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EXISTENCE OF SOLUTIONS FOR CRITICAL HÉNON
EQUATIONS IN HYPERBOLIC SPACES

HAIYANG HE, JING QIU

Abstract. In this article, we use variational methods to prove that for a

suitable value of λ, the problem

−∆BN u = (d(x))α|u|2
∗−2u+ λu, u ≥ 0, u ∈ H1

0 (Ω′)

possesses at least one non-trivial solution u as α→ 0+, where Ω′ is a bounded

domain in Hyperbolic space BN , d(x) = dBN (0, x). ∆BN denotes the Laplace-

Beltrami operator on BN , N ≥ 4, 2∗ = 2N/(N − 2).

1. Introduction and statement of main result

In this article, we study the existence of non-trivial solution for the problem

−∆BNu = (d(x))α|u|2
∗−2u+ λu, u ≥ 0, u ∈ H1

0 (Ω′) (1.1)

where N ≥ 4,
N(N − 2)

4
< λ < λ1, 2∗ =

2N
N − 2

,

d(x) = dBN (0, x). Here ∆BN denotes the Laplace Beltrami operator on BN . We
denote by λ1 is the first eigenvalue of the Laplace-Beltrami operator with Dirichlet
boundary conditions. The domain Ω′ is a bounded domain with an interior sphere
condition, 0 ∈ Ω′ ⊂ BN , Ω ⊂ B1(0) and Ω̄ ∩ ∂B1(0) 6= 0, where B1(0) ⊂ BN is the
geodesic ball with radius 1.

When posed in the Euclidean space RN , problem (1.1) is a generalization of the
celebrated Brezis-Nirenberg problem

−∆u = |x|α|u|2
∗−2u+ λu, u ≥ 0, u ∈ H1

0 (Ω), (1.2)

see [1, 8, 9, 12, 13] for more general and recent existence results. In spaces of
constant curvature it has been studied by Bandle, Brillard and Flucher [3]. The
special case of S3 has been treated in [2].

When α 6= 0 and λ = 0, problem (1.2) is known as the Hénon equation

−∆u = |x|α|u|p−2u, u ≥ 0, u ∈ H1
0 (Ω) (1.3)

and the study goes to Hénon [14], Ni [17], Smets [19], Cao-Peng [10] and oth-
ers. Attention was focused on the existence and multiplicity of nonradial solutions
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for critical, supercritical and slightly subcritical growth, symmetry properties and
asymptotic behavior of ground states (for p → 2N

N−2 , or α → ∞). We refer to
[4, 6, 7, 11, 15] for more information. As far as we know, the Brezis-Nirenberg
problem for the critical Hénon equation has been studied only in [16], where the
authors prove that there always exists a solution to (1.3), provided α is small
enough.

In the hyperbolic space, the existence of Brezis-Nirenberg problem for the critical
equation

−∆BNu = |u|2
∗−2u+ λu, u ≥ 0, u ∈ H1

0 (Ω) (1.4)

has been studied in [20] and the results are very similar to the results in the Eu-
clidean case. However, for problem (1.1), there exists some difference from Eu-
clidean space. Firstly, the weight function d(x) depends on the Riemannian dis-
tance r from a pole o. Secondly, there is a lack of compactness due to the fact
that the Sobolev imbedding H1

0 (Ω′) ↪→ L2∗(Ω′) is noncompact, so the functional
of problem (1.1) cannot satisfy the (PS)c condition for all c > 0. In generally, to
prove the functional of problem (1.1) satisfying the local (PS)c condition, we need
to use the unique positive solution of the problem

−∆BNu = u2∗−1 in BN . (1.5)

to control the energy of the functional. However, Mancini and Sandeep [5] proved
that (1.5) did not have any positive solutions. Thirdly, when we study the critical
elliptic problem

−∆BNu = Q(x)u2∗−1 + λu, x ∈ Ω′, u = 0, x ∈ ∂Ω′, (1.6)

it is necessary that the function Q(x) have the maximum in Ω′. But the weight
function d(x)α of problem (1.1) has the maximum on ∂Ω′. So we have the difficulty
to control the energy. Our main result is as follows.

Theorem 1.1. There exists ᾱ > 0, such that when 0 < α < ᾱ, problem (1.1) has
at least one non-trivial positive solution.

