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NONLOCAL FRACTIONAL SEMILINEAR DIFFERENTIAL
EQUATIONS IN SEPARABLE BANACH SPACES

KEXUE LI, JIGEN PENG, JINGHUAI GAO

Abstract. In this article, we study the existence of mild solutions for frac-
tional semilinear differential equations with nonlocal conditions in separable

Banach spaces. The result is obtained by using the Hausdorff measure of

noncompactness and the Schauder fixed point theorem.

1. Introduction

Let X be a separable Banach space endowed with the norm ‖·‖, A : D(A) ⊂ X →
X the infinitesimal generator of a strongly continuous semigroup of bounded linear
operators {T (t)}t≥0, D(A) the domain of A. We consider the nonlocal fractional
semilinear differential equation

CDα
t u(t) = Au(t) + f(t, u(t)), t ∈ [0, b],

u(0) = g(u),
(1.1)

where 0 < α < 1, CDα
t is the α-order Caputo fractional derivative operator, f, g

are functions to be specified later.
Recently, the theory of fractional differential equations has attracted much in-

terest due to their many applications in physics, chemistry, biology, finance and so
on. We refer to the books of Podlubny [16], Samko et al [17], Kilbas et al [9] and
the papers of Nigmatullin [13], Orsingher and Beghin [15], Meerschaert et al [12],
Hahn et al [7].

The semilinear evolution nonlocal Cauchy problem was initiated by Byszewski
[4]. The nonlocal condition can be applied in physics with better effect in applica-
tions than the classical initial condition since nonlocal conditions are usually more
precise for physical measurements than the classical initial condition. Lin and Liu
[10] studied semilinear integrodifferential equations with nonlocal Cauchy problems
under Lipschitz-type conditions. Ntouyas and Tsamatos [14] studied the global ex-
istence of solutions for semilinear evolution equations with nonlocal conditions via
a fixed point analysis approach. Fu and Ezzinbi [6] studied the existence of mild
and strong solutions of semilinear neutral functional differential evolution equations
with nonlocal conditions by using fractional power of operators and Sadovskii’s fixed
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point theorem. Xue [18] studied the existence of mild solutions for semilinear differ-
ential equations with nonlocal initial conditions in separable Banach spaces. Xue
[19] discussed the semilinear nonlocal differential equations when the semigroup
T (t) generated by the coefficient operator is compact and the nonlocal term g is
not compact. Fan and Li [5] discussed the existence for impulsive semilinear differ-
ential equations with nonlocal conditions by using Sadovskii’s fixed point theorem
and Schauder’s fixed point theorem.

In this article, we shall study the existence of mild solutions of (1.1) by using
the Hausdorff measure of noncompactness and fixed point theorems. We assume
that the the semigroup T (t) generated by the coefficient operator is equicontinuous.
The compactness of T (t) or f and the Lipschitz condition of f are the special cases
of our conditions. Therefore, the result in this paper generalize and improve some
of previous ones in this field.

The article is organized as follows. Section 2 contains some preliminaries about
fractional calculus and the Hausdorff’s measure of noncompactness. In Section 3
the existence result is given.

2. Preliminaries

Let (X, ‖ · ‖) be a separable Banach space and let R+ = [0,∞). We de-
note by C([0, b];X) the space of X-valued continuous functions on [0, b] with the
norm ‖u‖C := supt∈[0,b] ‖u(t)‖ and by L1([0, b];X), we denote the space of X-
valued Bochner integrable functions u : [0, b] → X with the norm ‖u‖L1([0,b];X) =∫ b

0
‖u(t)‖dt.

Definition 2.1. The Riemann-Liouville fractional integral of u : [0, b] → X of
order α ∈ (0,∞) is defined by

Jαt u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds.

The Riemann-Liouville fractional derivative of u : [0, b] → X of order α ∈ (0, 1) is
defined by

Dα
t u(t) =

1
Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s)ds.

The Caputo fractional derivative of u : [0, b]→ X of order α ∈ (0, 1) is defined by
CDα

t u(t) = Dα
t (u(t)− u(0)).

