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WEAK COMPACTNESS OF BIHARMONIC MAPS

SHENZHOU ZHENG

Abstract. This article shows that if a sequence of weak solutions of a per-
turbed biharmonic map satisfies Φk → 0 in (W 2,2)∗ and uk ⇀ u weakly in
W 2,2, then u is a biharmonic map. In particular, we show that the space of
biharmonic maps is sequentially compact under the weak-W 2,2 topology.

1. Introduction

Let Ω ⊂ R4 be a bounded smooth domain, and (N , h) be a C3-smooth compact k-
dimensional Riemannian manifold without boundary, embedded into the Euclidean
space Rd. For 1 ≤ l < +∞ and 1 ≤ p < +∞, define the Sobolev space W l,p(Ω,N )
by

W l,p(Ω,N ) = {v ∈ W l,p(Ω, Rd) : v(x) ∈ N a.e. x ∈ Ω}.
In this article, we discuss the limiting behavior of weakly convergent sequences of
approximate (extrinsic) biharmonic maps {um} ⊂ W 2,2(Ω,N ) in dimension four,
especially weak compactness of sequence of biharmonic maps. Before stating them,
let us recall some related notions.

Recall that an (extrinsic) biharmonic map is the critical point of the Hessian
energy functional

E2(v) :=
∫

Ω

|∆v|2, ∀v ∈ W 2,2(Ω,N ). (1.1)

More precisely;

Definition 1.1. A map u ∈ W 2,2(Ω,N ) is called weakly biharmonic if u is a critical
point of the Hessian energy functional (1.1) with respect to compactly supported
variations on N . That is, if for all ξ ∈ C∞

0 (Ω, Rd), we have
d

dt

∣∣∣
t=0

E2(Π(u + tξ)) = 0 (1.2)

where Π denotes the nearest point projection from Rd to N .

Note that for the tubular neighborhood Vδ of N in Rd for δ > 0 sufficiently
small, we write the smooth nearest point projection ΠN : Vδ → N . For u(x) ∈ N ,
let P(u) : Rd → TuN be the orthogonal projection from Rd onto the tangent space
TuN of N at u ∈ N , and P⊥(u) be the orthogonal projection onto the normal space
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with P⊥(u) = Id − P(u). Then, from the point of geometric view we readily have
∆2u ⊥ TuN a. e. Ω, which implies the following Euler-Lagrange equation thanks
to Wang’s work [15, 16].

∆2u = ∆(B(u)(∇u,∇u)) + 2∇ · 〈∆u,∇(P(u))〉 − 〈∆(P(u)),∆u〉, (1.3)

where B(y)(X, Y ) = −∇XP(y)(Y ), for X, Y ∈ TyN , is the second fundamental
form on N ⊂ Rd.

It is well known that biharmonic maps are higher order extensions of harmonic
maps. The study of biharmonic maps has generated considerable interests after
the initial work by Chang-Wang-Yang [2], for further development the readers can
refer to Wang [15, 16], Strzelecki [12], Lamm-Rivière [6], Struwe [11], Scheven [9, 10]
etc. Generally speaking, a singular phenomenon, which appears as various critical
problems related nonlinear systems, especially in the investigation of harmonic,
biharmonic and p-harmonic maps, leads to defects of strong convergence. Typically,
some part energy of variation functional is lost in the limit passage so that the
sequence does not have to converge strongly. So it is an important and interesting
problem to consider the compactness of the sequence of biharmonic maps in the
weak topology.

Definition 1.2. A sequence of biharmonic maps {um} ⊂ W 2,2(Ω,N ) is called
a Palais-Smale sequence for the energy functional E2(um) on the admissible set
W 2,2(Ω,N ), if the following two conditions hold:

(a) um ⇀ u weakly in W 2,2(Ω,N ), and
(b) E′

2(um) → 0 in (W 2,2(Ω,N ))∗,
where (W 2,2(Ω,N ))∗ is the dual of W 2,2(Ω,N ).

