This means that
+ f(t) ae tel0,T],
t)) ae. tel0,T],
uw(0) = —u(T), ' (0)=—u'(T), u"(0)=—u"(T).
The proof is complete. O



6 T. HADDAD, T. HADDAD EJDE-2013/08

A more general version of the preceding result is available by introducing some
inf-compactness assumption [2] on the function ¢.

Theorem 3.3. Let H be a separable Hilbert space, ¢ : H — [0,400] be a proper,
convez, lower semicontinuous and even function satisfying: ¢©(0) = 0 and for each
B1,02 > 0, the set {x € D(p) : |lz|| < Br,eo(x) < B2} is compact. Let F :
[0,T) x H — 2H be a convex compact set-valued mapping, measurable on [0, T] and
upper semicontinuous on H satisfying: there is a(-) € L*([0,T],Ry) such that

F(t,z) CT(t) :=Ba)(0) VY(t,z)€[0,T] x H
Then the problem
u"'(t) € Op(u (t)) + F(t,u(t)) a.e. t€][0,T],
u(0) = —u(T), w'(0) =—u(T), «"(0)=—u"(T),
has at least an anti-periodic W32([0,T), H) solution.
Proof. Using the notation of the proof of Theorem we have

ulf) (1) = fult) € Op(uf, () ae. t€0,T],
for every f, € SE. The absolute continuity of ¢(u/, (-)) and the chain rule theorem
[9], yield

d
(uf, (@) uf, () = (falt), uf, (8) = Zeluf, (1)),
for every f, € SZ, so that
T T
" 1 12 d
oo > sup [ (. () uf, () = (a0 (D]t =sup [ | ot ()]
n>1Jo " " w>1Jo 'dt "

Further applying the classical definition of the subdifferential to convex function ¢
yields
0= (0) = p(uf, (t) + (0 — uf (t),uf (t) — ful(t))
or
0 < @(u}, (8) < (u}, (8),uf, (t) = fult).
Hence
sup e, )L (jo,17) < +00.

For all ¢ € [0,T], we have
0 ) = (0, 0+ [ ot () < ol 00+ sup ol g oy

Now we assert that ¢ (u’, (t)) < B2 for every t € [0, T], here 3 is a positive constant.
Indeed for all ¢ € [0, T] ‘we have

oluy, (0)) < lp(uy, (1)) — sy, (0))] + ity (1)
T 4 )
< [ gyt 0l + ol ).

T T
d 1
us (0 <su/ u dt+—su/ ue (t))dt < 4o00.
p(uf, ( ))_n;l’ ; b b, ()] 750 ), p(uf, (1)
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‘Whence we have

By :=sup sup ||u’fn )] < 400, [2:=sup sup go(u’fn (1)) < +o0.
n>1t€[0,T) n>1te[0,T]

So that (u’fn (t)) is relatively compact with respect to the norm topology of H
using the inf-compactness assumption on ¢. The proof can be therefore achieved
as Theorem by invoking Lemm and a closure type lemma in [I0, Theorem
VI-4]. O

Here is an existence and uniqueness result related to Theorem when the
perturbation is single-valued.

Theorem 3.4. Let H be a separable Hilbert space, ¢ : H — [0,+00] is a proper,
convez, lower semicontinuous and even function satisfying: ©(0) = 0 and for each
a, >0, the set {x € D(p) : ||z|]| < a,p(x) < B} is compact and f : [0, T)xH — H
is a Carathéodory mapping satisfying :
(H1) If(t,uw) — f(t,0)|] < Liju — v for all (t,u,v) € [0,T] x H x H, for some
positive constant L > 0.
(H2) There is a L([0, T); R™) integrable function o : R — RY such that || f(t,u)|| <
a(t) for all (t,u) € [0,T] x H. If 0 <T < 5=, then the inclusion
u"'(t) € Op(u' (1)) + f(t,u(t)) a.e. te]0,T],
u(0) = —u(T), w'(0)=—u'(T), u"(0)=—u"(T),

admits a unique W32([0,T); H)-anti-periodic solution.

Proof. Existence of at least one W32([0, T; H)-anti-periodic solution is ensured by
Theorem [3.3] Indeed, we put F(t,u) := {f(t,u)} for all (t,u) € [0,T] x H, As f is
a Carathéodory function, then: u —— f(t,u) is continuous, for almost all ¢ € [0, T]
and t — f(t,u) is Lebesgue measurable, for all w € H. More, by assumption;
there is a L%([0,T]); R*) integrable function a(-) such that

I/, uw)|| < at) forall (t,u) €[0,T] x H.