The proof of this result will be given in Section 3. In section 2, we give some
basic facts about hyperbolic space and prove that the functional of problem (1.1)
satisfies the local (PS)c condition.

2. Preliminaries

A hyperbolic space, denoted by HN , is a complete simple connected Riemannian
manifold which has constant sectional curvature equal to −1. There are several
models for hyperbolic space, and we will use the Poincaré ball model

BN = {x = (x1, x2, . . . , xn) ∈ RN : |x| < 1}

endowed with Riemannian metric gij = (p(x))2δij where p(x) = 2
1−|x|2 . We denote

the hyperbolic volume by dVBN and is given by dVBN = (p(x))N dx. The hyperbolic
gradient and the Laplace Beltrami operator are:

∆BN = (p(x))−N div((p(x))N−2∇u)), ∇BNu =
∇u
p(x)

where∇ and div denotes the Euclidean gradient and divergence in RN , respectively.
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The hyperbolic distance dBN (x, y) between x, y ∈ BN in the Poincaré ball model
is

dBN (x, y) = arccosh(1 +
2|x− y|2

(1− |x|2)(1− |y|2)
).

From this we immediately obtain that for x ∈ BN ,

d(x) = dBN (0, x) = log(
1 + |x|
1− |x|

).

Let us denote the energy functional corresponding to (1.1) by

I(u) =
1
2

∫
Ω′

(|∇BNu|2 − λu2)dVBN − 1
2∗

∫
Ω′
|d(x)|α(u+)2∗dVBN (2.1)

defined on H1
0 (Ω′). If λ < λ1, we know that

‖u‖λ := [
∫

Ω′
(|∇BNu|2 − λu2)dVBN ]1/2

is a norm equivalent to the H1
0 (Ω′) norm, and it is known that critical points of the

functional I ∈ C1(H1
0 (Ω′),R) correspond to solutions of (1.1). If u is a nontrivial

solution of (1.1), we define

v(x) =
( 2

1− |x|2
)(N−2)/2

u

which is a nontrivial solution of the Euclidean equation

−∆v+
N(N − 2)

4
p2v = (ln

1 + |x|
1− |x|

)α|v|2
∗−2v+λp2v, x ∈ Ω; v ≥ 0, v ∈ H1

0 (Ω),

(2.2)
where Ω ⊂ RN is the stereographic projection of Ω′ into RN , and Ω̄ ∩ ∂B e−1

e+1
(0) 6=

∅, B e−1
e+1

(0) is a ball in the Euclidean space. Let us define the energy functional
corresponding to (2.2) by

J(v) =
1
2

∫
Ω

|∇v|2 − (λ− N(N − 2)
4

)(
2

1− |x|2
)2v2 dx

− 1
2∗

∫
Ω

| ln 1 + |x|
1− |x|

|α(v+)2∗ dx.

(2.3)

Thus for any u ∈ H1(Ω) if ũ is defined as ũ = ( 2
1−|x|2 )(N−2)/2u, then I(u) = J(ũ).

Moreover 〈I ′(u), v〉 = 〈J ′(ũ), ṽ〉 where ṽ is defined in the same way.
Now, we want to prove that the functional I satisfies the (PS)c condition. It is

well known that the best Sobolev constant

S = inf
{∫

RN

|∇u|2 dx : u ∈ D1,2(RN ),
∫

RN

|u|2
∗
dx = 1

}
is attained by the function

U(x) =
[N(N − 2)]

N−2
4

(1 + |x|2)
N−2

2

,

which is a solution of the problem

−∆u = |u|2
∗−2u, x ∈ RN (2.4)

with
∫

RN |∇U |2 =
∫

RN U2∗dx = SN/2.
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Lemma 2.1. For all c ∈ (0, SN/2/N), the function I(u) satisfies the (PS)c condi-
tion.