In this note, we are mainly interested in the compactness problem in the weak
topology for the sequence of biharmonic maps in dimension four. We show stability
results of biharmonic maps in R4 under the weak convergence, which is done by
a divergence structure of Euler-Lagrange’s equations concerning biharmonic maps
to general manifolds due to Lamm-Rivière (cf.[6, 11, 7]). In this way we can avoid
Lions’ concentration compactness argument [3, 14]. In order to further analyze the
behaviour of weakly convergent Palais-Smale sequences for the variation functional,
we are supposed that um is a Palais-Smale sequence for Hessian energy functional
with disturbance, which satisfies

−∆2um + Φm ⊥ TumN (1.4)

and
um is bounded in W 2,2(Ω, Rd), Φm → 0 in (W 2,2(Ω, Rd))∗. (1.5)

Theorem 1.3. Assume that {um} ⊂ W 2,2(Ω,N ) is a Palais-Smale sequence of
Hessian energy functionals (1.1); i.e., they satisfy the relation (1.4) with Φm → 0
in (W 2,2(Ω,N ))∗, and um ⇀ u weakly in W 2,2(Ω,N ). Then u ∈ W 2,2(Ω,N ) is a
biharmonic map.

Here, we would like to point out that if Φm is bounded in Lp for p > 4
3 . Theorem

1.3 is a consequence of the main theorem by Wang-Zheng[17, 18].

Remark 1.4. While uk ∈ W 1,2(Ω,N ) is a Palais-Smale sequence of harmonic
maps, Bethuel [1] was the first to obtain the conclusion of its weak compactness.
Later, Freire-Müller-Struwe [3] simplified Bethuel’s proof by way of Lions’ concen-
tration argument. With similar approach to the Freire-Müller-Struwe’s approach,
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Strzelecki-Zatorska [13] and Wang [14] derived the conclusions of compactness to
higher dimensional H-system and n-harmonic maps into manifold in the critical
dimension, respectively. Recently, Strzelecki [12, Proposition 1.2] and Goldstein-
Strzelecki-Zatorska [4, Theorem 1.2] also achieved the compactness for biharmonic
maps and polyharmonic maps into sphere in the critical dimension respectively, who
made use of transferring into the equation with divergence form on the basis of the
geometric nature of sphere, which avoids to employ Lions’ concentration argument.

As an immediate corollary, we obtain a compactness conclusion of any weakly
convergent sequence of weak solutions of biharmonic maps as follows. More pre-
cisely, we have

Corollary 1.5. Assume that {um} ⊂ W 2,2(Ω,N ) are a sequences of biharmonic
maps converging weakly to u in W 2,2(Ω,N ). then u is a biharmonic map.

2. Conservation law for biharmonic maps

In what follows, it is convenient to rewrite the geometric expression (1.4) into
the divergence structure, due to the initial work of Lamm-Rivière [6] on biharmonic
maps. To this end, we introduce some notation. Let M(d) be the space of d × d
matrices and so(d) := {A ∈ M(d) : At+A = 0}, ∧lR4 be l-tuple exterior differential
form on R4, and L2 ·W 1,2(B1,M(d)) be the space of linear combination of products
of an L2 map with an W 1,2 map form B1 into the space M(d). We observe the
following fourth order elliptic systems in 4-dimension raised by Lamm-Rivière [6]
on biharmonic maps to Riemannian manifold N .

∆2u = ∆(V · ∇u) + div w∇u) +∇ω∇u + F∇u. (2.1)

The study of this equation can be traced back to Rivière’s work [8] on the conser-
vation law of conformally invariant variational problems including harmonic maps
and H-surfaces, which makes the second order elliptic systems −∆u = Ω · ∇u
to be in divergence form, where Ω = Ωk∂xk

is a vectorfield tensored d × d anti-
symmetric matrices. Later, Lamm-Rivière [6] and Struwe [11] discovered another
conservation law obtained from (2.1) by extending their original idea concerning
harmonic maps to the fourth-order setting concerning biharmonic maps. Now,
let us proceed to a Hodge decomposition of dPP⊥ − P⊥dP = dα + d∗β with
α ∈ W 2,2(B1, so(d)), β ∈ W 2,2

0 (B1,∧2(R4)⊗M(d)) (see [5]) so that

∆α = ∆PP⊥ − P⊥∆P ∈ L2(B1),

∆d∗β = ∆P ∧ dP⊥ −∆P⊥ ∧ dP ∈ L2 ·W 1,2(B1,∧2(R4)⊗M(d)).

