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A LIE ALGEBRA APPROACH TO
SUSCEPTIBLE-INFECTED-SUSCEPTIBLE EPIDEMICS

YILUN SHANG

Abstract. The susceptible-infected-susceptible (SIS) epidemic model can be
represented by a continuous-time Markov chain, which is governed by a set of
deterministic differential equations (Kolmogorov forward equations). In this
paper, a Lie algebra approach is applied to solve an SIS model where infection
rate and recovery rate are time-varying. The method presented here has been
used widely in chemical and physical sciences but not in epidemic applications
due to insufficient symmetries.

1. Introduction

Analytical description of epidemic spreading has a long history and can be traced
back to the seminal work of Kermack and McKendrick [11, 3], where only three sim-
ple ordinary differential equations are used following the mass action assumption;
i.e., the rate of increase in epidemic incidence is proportional to the product of the
number of infectious and susceptible individuals. It is also possible to capture the
propagation phenomena by mean-field theory [16, 5, 7, 23] or generating function
formalism [12, 14, 20] especially when the host population is modeled by a network.
Such methods, however, are generally more accurate (and valid in essence) when
the population size is relatively large.

Recently, Keeling and Ross [10] proposed a time homogeneous Markov chain
model to characterize the stochastic nature of epidemic spreading. The complete
ensemble of behavior can be predicted by N+1 differential equations for susceptible-
infected-susceptible (SIS) dynamics [25] by virtue of the Kolmogorov forward equa-
tion [13], which governs the rates of transition between states of the disease. The
solution of the system can be expressed by the form of matrix exponentials [10, 18].
Indeed, continuous-time Markovian models are shown to be powerful tools to study
stochastic evolutionary processes and have been widely used in other biological and
metapopulation models [1, 4, 15, 19].

In this paper, we further investigate the SIS paradigm represented by a time
inhomogeneous Markov chain. In this model there is a fixed population of size N ,
where S(t) and I(t) represent the number of susceptibles and infectives, respectively,
in the population at time t, t ≥ 0, and S(t) + I(t) = N . No immunity is conferred
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upon recovery from infection, and recovered individuals return immediately to the
susceptible state. Members of the population transmit the infection immediately
upon becoming infected. Based on the Lie algebraic method developed in [24], we
generate a low-dimensional Lie algebra and solve the Markovian model by deriving
matrix exponential solutions. Different from many physical or chemical systems
[2, 6], biological or epidemic models often lack of symmetries, which adds difficulty
in finding a proper Lie algebra. It is worth noting that Lie algebra solution of some
birth-and-death type population models is recently established by House [8].

The rest of the paper is organized as follows. In Section 2, we briefly review the
Lie algebraic methodology for continuous-time Markov chains. we then apply it to
an SIS epidemic model in Section 3, and conclude the paper in Section 4.

2. Lie algebra solution of time inhomogeneous Markov chains

In algebra theory, a Lie algebra [9] is a vector space V over some field F together
with a bilinear map [·, ·] : V × V → V called the Lie bracket, which satisfies
[X, X] = 0 and the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (2.1)

for all X, Y, Z ∈ V . For X ∈ V , we define an adjoint operator adX by

(adX)Y = [X, Y ], (2.2)

for Y ∈ V . In doing so, multiple Lie brackets can be expressed in a succinct way;
e.g., (adX)2Y = [X, [X, Y ]], etc. Every associate algebra gives rise to a Lie algebra
V by defining the Lie bracket as a commutator

[X, Y ] = XY − Y X, (2.3)

where X, Y ∈ V . In what follows, we will focus on this Lie product. The classical
Baker-Campbell-Hausdorff formula can be written in terms of (2.2) as

eXY e−X = (eadX)Y, (2.4)

where eX =
∑∞

i=0 Xi/i!.
The type of processes we consider here are continuous-time Markov chains [10,

13], taking values in a finite or countably infinite state space S. The dynamical
behavior of the Markov chain is specified by a matrix Q(t) = (qij(t), i, j ∈ S), where
qij(t) is the rate of transition from state i to state j, for j 6= i, and −qii(t) = qi(t) =∑

j 6=i qij(t) is the total rate at which we move out of state i at time t. In light of
the Kolmogorov forward equation (also called the ensemble or master equation),
the probability distribution of the process at time t, p(t) = (pi(t), i ∈ S), is given
by

dp(t)
dt

= H(t)p(t), (2.5)

where H(t) = Q(t)T (T means transpose), and p(t) is a column probability vector
with component pi(t) representing the probability of finding the system in state i
at time t. Making use of the Dirac notation for vectors (kets |·〉), the probability
vector can alternatively be written as

|p(t)〉 =
∑
i∈S

P (i|t)|i〉, (2.6)

where P (i|t) is the probability that the Markov chain in question taking the value
of i at time t, and |i〉 is a basis vector, linearly independent of any other basis vector
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with different value. Note that H(t) in (2.5) is time-dependent implying that the
process is time inhomogeneous.