We recall the Hausdorff measure of noncompactness βY (·) defined on a bounded
subset B of Banach space Y by

βY (B) = inf{ε > 0;B has a finite ε-net in Y }
Some basic properties of βY (·) are presented in the following lemma.

Lemma 2.2 ([1]). Let Y be a real Banach space and B,C ⊆ Y be bounded, the
following properties are satisfied:

(1) B is precompact if and only if βY (B) = 0;
(2) βY (B) = βY (B) = βY (convB), where B and convB mean the closure and

convex hull of B respectively;
(3) βY (B) ≤ βY (C) when B ⊆ C;
(4) βY (B + C) ≤ βY (B) + βY (C) where B + C = {x+ y;x ∈ B, y ∈ C};
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(5) βY (B ∪ C) ≤ max{βY (B), βY (C)};
(6) βY (λB) = |λ|βY (B) for any λ ∈ R;
(7) if the mapping Q : D(Q) ⊆ Y → Z is Lipschitz continuous with constant

k, then βZ(QB) ≤ kβY (B) for any bounded subset B ⊆ D(Q), where Z is
a Banach space;

(8) If {Wn}∞n=1 is a decreasing sequence of bounded closed nonempty subsets of
Y and limn→∞ βY (Wn) = 0, then ∩∞n=1Wn is nonempty and compact in Y .

The map Q : W ⊆ Y → Y is said to be a βY -contraction if there exists
a positive constant k < 1 such that βY (Q(C)) ≤ kβY (C) for any bounded
closed subset C ⊆W where Y is a Banach space.

Lemma 2.3 (Darbo-Sadovskii). If W ⊆ Y is bounded closed and convex, the
continuous map Q : W →W is a βY -contraction, then the map Q has at least one
fixed point in W .

In this article, without loss of generality, we denote β the Hausdorff measure of
noncompactness of X and C([0, b];X).

Lemma 2.4 ([1]). If W ⊂ C([0, b];X) is bounded and equicontinuous, then the set
β(W (t)) is continuous on [0, b] and

β(W ) = sup
t∈[0,b]

β(W (t)).

Lemma 2.5 ([3]). If {un}∞n=1 ⊂ L1([0, b];X) satisfies |un(t)| ≤ ϕ(t) a.e. on [0, b]
for all n ≥ 1 with some ϕ ∈ L1([0, b]; R+), then

β({∪∞n=1

∫ t

0

un(s)ds}) ≤
∫ t

0

β({∪∞n=1un(s)})ds.

Definition 2.6. A C0 semigroup T (t) is said to be equicontinuous if the mapping
t 7→ {T (t)x : x ∈ B} is equicontinuous at t > 0 for all bounded set B in Banach
space X.

Definition 2.7 ([16]). The Mainardi’s function is defined by

Mα(z) =
∞∑
n=0

(−z)n

n! Γ(−αn+ 1− α)
, 0 < α < 1, z ∈ C, (2.1)

where Γ is the Gamma function.

It is known that Mα(z) satisfies the following equality (see [11, (F.33)])∫ ∞
0

rδMα(r)dr =
Γ(δ + 1)

Γ(αδ + 1)
, δ > −1, 0 < α < 1. (2.2)

3. Main results

In this section we prove the existence of a mild solution of (1.1) by using the
Hausdorff measure of noncompactness. The function g is assumed to be compact.

A function u ∈ C([0, b];X) is called a mild solution of the equation (1.1) if

u(t) = Tα(t)g(u) +
∫ t

0

(t− s)α−1Sα(t− s)f(s, u(s))ds, (3.1)

where

Tα(t) =
∫ ∞

0

Mα(r)T (tαr)dr, t ≥ 0, (3.2)
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Sα(t) =
∫ ∞

0

αrMα(r)T (tαr)dr, t ≥ 0, (3.3)

where Mα(r) is the Mainardi’s function.

Remark 3.1. If T (t) is equicontinuous, by (2.2), it is easy to show that Tα(t),
Sα(t) are equicontinuous.

