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INTEGRAL INEQUALITYS FOR PARTIAL DYNAMIC
EQUATIONS ON TIME SCALES

DEEPAK B. PACHPATTE

Abstract. The aim of the present paper is to study some basic qualitative
properties of solutions of some partial dynamic equations on time scales. A
variant of certain fundamental integral inequality with explicit estimates is
used to establish our results.

1. Introduction

During past few years many authors have established the time scale analogue
of well known dynamic equations used in the development of theory of differential
and integral equation see [3, 9, 10, 11, 12, 17, 18, 19]. In [4, 5, 6, 7, 8] authors have
obtained some results on multiple integration and partial dynamic equations on
time scales. Recently in [13, 14, 15, 16] authors have obtained inequalities on two
independent variables on time scales. In the present paper we establish some basic
qualitative properties of solutions of some partial dynamic equation on time scales.
We use certain fundamental integral inequality with explicit estimates to establish
our results. We assume understanding of time scales and its notation. Excellent
information about introduction to time scales can be found in [1, 2].

In what follows R denotes the set of real numbers, Z the set of integers and T
denotes arbitrary time scales. Let Crd be the set of all rd continuous function. We
assume T1 and T2 be two time scales and Ω = T1 × T2.

In this article, we consider partial dynamic equation of the type

u∆t(t, x) = f(t, x, u(t, x)) +
∫ s

s0

g(t, x, y, u(t, y))∆y + h(t, x), (1.1)

which satisfies the initial condition

u(t0, x) = u0(x), (1.2)

for (t0, x) ∈ Ω, where u0 ∈ C(I, R), I = [a, b] (a < b), f ∈ Crd(Ω × R, R+),
g ∈ Crd(Ω× I × R, R+) and u is unknown function to be found.
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2. Basic Inequality

We will use the following integral inequality.

Lemma 2.1. Let w, p ∈ Crd(Ω, R+) and let c ≥ 0 be a constant

w(t, x) ≤ c +
∫ t

t0

[p(s, x)w(s, x) +
∫ b

a

g(s, x, y)w(s, y)∆y]∆s, (2.1)

for (t, x) ∈ Ω, then

w(t, x) ≤ cP (t, x)eR b
a

q(s,x,y)p(s,y)∆y(t, t0), (2.2)

for (t, x) ∈ Ω, where
P (t, x) = ep(s,x)(t0, t). (2.3)

Proof. Define a function

m(t, x) = c +
∫ t

t0

∫ b

a

q(s, x, y)w(s, y)∆y∆s. (2.4)

Then (2.1) can be restated as

w(t, x) ≤ m(t, x) +
∫ t

t0

p(s, x)w(s, x)∆s, (2.5)

m(t, x) is non negative for (t, x) ∈ Ω and nondecreasing for t. Now considering (2.5)
as a one dimensional integral inequalities in t ∈ T for every x ∈ T and a suitable
application of inequality given in [9, Theorem 3.5], yields

m(t, x) ≤ c +
∫ t

t0

∫ b

a

q(s, x, y)p(s, y)m(s, y)∆y∆s. (2.6)

Let

k(s) =
∫ b

a

q(s, x, y)p(s, y)m(s, y)∆y, (2.7)

for every x ∈ T, the inequality (2.6) becomes

m(t, x) ≤ c +
∫ b

a

k(s)∆s. (2.8)

Let

z(t) = c +
∫ b

a

k(s)∆s, (2.9)

then z(t0) = c and
m(t, x) ≤ z(t), (2.10)

for (t, s) ∈ Ω. From (2.9), (2.7) and (2.10), we have

z∆(t) = k(t) =
∫ b

a

q(t, x, y)p(t, y)m(t, y)∆y

≤ z(t)
∫ b

a

q(t, x, y)p(t, y)∆y.

(2.11)

This inequality implies

z(t) ≤ ceR b
a

q(s,x,y)p(s,y)∆s(t, t0). (2.12)

The required inequality (2.2) follows from (2.12), (2.9) and (2.6). �
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3. Main Results

The following theorem provides some estimates on the solution.

Theorem 3.1. Suppose that the functions f, g, h, u0 in (1.1) and (1.2) satisfy the
conditions

|f(t, x, u)− f(t, x, u)| ≤ c(t, x)|u− u|, (3.1)

|g(t, x, y, u)− g(t, x, y, u)| ≤ k(t, x, y)|u− u|, (3.2)

d = sup
∣∣φ(t, x) +

∫ t

t0

[
f(s, x, t0) +

∫ b

a

g(s, x, y, t0)∆y
]
∆s

∣∣ < ∞, (3.3)

where c ∈ Ω, k ∈ (Ω× Rn, R+) and

φ(t, x) = u0(x) +
∫ t

t0

h(s, x)∆s. (3.4)

If u(t, x) is any solution of (1.1)-(1.2) then

|u(t, x)| ≤ dC(t, x)eR b
a

k(s,x,y)C(s,y)∆y(t, t0), (3.5)

where
C(t, x) = ec(s,x)(t, t0). (3.6)