Thanks to [7, Proposition 1.1], we can rewrite the geometric expression (1.4) as

∆2um = ∆(Vm · ∇um) + div wm∇um) +∇ωm∇um + Fm∇um + Φm, (2.2)

in the distributional sense, where

Vm = −2∇P⊥
m − (∇PmP⊥

m − P⊥
m∇Pm)

wm = ∆P⊥
m − 2∇(∇PmP⊥

m − P⊥
m∇Pm)

ωm = ∆αm

Fm = ∆d∗βm + 2∇yP⊥
m∇(∇P⊥

m∇um) + 2∇y∇P⊥
m∆um,

(2.3)
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and
|Vm| ≤ C|∇um|,

|wm|+ |∇Vm|+ |ωm| ≤ C(|∇2um|+ |∇um|2),
|Fm| ≤ C(|∇2um||∇um|+ |∇um|3),

(2.4)

furthermore, Vm ∈ W 1,2(B1,M(d) ⊗ ∧1R4), wm ∈ L2(B1,M(d)), Φm ∈ Lp(B1),
Wm = ∇ωm +Fm such that ωm ∈ L2(B1, so(d)), Fm ∈ L2 ·W 1,2(B1,M(d)⊗∧1R4)
and Φm → 0 in (W 2,2(Ω,N ))∗.

First, recall a decomposition result to the fourth order systems from Lamm-
Rivière’s work (see [6, Theorem 1.5]), which is related to biharmonic maps.

Proposition 2.1. Let V ∈ W 1,2(B1,M(d)⊗∧1R4), w ∈ L2(B1,M(d)), and W =
∇ω + F with ω ∈ L2(B1, so(d)), F ∈ L2 ·W 1,2(B1,M(d)⊗∧1R4). If the smallness
condition

‖V ‖W 1,2 + ‖w‖L2 + ‖ω‖L2 + ‖F‖L2·W 1,2 < ε, (2.5)
is satisfied for some ε > 0, then there exist A ∈ L∞ ∩ W 2,2(B1, GL(d)) and B ∈
W 1, 4

3 (B1,M(d)⊗ ∧2R4) such that

∇∆A + ∆AV −∇Aw + AW = curl B, in B1, (2.6)

with the estimate

‖A‖W 2,2 + ‖dist(A,SO(d))‖L∞ + ‖B‖
W 1, 4

3

≤ C
(
‖V ‖W 1,2 + ‖w‖L2 + ‖ω‖L2 + ‖F‖L2·W 1,2

)
,

see [7, Theorem 2.1].

Note that for the Palais-Smale sequence um ∈ W 2,2(B1) of biharmonic maps in
R4, by a simple computation from the estimates (2.4) we obtain that

‖Vm‖2W 1,2 + ‖wm‖2L2 + ‖ωm‖2L2 + ‖Fm‖2L2·W 1,2 ≤ C

∫
B1

|∇2um|2 + |∇um|4, (2.7)

‖Am‖2W 2,2 + ‖dist(Am, SO(d))‖2L∞ + ‖Bm‖
4
3

W 1, 4
3
≤ C

∫
B1

|∇2um|2 + |∇um|4.

(2.8)

Therefore, under the smallness assumption
∫

B1
|∇2um|2 + |∇um|4 ≤ ε, we obtain

from Proposition 2.1 and (2.2) that

∆(Am∆um) = div Km + AmΦm, x ∈ B1, (2.9)

where

Km =
(
2∇Am∆um −∆Am∇um + Amwm∇um

−∇Am(Vm · ∇um) + Am∇(Vm · ∇um) + Bm · ∇um

)
.