Lemma 3.2. Let 0 < α < 1. Let the semigroup T (t) be equicontinuous and ϕ ∈
L1([0, b]; R+). Then the set

{ ∫ t
0
(t − s)α−1Sα(t − s)u(s)ds, ‖u(s)‖ ≤ ϕ(s) a.e. s ∈

[0, b]
}

is equicontinuous for t ∈ [0, b].

Proof. For 0 ≤ t1 < t2 ≤ b, we have

‖
∫ t2

0

(t2 − s)α−1Sα(t2 − s)u(s)ds−
∫ t1

0

(t1 − s)α−1Sα(t1 − s)u(s)ds‖

= ‖
∫ t1

0

(t2 − s)α−1Sα(t2 − s)u(s)ds−
∫ t1

0

(t1 − s)α−1Sα(t2 − s)u(s)

+
∫ t2

t1

(t2 − s)α−1Sα(t2 − s)u(s)ds+
∫ t1

0

(t1 − s)α−1Sα(t2 − s)u(s)ds

−
∫ t1

0

(t1 − s)α−1Sα(t1 − s)u(s)ds‖

≤ ‖
∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1)Sα(t2 − s)u(s)ds‖

+ ‖
∫ t1

0

(t1 − s)α−1(Sα(t2 − s)− Sα(t1 − s))u(s)ds‖

+ ‖
∫ t2

t1

(t2 − s)α−1Sα(t2 − s)u(s)ds‖

≤
∫ t1

0

‖(t2 − s)α−1 − (t1 − s)α−1‖‖Sα(t2 − s)u(s)‖ds

+ ‖
∫ t1

0

(t1 − s)α−1‖Sα(t2 − s)− Sα(t1 − s)‖‖u(s)‖ds‖

+
∫ t2

t1

(t2 − s)α−1‖Sα(t2 − s)u(s)‖ds.

From this inequality it follows that

‖
∫ t2

0

(t2 − s)α−1Sα(t2 − s)u(s)ds−
∫ t1

0

(t1 − s)α−1Sα(t1 − s)u(s)ds‖ → 0

as t1 → t2. The proof is complete. �

Lemma 3.3 ([8]). Suppose b ≥ 0, σ > 0 and a(t) is a nonnegative function locally
integrable on 0 ≤ t < T (some T ≤ +∞), and suppose c(t) is nonnegative and
locally integrable on 0 ≤ t < T with

c(t) ≤ a(t) + b

∫ t

0

(t− s)σ−1c(s)ds

on this interval. Then

c(t) ≤ a(t) + µ

∫ t

0

E′σ(µ(t− s))a(s)ds, 0 ≤ t < T,
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where µ = (bΓ(σ))1/σ,

Eσ(z) =
∞∑
n=0

znσ/Γ(nσ + 1),

E′σ(z) = d
dzEσ(z).

If a(t) ≡ a, constant, then c(t) ≤ aEσ(µt).

To prove the main results, we use the following assumptions:
(A1) The C0 semigroup T (t) is equicontinuous, and there exists a constantM ≥ 1

such that
sup
t≥0
‖T (t)‖ ≤M. (3.4)

(A2) g : C([0, b];X)→ X is continuous and compact, and there exists a constant
N > 0 such that ‖g(u)‖ ≤ N , u ∈ C([0, b];X).

(A3) f : [0, b] × X → X satisfied the Carathéodory condition; i.e. f(·, x) is
measurable for all x ∈ X, and f(t, ·) is continuous for a.e. t ∈ [0, b].

(A4) There exists a function h : [0, b]×R+ → R+ such that h(·, s) ∈ L1([0, b]; R+)
for all s ≥ 0, h(t, ·) is continuous and increasing for a.e. t ∈ [0, b], and
‖f(t, x)‖ ≤ h(t, ‖x‖) for a.e. t ∈ [0, b] and all x ∈ X. Moreover, there exists
at least one solution to the following scalar equation:

q(t) = MN +
αM

Γ(1 + α)

∫ t

0

(t− s)α−1h(s, q(s))ds, t ∈ [0, b]. (3.5)

(A5) There exists a constant γ > 0 such that

β(f(t, B(t)) ≤ γβ(B(t)) (3.6)

for a.e. t, s ∈ [0, b] and every bounded B ⊂ C([0, b];X).