Proof. Since u(t, x) is a solution of (1.1)-(1.2) and hypotheses, we observe that

|u(t, x)| =
∣∣∣{φ(t, x) +

∫ t

t0

[
{f(s, x, u(s, x))− f(s, x, t0) + f(s, x, t0)}

+
∫ b

a

{g(s, x, y, u(s, y))− g(s, x, y, t0) + g(s, x, y, t0)}∆y
]
∆s

}∣∣∣
≤

∣∣∣φ(t, x)
∫ t

t0

[
f(s, x, t0) +

∫ b

a

g(s, x, y, t0)∆y
]
∆s

∣∣∣
+

∫ t

t0

[
|f(s, x, u(s, x))− f(s, x, t0)|

+
∫ b

a

|g(s, x, y, u(s, y))− g(s, x, y, t0)|∆y
]
∆s

≤ d +
∫ t

t0

[
c(s, x)|u(s, x)|+

∫ b

a

k(s, x, y)|u(s, y)|∆y
]
∆s.

(3.7)

Now an application of Lemma 2.1 to (3.7) yields (3.5). �

Now we give approximation of solutions to (1.1)-(1.2). We obtain conditions
under which we estimate errors between true solution and approximate solutions.

Let u(t, x) ∈ Ω, u∆t(t, x) exist on T and satisfy the inequality∣∣∣u∆t(t, x)− f(t, x, u(t, x))−
∫ b

a

g(t, x, y, u(t, y))∆y − h(t, x)
∣∣∣ ≤ ε (3.8)

for a given constant ε ≥ 0 where we suppose that (1.2) holds. Then we say that
u(t, x) has ε-approximate solutions with respect to (1.1).
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Theorem 3.2. Suppose the functions f, g in (1.1) satisfy the conditions

|f(t, x, y)− f(t, x, u)| ≤ C(t, x)|u− u|, (3.9)

|g(t, x, y, u)− g(t, x, y, u)| ≤ K(t, x, y)|u− u|, (3.10)

Let ui(t, x)(i = 1, 2), (t, x) ∈ Ω be respectively εi approximate solution of (1.1) with

ui(to, x) = ui(x), (3.11)

and let

φi(t, x) = ui(x) +
∫ t

t0

h(s, x)∆s. (3.12)

Suppose that
|φ1(t, x)− φ2(t, x)| ≤ δ, (3.13)

where δ ≥ 0 is a constant and

M = sup
t∈T

[(ε1 + ε2)t + δ] < ∞, (3.14)

then
|u1(t, x)− u2(t, x)| ≤ MC(t, x)eR b

a
k(s,x,y)C(s,y)∆s(t, t0), (3.15)

where
C(t, x) = ec(s,x)(t, t0). (3.16)

Proof. Since ui(t, x) (i = 1, 2), (t, x) ∈ Ω are respectively εi-approximate solutions
of (1.1) with (3.8), we have∣∣u∆t

i (t, x)− f(t, x, ui(t, x))−
∫ b

a

g(t, x, y, ui(t, y))∆y−h(t, x)
∣∣ ≤ εi. (3.17)

By taking t = s in the above inequality and integrating both sides with respect to
s from t0 to t for t ∈ T, we obtain

εi(t− t0) ≥
∫ t

t0

∣∣∣u∆s
i (s, x)− f(s, x, ui(s, x))−

∫ b

a

g(s, x, y, ui(s, y))∆y − h(s, x)
∣∣∣∆s

≥
∣∣∣ ∫ t

t0

{u∆s
i (s, x)− f(s, x, ui(s, x))

−
∫ b

a

g(s, x, y, ui(s, y))∆y − h(s, x)}∆s
∣∣∣

= |ui(t, x)− φi(t, x)

−
∫ t

t0

[
f(s, x, ui(s, x)) +

∫ b

a

g(s, x, y, ui(s, y))∆y
]
|∆s.

(3.18)
From (3.18) and using elementary inequalities

|v − z| ≤ |v|+ |z|, |v − z| ≤ |v − z|, (3.19)

for v, z ∈ R+, we have

(ε1 + ε2)(t− t0)

≥
∣∣∣u1(t, x)− φ1(t, x)−

∫ t

t0

[
f(s, x, u1(s, x)) +

∫ b

a

g(s, x, y, u1(s, y))∆y
]∣∣∣∆s
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+
∣∣∣u2(t, x)− φ2(t, x)−