The Lie algebraic method introduced in [24] requires a decomposition of the
operator H(t) as

H(t) =
m∑

i=1

ai(t)Hi, (2.7)

such that ai(t) are real-valued functions, and Hi are linearly independent constant
operators generating a Lie algebra V = span{H1, · · · ,Hm} by implementing a Lie
bracket

[Hi,Hj ] = HiHj −HjHi =
m∑

k=1

ξijkHk (2.8)

for some real ξijk. The solution of system (2.5) can be uncoupled into a product of
exponentials [24]

p(t) = eg1(t)H1 · · · egm(t)Hmp(0) = U(t)p(0), (2.9)

where gi(t) are real-valued functions and gi(0) = 0.
Substituting (2.7) and (2.9) into (2.5), we obtain

dp(t)
dt

=
m∑

i=1

ai(t)HiU(t)p(0)

=
m∑

i=1

ġi(t)
( i−1∏

j=1

egj(t)Hj

)
Hi

( m∏
j=i

egj(t)Hj

)
p(0).

(2.10)

On multiplying U(t)−1 on both sides of (2.10), we have
m∑

i=1

ai(t)Hi

( m∏
j=1

egj(t)adHj

)
p(0)

=
m∑

i=1

ai(t)HiU(t)p(0)U(t)−1

=
m∑

i=1

ġi(t)
( i−1∏

j=1

egj(t)Hj

)
Hi

( m∏
j=i

egj(t)Hj

)
p(0)U(t)−1

=
m∑

i=1

ġi(t)
( i−1∏

j=1

egj(t)adHj

)
Hi

( m∏
j=1

egj(t)adHj

)
p(0).

(2.11)

Since p(0) is arbitrary, we conclude that
m∑

i=1

ai(t)Hi =
m∑

i=1

ġi(t)
( i−1∏

j=1

egj(t)adHj

)
Hi. (2.12)

From (2.12) we derive a linear relation between ai(t) and ġi(t) with initial values
gi(0) = 0 (involving ξijk), as the operators Hi are linearly independent.

The calculation of p(t) is achieved in O(1) through (2.12) rather than O(t) by
means of incremental direct integrations. Therefore, the computation complexity
can be dramatically reduced. The matrix exponential form (2.9) would be useful if
the derivative of the solution with respect to some model parameter is required in
subsequent calculations [24, 26].
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3. An example: SIS epidemic spreading

The susceptible-infected-susceptible (SIS) epidemiological model [25] is an ac-
curate yet simple representation of endemic infections. It is often used as a par-
adigm for many sexually transmitted infections and computer virus propagations
[3, 21, 22]. The model describes the evolution of an infection in a fixed popula-
tion, where N individuals in the population are divided into two subclasses: the
susceptible pool, of size S, and the infected (and infectious) class, of size I, with
S + I = N . Susceptible individuals become infected at a rate β(t) by contagion
from infected individuals, and infected individuals, in turn, recover (and once again
become susceptible) at a rate γ(t).

The above description of the SIS model leads to a Markovian process [10] whose
probability vector can be written as

|p(t)〉 =
∑
S,I

P (S, I|t)|S, I〉, (3.1)

where P (S, I|t) denotes the probability that there are S susceptible individuals and
I infected ones at time t. |S, I〉 is a basis vector, linearly independent of other basis
vectors with different susceptible and infected numbers. The state space S consists
of N + 1 elements.

The Kolmogorov equation governing this process can be written as

d
dt
|p(t)〉 = H(t)|p(t)〉, (3.2)

with
H(t) = γ(t)(ρ̂− Î) + β(t)(σ̂ − Ŝ), (3.3)

where
Ŝ|S, I〉 = S|S, I〉

Î|S, I〉 = I|S, I〉
ρ̂|S, I〉 = I|S + 1, I − 1〉
σ̂|S, I〉 = S|S − 1, I + 1〉

(3.4)

and all these operators are linear operators (note that a similar collection is derived
for SIR model in [8]). Table 1 shows the complete set of Lie brackets, under which
the algebra V = span{Ŝ, Î, ρ̂, σ̂} is closed.