Proof. Suppose c ∈ (0, SN/2/N), {un} ⊂ H1
0 (Ω′) is the (PS)c sequence of the func-

tion I(u), then I(un)→ c as n→∞, I ′(un)→ 0 as n→∞. We have that

c+ 1 + ‖un‖BN ≥ I(un)− 1
2∗
〈I ′(un), un〉

=
1
2

∫
Ω′

(|∇BNun|2 − λu2
n)dVBN − 1

2∗

∫
Ω′
d(x)α(u+

n )2∗dVBN

− 1
2∗

∫
Ω′

(|∇BNun|2 − λu2
n)dVBN +

1
2∗

∫
Ω′
d(x)α(u+

n )2∗dVBN

= (
1
2
− 1

2∗
)
∫

Ω

(|∇BNun|2 − λu2
n)dVBN

= (
1
2
− 1

2∗
)‖un‖2BN .

It follows that ‖un‖ is bounded in H1
0 (Ω′). It implies that

un ⇀ u for x ∈ H1
0 (Ω′),

un → u for x ∈ Lp(Ω′), 2 < p < 2∗

un → u a.e. on Ω′,

(2.5)

From {u+
n } being bounded in L2∗(Ω′), it follows that {(u+

n )2∗−1} is bounded in
L

2N
N+2 (Ω′). It follows that {d(x)α(u+

n )2∗−1} is bounded in L
2N

N+2 (Ω′) and

d(x)α(u+
n )2∗−1 ⇀ d(x)α(u+)2∗−1, in L

2N
N+2 (Ω′).

So u is the solution of problem (1.1) and

I(u) =
1
2
‖u‖2BN −

1
2∗

∫
Ω′
d(x)α(u+)2∗dVBN =

1
N

∫
Ω′
d(x)α(u+)2∗dVBN ≥ 0.

Let us define vn = un − u. The Brézis-Lieb Lemma leads to

|un|2
∗

2∗ = |un − u|2
∗

2∗ + |u|2
∗

2∗ + o(1),

and∫
Ω′
d(x)α(u+

n )2∗dVBN =
∫

Ω′
d(x)α[(un−u)+]2

∗
dVBN +

∫
Ω′
d(x)α(u+)2∗dVBN + o(1).

So we have

I(un) =
1
2
‖un‖2BN −

1
2∗

∫
Ω′
d(x)α(u+

n )2∗dVBN

= I(u) +
1
2
‖vn‖2BN −

1
2∗

∫
Ω

d(x)α(v+
n )2∗dVBN + o(1)→ c.

Since ‖un‖ is bounded in H1
0 (Ω′), and 〈I ′(un), un〉 → 0, we obtain

‖vn‖2BN −
∫

Ω′
d(x)α(v+

n )2∗dVBN = 〈I ′(un), un〉 − 〈I ′(u), u〉 → −〈I ′(u), u〉 = 0.

It implies that

‖vn‖2BN −
∫

Ω′
d(x)α(v+

n )2∗dVBN → 0,
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So we can assume that

‖vn‖2BN → b,

∫
Ω′
d(x)α(v+

n )2∗dVBN → b.

Since un → u, in L2(Ω′), it follows that vn = un − u→ 0 in L2(Ω′), and∫
Ω′
|∇BN vn|2 dVBN → b.

We know that when we consider the above calculation in the Hyperbolic space,
the Sobolev inequality is not satisfied; so we should transfer it into the Euclidean
space. Let us define:

vn(x) := p−
N−2

2 wn(x), p =
2

1− |x|2
.

Then ∫
Ω′
|∇BN vn|2dVBN =

∫
Ω

|∇(p−
N−2

2 wn)|2pN−2dx

=
∫

Ω

|∇wn|2dx+
N(N − 2)

4

∫
Ω

p2w2
ndx

and ∫
Ω′
d(x)α(v+

n )2∗dVBN =
∫

Ω

| ln 1 + |x|
1− |x|

|α(w+
n )2∗dx→ b as n→∞.

From vn → 0 in L2(Ω′), and

2 ≤ p(x) ≤ (e+ 1)2

2e
,

we have that
∫

Ω
p2w2

ndx→ 0 in L2(Ω). So∫
Ω

|∇wn|2dx→ b, as n→∞.

By the Sobolev inequality, we have∫
Ω
|∇wn|2dx

(
∫

Ω
(w+

n )2∗dx)2/2∗
≥ S.