Theorem 3.4. Assume that conditions (A1), (A2), (A3), (A4), (A5) are satisfied.
Then the nonlocal problem (1.1) has at least one mild solution on [0, b].

Proof. Define the mapping F : C([0, b];X)→ C([0, b];X) by

(Fu)(t) = Tα(t)g(u) +
∫ t

0

(t− s)α−1Sα(t− s)f(s, u(s))ds, t ∈ [0, b]. (3.7)

It is obvious that the fixed point of F is the mild solution of (1.1) and it is easy
to show that F is continuous on C([0, b];X). From (3.2), (2.2) and (3.4), it follows
that

‖Tα(t)‖ ≤M, t ≥ 0. (3.8)
From (3.3) and (2.2), it follows that

‖Sα(t)‖ ≤ αM
∫ ∞

0

rMα(r)dr ≤ αM

Γ(1 + α)
, t ≥ 0. (3.9)

Set Q0 = {u ∈ C([0, b];X), ‖u(t)‖ ≤ q(t), t ∈ [0, b]}. Then Q0 ⊂ C([0, b];X) is
bounded and convex. Define Q1 = convF (Q0), where conv means the closure of the
convex hull in C([0, b];X). From Remark 3.1, Lemma 3.2, (A4), the equicontinuity
of T (t), compactness of g and Q0 ⊂ C([0, b];X), it follows that Q1 ⊂ C([0, b];X)
is bounded closed convex and equicontinuous on [0, b]. For every u ∈ F (Q0),
‖u(t)‖ ≤ MN + αM

Γ(1+α)

∫ t
0
(t − s)α−1h(s, q(s))ds = q(t). This implies Q1 ⊂ Q0.

We define Qn+1 = convF (Qn), n = 1, 2, . . .. It is easy to show that {Qn}∞n=1 is
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a decreasing sequence of equicontinuous on [0, b], and is bounded closed convex
subsets of C([0, b];X).

Since X is separable, then C([0, b];X) is separable, hence there exists a dense
subset {uk}∞k=1 of Qn. From Lemma 2.2, it follows that

β(Qn+1(t)) = β({∪∞n=1(Fuk)(t)})

≤ β({Tα(t)g(∪∞k=1uk) + ∪∞k=1

∫ t

0

(t− s)α−1Sα(t− s)f(s, uk(s))ds}).

Since g is compact, by Lemma 2.5, we have

β(Qn+1(t)) ≤ β(∪∞k=1

∫ t

0

(t− s)α−1Sα(t− s)f(s, uk(s))ds})

≤
∫ t

0

(t− s)α−1β({Sα(t− s)f(s,∪∞k=1uk(s))ds})

≤
∫ t

0

(t− s)α−1β(Sα(t− s)f(s,Qn(s))ds

≤ αM

Γ(1 + α)

∫ t

0

(t− s)α−1β(f(s,Qn(s)).

(3.10)

By (3.6) and (3.10), we have

β(Qn+1(t)) ≤ αγM

Γ(1 + α)

∫ t

0

(t− s)α−1β(Qn(s))ds. (3.11)

Since Qn is decreasing with respect to n, we define

θ(t) = lim
n→∞

β(Qn(t)), t ∈ [0, b]. (3.12)

Taking n→∞ to both sides of (3.11), we have

θ(t) ≤ αγM

Γ(1 + α)

∫ t

0

(t− s)α−1θ(s)ds. (3.13)

By Lemma 3.3, we obtain θ(t) = 0, t ∈ [0, b]. By Lemma 2.3, limn→∞ β(Qn) = 0.
By Lemma 2.2, it follows that Q = ∩∞n=1Qn is convex compact in C([0, b];X) and
F (Q) ⊂ Q. From the Schauder fixed point theorem, there exists at least one fixed
point u ∈ Q, which is the mild solution of (1.1). �
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