X̂ [X̂, Ŝ] [X̂, Î] [X̂, ρ̂] [X̂, σ̂]
Ŝ 0 0 ρ̂ −σ̂

Î 0 0 −ρ̂ σ̂

ρ̂ −ρ̂ ρ̂ 0 Ŝ − Î

σ̂ σ̂ −σ̂ Î 0
Table 1. Values of [X̂, Ŷ ] for SIS model.

We need to look for a solution of the form

|p(t)〉 = eg1(t)Ŝeg2(t)Îeg3(t)σ̂eg4(t)ρ̂|p(0)〉. (3.5)
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X̂ eg(adX̂)Ŝ eg(adX̂)Î eg(adX̂)ρ̂ eg(adX̂)σ̂

Ŝ Ŝ Î egρ̂ e−gσ̂

Î Ŝ Î e−gρ̂ egσ̂

ρ̂ Ŝ − gρ̂ Î + gρ̂ ρ̂ σ̂ + gŜ − gÎ − g2ρ̂

σ̂ Ŝ + gσ̂ Î − gσ̂ ρ̂ + gÎ − g2

2 σ̂ σ̂

Table 2. Values of eg(adX̂)Ŷ with a scalar g for SIS model.

Employing (2.12) and the action of exponential operators shown in Table 2, we
obtain

γ(t)ρ̂− γ(t)Î + β(t)σ̂ − β(t)Ŝ

= ġ1(t)Ŝ + ġ2(t)Î + ġ3(t)eg2e−g1 σ̂ + ġ4(t)
(
e−g2eg1 ρ̂ + g3Î −

g2
3

2
eg2e−g1 σ̂

)
.

(3.6)

Equating terms in (3.6) in front of the same basis matrices yields

g1(t) = −B(t),

g4(t) =
∫ t

0

γ(u)eg2(u)+B(u)du,
(3.7)

where B(t) =
∫ t

0
β(u)du; g2(t) and g3(t) are determined by the initial value problem

ġ2(t) = −γ(t)− g3(t)γ(t)eg2(t)+B(t),

ġ3(t) = β(t)e−B(t)−g2(t) +
γ(t)
2

eg2(t)+B(t)g3(t)2,

g2(0) = g3(0) = 0.

(3.8)

The function g3 satisfies a Riccati equation, which may be solved by standard re-
duction techniques or numerical integration; see e.g. [17]. Let |I(t)〉 =

∑
S,I I|S, I〉,

and then I(t) = 〈I(t)|p(t)〉 is the number of infected individuals in the population
at time t. In Fig. 1 we illustrate I(t) with respect to different choices of β(t) and
γ(t) in a population of size N = 100.

When γ = 0, the model reduces to a simple susceptible-infected (SI) epidemics,
where individuals, once infected, are infected (and infectious) forever. In this case,
the solution of (3.6) can be obtained as

g1(t) = −B(t),

g3(t) =
∫ t

0

e−B(u)β(u)du,

g2(t) = g4(t) = 0,

(3.9)

where B(t) =
∫ t

0
β(u)du. Note that this can be derived similarly from the SIR

model addressed in [8]. The consistency confirms that our result is valid.

Conclusion. In this paper, we showed that it is possible to solve susceptible-
infected-susceptible (SIS) model via a Lie algebra methodology. Lie algebra solution
of differential equations has found host of useful applications in physical systems,
where wealthy symmetries exist. Due to insufficient symmetry, this method is
not widely used in biological or social systems. For future work, more complex



6 Y. SHANG EJDE-2012/233

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

N
um

be
r 

of
 in

fe
ct

ed
 I(

t)

Time t

β(t)=1,γ(t)=0.5
β(t)=0.5,γ(t)=1
β(t)=et,γ(t)=1

Figure 1. Dynamics of the SIS model with N = 100 and |p(0)〉 =
|0.9 · N, 0.1 · N〉. I(t) = 〈I(t)|p(t)〉 are plotted with respect to
β(t) = 1, γ(t) = 0.5 (circles), β(t) = 0.5, γ(t) = 1 (squares), and
β(t) = et, γ(t) = 1 (triangles), where |p(t)〉 are obtained from (3.5).

and realistic epidemiological mechanisms, such as susceptible-exposed-infectious-
recovered (SEIR) model, are worthy of further research.
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