∫ t

t0

[
f(s, x, u2(s, x)) +

∫ b

a

g(s, x, y, u2(s, y))∆y
]∣∣∣∆s

≥
∣∣∣{∣∣∣u1(t, x)− φ1(t, x)−

∫ t

t0

[
f(s, x, u1(s, x)) +

∫ b

a

g(s, x, y, u1(s, y))∆y
]∣∣∣∆s

}
−

{∣∣∣u2(t, x)− φ2(t, x)−
∫ t

t0

[
f(s, x, u2(s, x)) +

∫ b

a

g(s, x, y, u2(s, y))∆y
]∣∣∣∆s}

}∣∣∣
≥ |u1(t, x)− u2(t, x)| − |φ1(t, x)− φ2(t, x)|

−
∣∣∣∫ t

t0

[
f(s, x, u1(s, x)) +

∫ b

a

g(s, x, y, u1(s, y))∆y
]∣∣∣∆s

−
∫ t

t0

[
f(s, x, u2(s, x)) +

∫ b

a

g(s, x, y, u2(s, y))∆y
]
∆s

∣∣∣.
Let u(t, x) = |u1(t, x)−u2(t, x)|, (t, x) ∈ Ω from the above inequality and using the
hypothesis we obtain

u(t, x) ≤ (ε1 + ε2)(t− t0) + δ +
∫ t

t0

[
c(s, x)u(s, x) +

∫ b

a

k(s, x, y)u(s, y)∆y
]
∆s

≤ M +
∫ t

t0

[
c(s, x)u(s, x) +

∫ b

a

k(s, x, y)u(s, y)∆y
]
∆s.

Now an application of Lemma 2.1 to the above inequality yields (3.15). �

Remark 3.3. When u1(t, x) is a solution of (1.1) with u1(0, x) = u1(x) we obtain
ε1 = 0 and from (3.15), we see that u2(t, x) → u1(t, x) as ε2 → ε1 and δ → 0.
Furthermore, if we put ε1 = ε2 = 0, u1(x) = u2(x) in (3.15), then we get the bound
which shows the dependency of solutions of (1.1) on given initial values.

Consider (1.1)-(1.2) together with following partial dynamic equation on time
scales

v∆t(t, x) = f(t, x, v(t, x)) +
∫ b

a

g(t, x, y, v(t, y))∆y + h(t, x) (3.20)

with given initial condition
v(t0, x) = v0(x), (3.21)

for (t, x) ∈ Ω where f ∈ Crd(Ω, R+), g ∈ Crd(Ω× Rn, R+), h ∈ Crd(Ω, R+).
The following theorem is concerned with the closeness of solutions of (1.1)-(1.2)

and (3.20)-(3.21).

Theorem 3.4. Suppose that the functions f, g in (1.1)-(1.2) satisfy the conditions
(3.9)-(3.10) and that there exists constants εi ≥ 0, δi ≥ 0 (i = 1, 2) such that

|f(t, x, u)− f(t, x, u)| ≤ ε1, (3.22)

|g(t, x, y, u)− g(t, x, y, u)| ≤ ε2, (3.23)

|h(t, x)− h(t, x)| ≤ δ1, (3.24)

|u0(x)− v0(x)| ≤ δ2, (3.25)

where f, g, h, u0 and f, g, h, v0 are the functions in (1.1)-(1.2) and (3.20)-(3.21) and

M = sup
t∈T

[
δ2 + [δ1 + ε1 + ε2(b− a)]t

]
< ∞. (3.26)
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Let u(t, x) and v(t, x) be respectively the solutions of (1.1)-(1.2) and (3.20)-(3.21)
for (t, x) ∈ Ω. Then

|u(t, x)− v(t, x)| ≤ MC(t, x)eR b
a

k(s,x,y)C(s,y)∆y(t, t0), (3.27)

for (t, x) ∈ Ω where C(t, x) is given by (3.6).

Proof. Let z(t, x) = |u(t, x) − v(t, x)|, (t, x) ∈ Ω. Since u(t, x), v(t, x) are respec-
tively the solutions of (1.1)-(1.2) and (3.20)-(3.21). We have

z(t, x) ≤
∣∣∣u0(x) +

∫ t

t0

h(s, x)∆s− v0(x)−
∫ t

t0

h(s, x)∆s
∣∣∣

+
∫ t

t0

[
|f(s, x, u(s, x))− f(s, x, v(s, x))|+ |f(s, x, v(s, x))− f(s, x, v(s, x))

∣∣∣
+

∫ b

a

{|g(s, x, y, u(s, y))− g(s, x, y, v(s, y))|

+ |g(s, x, y, v(s, y))− g(s, x, y, v(s, y))|}∆y
]
∆s

≤ |u0(x)− v0(x)|+
∫ t

t0

|h(s, x)− h(s, x)|∆s

+
∫ t

t0

[
c(s, x)z(s, x) + ε1 +

∫ b

a

{k(s, x, y)z(s, y) + ε2}∆y
]
∆s

≤ [δ2 + δ1t + ε1t + ε2(b− a)t]

+
∫ t

t0

[
c(s, x)z(s, x) +

∫ b

a

k(s, x, y)z(s, y)∆y
]
∆s

≤ M +
∫ t

t0

[
c(s, x)z(s, x) +

∫ b

a

k(s, x, y)z(s, y)∆y
]
∆s.

Now an application of Lemma 2.1 to the above inequality yields (3.27). �

Remark 3.5. We note that the result given in Theorem 3.2 relates the solutions
of (1.1)-(1.2) and (3.20)-(3.21) in the sense that if f, g, h, u0 are respectively close
to f, g, h, v0 then the solutions of (1.1)-(1.2) and (3.20)-(3.21) are close together.
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