Thus ∫
Ω

|∇wn|2dx ≥ S
(∫

Ω

(w+
n )2∗dx

)2/2∗

,

which implies b ≥ Sb2/2∗ . Then either b = 0 or b ≥ SN/2.
If b ≥ SN/2, by the above, it follows that

SN/2

N
≤ (

1
2
− 1

2∗
)b ≤ c < SN/2

N
,

we know that is a contradiction. So b = 0, the lemma is proved . �

Lemma 2.2. There exist ᾱ > 0, and a nonnegative function w ∈ H1
0 (Ω) \ {0} such

that∫
Ω

(|∇w|2 + (
N(N − 2)

4
− λ)p2w2)dx

/(∫
Ω

(ln
1 + |x|
1− |x|

)α(w+)2∗dx
)2/2∗

< S,

for any 0 < α < ᾱ.
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Proof. When N ≥ 5, suppose ( e−1
e+1 , 0, . . . , 0) ∈ Ω, x0 = ( e−1

e+1 −
4√ε
2 , 0, . . . , 0) ∈ RN .

Fix ϕ ∈ C∞0 (Ω), such that

ϕ(x) =

{
1 if x ∈ B 1

4
4√ε(x0),

0 if x ∈ RN \B 1
4

4√ε(x0),
(2.6)

0 ≤ ϕ(x) ≤ 1, |∇ϕ(x)| ≤ c
4√ε . Let

uε(x) = ϕ(x)Uε(x), ũε(x) = p−
N−2

2 uε(x),

where

p =
2

1− |x|2
, Uε(x) =

[N(N − 2)ε2]
N−2

4

[ε2 + |x− x0|2](N−2)/2
.

First we prove that∫
Ω

|∇uε|2dx =
∫

RN

|∇Uε|2dx+ o(ε
3N−6

4 ) = SN/2 + o(ε
3N−6

4 ). (2.7)

Indeed, since∫
Ω′
|∇uε|2dx =

∫
Ω′
|ϕ(x) · ∇Uε(x) +∇ϕ(x) · Uε(x)|2dx

=
∫
B 1

4
4√ε

(x0)

|∇Uε(x)|2dx

+
∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|ϕ(x) · ∇Uε(x) +∇ϕ(x) · Uε(x)|2dx,

we have∣∣∣ ∫
Ω

|∇uε|2dx−
∫

RN

|∇Uε|2dx
∣∣∣

≤ |
∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|ϕ · ∇Uε +∇ϕ · Uε|2dx

+
∣∣∣ ∫

RN\B 1
4

4√ε(x0)

|∇Uε|2dx
∣∣∣

+
∫

RN\B 1
4

4√ε(x0)

|∇Uε|2dx

≤ 2
∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|∇Uε|2dx+
2c
4
√
ε

∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|Uε|2dx

+
∫

RN\B 1
4

4√ε(x0)

|∇Uε|2dx

≤ c
∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

εN−2|x− x0|2

[ε2 + |x− x0|2]N
dx

+
c
4
√
ε

∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

εN−2

[ε2 + |x− x0|2]N−2
dx

+ c

∫
RN\B 1

4
4√ε(x0)

εN−2|x− x0|2

[ε2 + |x− x0|2]N
dx
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≤ cε
3N−6

4 + cε
3N−5

4 = O(ε
3N−6

4 ).

Therefore (2.7) is proved.
Now we prove that∫

Ω

(ln
1 + |x|
1− |x|

)α|uε|2
∗
dx ≥

(
ln

1 + ( e−1
e+1 − 4

√
ε)

1− ( e−1
e+1 − 4

√
ε)

)α ∫
Ω

|uε|2
∗
dx

=
(

ln
1 + ( e−1

e+1 − 4
√
ε)

1− ( e−1
e+1 − 4

√
ε)

)α[ ∫
RN

|Uε|2
∗
dx+O(ε3N/4)

]
=
(

ln
1 + ( e−1

e+1 − 4
√
ε)

1− ( e−1
e+1 − 4

√
ε)

)α[
SN/2 +O(ε3N/4)

]
.