Therefore, F' satisfies hypotheses of Theorem [3.3
To prove uniqueness, we assume that (u1) and (ug) are two solutions of the
inclusion under consideration.

uy'(t) € Op(uy(t)) + f(t,ui(t)) a.e. t€[0,T],
u1(0) = —ur(7), wi(0) = —ui(T), uy(0)=—ui(D),
and
uy' () € dp(us(t)) + f(t,ua(t)) ae. t€[0,T],
u(0) = —ua(T), up(0) = —up(T), u5(0) = —uy(T).
For simplicity, let us set
vi(t) = uy’(t) — f(t,ui(t), Vte[0,T],
va(t) = uy'(t) — f(t,uz(t), Vte[0,T].
Then we have

vi(t) = va(t) = ui"(t) = up'(t) — f(t,ur(t)) + f(t,ua(t), ae t€[0,T]. (3.2)
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Multiplying scalarly by () — ub) and integrating on [0, 7] yields
/ oa(6) — a(0) 4 6) — ()
-/ () — a0, (0) — w0t (33)
-/ Ut (8) — £t un ) (6) — (0t

As vy € 9p(u}) and vy € dp(uh) by monotonicity of (J¢), (3.3) implies

T
/ (! () — (1), () — i (£))t
0 (3.4)

> [ n®) = Fltus(t). i (0) - a0
0
By antiperiodicity, we have
T
| o =g .00 = i)
= (T — Wl(T), W (T) — uy(T)) — (! (0) — u(0),u (0) — wy(0))
T
- / (Wl (8) = (8), Wl (8) — ()t
T
== [ o) = o) e
0
The inequality gives
T T
| ) = ol < [ wa®) - ftun(0).010) - (o)
0 0
T
<L [ ) - wa@)] 440) - (o)t
0

By Holder’s inequality, we obtain
Il = usl|Z2 0,710y < Lllun = wall L2 qo,ry,m 1wy — |l L2 0,17, 1) -

Using the estimates (A1) and (A2) in proposition we obtain

T T
ﬁ”uﬁ — uh 1320 17,5y < L;H“ﬁ — w1220 17, 1)
or

3
luy = ubl|Z2 0,77, 81y < Lﬁ”“ﬁ — w1720, 77, 11)-

It follows from the choice of T that ||u} — u’2||2L2([0 71,1 = 0- By inequality (A2) in
lemma[2.2] we conclude that uj (t) —us(t) = 0 for all t € [0, T]. This completes the
proof. O
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4. APPLICATIONS

Let Q be a bounded domain in R™ with a smooth boundary 0€2. Let v be a
maximal monotone operator on R such that v = 95, where j : R — [0,400] is
proper, convex, lower semicontinuous and even with j(0) = 0. We are concerned
with the third-order boundary-value problem

*uttt(tvx) - Amut(tvm) =+ f(tvu(ta SU)) =0 in [OaT] X Qv
0
%(t,x) € y(ue(t,z)) on [0,T] x AL, (4.1)
w(0,2) = —u(T,x), u(0,2) = —us(T,z) up(0,2) = —up(T,z) in Q,

where 2 denotes outward normal derivative, A, = 37, 88—;, and f:[0,T] xR —
R is a Carathéodory function satisfying:
(i) |f(t,u) — f(t,v)] < Llu—o| for all (t,u,v) € [0,T] x R?, for some positive
constant L > 0,
(i) There is an L2([0,T];RT) integrable function « : [0,7] — R such that
|f(t,u)| < a(t) for all (t,u) € [0,T] x R.
Let H = L?(Q2), and define ¢ : H — [0, +00] by

o) — 3 Jolgraduldr + fog judo, ifwe H'(@) and j(u) € L1 (29),
400, otherwise.

According to Brézis [8, Theorem 12], ¢ is proper, convex and lower semicontinuous
on H, with dp(u) = —Au, and D(p) = {u € WH2(Q) : —g—g € v(u), a.e. on 00}.
We consider u = u(t, z) = u(t)(x) and we rewriter the problem (4.1)) in the abstract
form

—u"(t) + 9p(u' (1))

u(t)) 20 ae. t€][0,T],
uw(0) = —u(T), /(0 !

+ /@,
) =—u'(T), " (0) =—u"(T),

or

W (1) € dp(ul (1) + Ft,ult) ae. te [0,T],
w(0) = —u(T), w(0) = —u/(T), u"(0) = —u(T).
(

We remark that ¢(0) = 0, ¢ is even and that the inf-compactness condition on ¢
holds because W12(Q) is compactly imbedded in L?(2). Then, we can applying
Theoremw to derive the existence of a solution to (4.1f). If 0 < T' < 3 , then the

solution is unique.
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