(2.8)
Indeed,∣∣∣ ∫

Ω

|uε|2
∗
dx−

∫
RN

|Uε|2
∗
dx
∣∣∣

=
∣∣∣ ∫
B 1

4
4√ε(x0)

|uε|2
∗
dx+

∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|uε|2
∗
dx−

∫
RN

|Uε|2
∗
dx
∣∣∣

=
∣∣∣ ∫
B 1

4
4√ε(x0)

|ϕ · Uε|2
∗
dx+

∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|ϕ · Uε|2
∗
dx−

∫
RN

|Uε|2
∗
dx
∣∣∣

≤
∣∣∣ ∫
B 1

4
4√ε(x0)

|Uε|2
∗
dx+

∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|Uε|2
∗
dx−

∫
RN

|Uε|2
∗
dx
∣∣∣

≤
∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

|Uε|2
∗
dx+

∫
RN\B 1

4
4√ε(x0)

|Uε|2
∗
dx

= c

∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

εN

[ε2 + |x− x0|2]N
dx+ c

∫
RN\B 1

4
4√ε(x0)

εN

[ε2 + |x− x0|2]N
dx

= cεN
∫ 1

2
4√ε

4√ε
4

rN−1

[ε2 + r2]N
dr + cεN

∫ +∞

4√ε
4

rN−1

[ε2 + r2]N
dr

≤ cεN
∫ 1

2
4√ε

4√ε
4

r−N−1dr + cεN
∫ +∞

4√ε
4

r−N−1dr

≤ cε3N/4 + cε3N/4 = O(ε3N/4).

Now we estimate
∫

Ω
(N(N−2)

4 − λ)p2u2
εdx. We claim that∫

Ω

p2u2∗

ε dx ≥ cε2 +O(ε
3N−4

4 ). (2.9)

Indeed, since p(x) = 2
1−|x|2 ≥ p(0) = 2,∫

Ω

p2u2
εdx ≥ 4

∫
Ω

u2
εdx

= 4
∫

Ω

ϕ2[N(N − 2)ε2](N−2)/2

[ε2 + |x− x0|2]N−2
dx
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= 4
∫
B 1

4
4√ε(x0)

[N(N − 2)ε2](N−2)/2

[ε2 + |x− x0|2]N−2
dx

+ 4
∫
B 1

2
4√ε(x0)\B 1

4
4√ε(x0)

ϕ2[N(N − 2)ε2](N−2)/2

[ε2 + |x− x0|2]N−2
dx

≥ cε2 +O(ε
3N−4

4 ).

By (2.7), (2.8), (2.9), we know that∫
Ω
|∇uε|2 + (N(N−2)

4 − λ)p2u2
εdx

[
∫

Ω
(ln 1+|x|

1−|x| )
α|uε|2∗dx]2/2∗

≤ 1

(ln
1+( e−1

e+1−
4√ε)

1−( e−1
e+1−

4√ε) )2α/2∗

SN/2 +O(ε
3N−6

4 ) + (N(N−2)
4 − λ)(cε2 +O(ε

3N−4
4 ))

[SN/2 +O(ε3N/4)]2/2∗

=
1

(ln
1+( e−1

e+1−
4√ε)

1−( e−1
e+1−

4√ε) )2α/2∗
S(ε).

Since (
ln

1 + ( e−1
e+1 − 4

√
ε)

1− ( e−1
e+1 − 4

√
ε)

)
→ 1 as α→ 0+,

there exists ε0 > 0(small enough), such that S(ε0) < S. The case N ≥ 5 is proved.

When N = 4, let x0 = ( e−1
e+1 − 2β, 0, . . . , 0) ∈ RN , ϕ(x) ∈ C∞0 (Ω),

ϕ(x) =

{
1 if x ∈ Bβ(x0),
0 if x ∈ RN \B2β(x0),

(2.10)

for all x ∈ RN , β > 0, 0 ≤ ϕ(x) ≤ 1, |∇ϕ(x)| ≤ c, and let

ũε(x) = p−
N−2

2 ϕ(x)
[N(N − 2)ε2]

N−2
4

[ε2 + |x− x0|2](N−2)/2

= p−
N−2

2 uε(x)

=
1
p
uε(x) =

1− |x|2

2
uε(x),

that is to prove that ∫
Ω

(|∇uε|2 + (2− λ)p2u2
ε)dx

[
∫

Ω
(ln 1+|x|

1−|x| )
α|uε|2∗dx]2/2∗

< S.

Similarly, we can prove that
(i) ∫

Ω

|∇uε|2dx =
∫

RN

|∇Uε|2dx+O(ε2) = S2 +O(ε2),

(ii) ∫
Ω

(ln
1 + |x|
1− |x|

)α|uε|2
∗
dx
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≥
(

ln
1 + ( e−1

e+1 − 4β)

1− ( e−1
e+1 − 4β)

)α ∫
Ω

|uε|2
∗
dx

=
(

ln
1 + ( e−1

e+1 − 4β)

1− ( e−1
e+1 − 4β)

)α ∫
RN

|Uε|2
∗
dx+O(ε4) = S2 +O(ε4),

(iii) ∫
Ω

p2u2
εdx ≥ cε2| ln ε|+O(ε2).

Thus,∫
Ω

(|∇uε|2 + (2− λ)p2u2
ε)dx

[
∫

Ω
(ln 1+|x|

1−|x| )
α|uε|2∗dx]2/2∗

<
1(

ln
1+( e−1

e+1−4β)

1−( e−1
e+1−4β)

)2α/2∗

S2 +O(ε2) + (2− λ)(cε2| ln ε|+O(ε2))
(S2 +O(ε4))2/2∗

=
1(

ln
1+( e−1

e+1−4β)

1−( e−1
e+1−4β)

)2α/2∗
S(ε).

Since (ln
1+( e−1

e+1−4β)

1−( e−1
e+1−4β)

)α → 1 as α→ 0+, then there exists ε0 > 0, such that

S(ε0) < S.
Hence, there exists ᾱ > 0, such that when 0 < α < ᾱ,∫

Ω
(|∇uε|2 + (N(N−2)

4 − λ)p2u2
ε)dx

[
∫

Ω
(ln 1+|x|

1−|x| )
α|uε|2∗dx]2/2∗

< S.

It implies that in the hyperbolic space, we have∫
Ω′

(|∇BN ũε|2 − λũ2
ε)dVBN

[
∫

Ω′
d(x)α|ũε|2∗dVBN ]2/2∗

< S. �

3. Proof of main results

Proof of Theorem 1.1. Since the solution of (1.1) is the critical point of the function
I, it suffices to apply the Mountain Pass theorem with a value c < 1

N S
N/2.

By the Lemma 2.1, we know if 0 < α < ᾱ,∃ũε(x) ∈ H1
0 (Ω′) \ {0} such that

‖ũε‖2BN

[
∫

Ω′
|x|α|ũε|2∗dVBN ]2/2∗

< S.

So let v(x) = ũε(x), then

0 < max
t≥0

I(tv) = max
t≥0

[
1
2

∫
Ω

[|∇BN (tv)|2 − λ(tv)2]dVBN − 1
2∗

∫
Ω

d(x)α|tv|2
∗
dVBN ]

= (
1
2
− 1

2∗
)[
∫

Ω

(|∇BN v|2 − λv2)dVBN /(
∫

Ω

d(x)α|v|2
∗
dVBN )]N/2

<
1
N
SN/2.

Since

I(u) ≥ 1
2

∫
Ω′

(|∇BNu|2 − λu2) dVBN − 1
2∗

∫
Ω′
|u|2

∗
dVBN
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≥ 1
2
‖u‖2BN −

1

2∗S(BN )
2∗
2

∫
Ω′
|∇BNu|2 dVBN ,

then there exists r > 0 such that

b = inf
‖u‖BN =r

I(u) > 0 = I(u).

For

I(t0v) =
1
2

∫
Ω′

(|∇BN (t0v)|2 − λ(t0v)2)dVBN − 1
2∗

∫
Ω′
d(x)α|t0v|2

∗
dVBN

=
t20
2

∫
Ω′

(|∇BN v|2 − λv2)dVBN − t2
∗

0

2∗

∫
Ω′
d(x)α|v|2

∗
dVBN

=
t20
2
‖v‖2BN −

t2
∗

0

2∗

∫
Ω′
d(x)α|v|2

∗
dVBN → −∞ as t0 → +∞,

then there exists t0 > 0, such that when ‖t0v‖BN > r, we have I(t0v) < 0. Thus

max
t∈[0,1]

I(t · (t0v)) <
SN/2

N
.

From Lemma 2.1, Lemma 2.2 and the Mountain Pass theorem, we know that I
has a critical value and problem (1.1) has a nontrivial solution u. Multiplying the
equation by u− and integrating, we find u− = 0, and u is a solution of (1.1). �
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