(2.10)

Lemma 2.2 (ε-weak compactness). In dimension four, there exists an ε0 > 0 such
that if {um} ⊂ W 2,2(B1,N ) is a Palais-Smale sequence of (extrinsic) biharmonic
maps (1.4) and (1.5) with Ω replaced by B1, um ⇀ u weakly in W 2,2(B1,N ), and
satisfy ∫

B1

|∇2um|2 + |∇um|4 ≤ ε2; (2.11)

then u ∈ W 2,2(B1,N ) is also a biharmonic map.
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Proof. Under the smallness condition
∫

B1
|∇2um|2 + |∇um|4 ≤ ε2, it follows from

Proposition 2.1 that the divergent structure (2.9) is valid. Now we analyze the con-
vergence of sequence to any weak solutions of equation (2.9) under the disturbance
conditions (1.5). Thanks to

um ⇀ u in W 2,2(B1, Rd), Φm → 0 in (W 2,2(B1, Rd))∗,

up to taking subsequences, we derive from the estimates (2.7) and (2.8) that
Vm ⇀ V weakly in W 1,2(B1), wm ⇀ w weakly in L2(B1),Fm ⇀ F weakly in
L2 · W 1,2(B1), Am ⇀ A weakly in W 2,2(B1) and Bm ⇀ B weakly in W 1, 4

3 (B1).
By Sobolev’s compact imbedding theorem, it follows that ∇um → ∇u strongly in
L2(B1), ∇Am → ∇A strongly in L2(B1) and Am → A strongly in L2(B1). Hence,
it gives

∆(Am∆um) → ∆(A∆u), D′(B1), (2.12)∣∣AmΦm

∣∣
{W 2,2,(W 2,2)∗} ≤ ‖Am‖W 2,2(B)‖Φm‖(W 2,2(B))∗ → 0; (2.13)

where D′ is Schwartz distributional spaces of D.
For Km, we readily see that Km ∈ L

4
3 (B1). Then we have

2∇Am∆um −∆Am∇um + Amwm∇um −∇Am(Vm · ∇um) + Am∇(Vm · ∇um)

⇀ 2∇A∆u−∆A∇u + Aw∇u−∇A(V · ∇u) + A∇(V · ∇u)
(2.14)

weakly L1(B1). In addition, since Bm ∈ W 1, 4
3 (B1), it implies Bm ⇀ B weakly in

L2(B1). Then, for Bm · ∇um we have

Bm · ∇um ⇀ B · ∇u

weakly in L1(B1), and
div Km → div K, D′(B1). (2.15)

Combining (2.12),(2.14) and (2.15), we obtain

∆(A∆u) = div K, x ∈ B1, (2.16)

in D′(B1), where

K =
(
2∇A∆u−∆A∇u + Aw∇u−∇A(V · ∇u) + A∇(V · ∇u) + B · ∇u

)
.

That is, u is a biharmonic map of B1. �

3. Proof of main result

Proof of Theorem 1.3. Assume that {um}∞m=1 ∈ W 2,2(Ω,N ) is a Palais-Smale se-
quence of biharmonic maps with disturbance (1.5), and um ⇀ u weakly in the
space W 2,2(Ω,N ). Since um is a bounded sequence in W 2,2(Ω,N ), we have that
µm :=

∫
Ω
|∇2um|2 + |∇um|4 is a family of nonnegative Radon measures with

M = supm µm(Ω) < ∞. Therefore, we can assume, after passing up to subse-
quences, that there is a nonnegative Radon measure µ on Ω such that

µm :=
∫

Ω

|∇2um|2 + |∇um|4 → µ,

as a convergence of Radon measures. Let ε0 > 0 be the same constant as in Lemma
2.2 and define singular set Σ by

Σ := {x ∈ Ω : µ({x}) ≥ ε2
0}. (3.1)
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Then, by a simple covering argument we have that Σ is a finite set, and

H0(Σ) ≤ M

ε20
, M = sup

m

∫
Ω

|∇2um|2 + |∇um|4 < +∞.

Here H0 is 0-dimensional Hausdorff measure. In fact, let Σ′ = {x1, . . . , xm} ⊂ Σ
be any finite subset of Σ, then there is a small δ0 > 0 such that {Bδ0(xi)}s

i=1 are
mutually disjoint balls such that

lim inf
m→∞

∫
Bδ0 (xi)

|∇2um|2 + |∇um|4 ≥ ε2
0, i = 1, 2, . . . , s;

which implies that there is a natural number Ks ∈ N such that for any m ≥ Ks

satisfying ∫
Bδ0 (xi)

|∇2um|2 + |∇um|4 ≥ ε2
0, i = 1, 2, . . . , s.

Therefore, for any m ≥ Ks we have

sε2
0 ≤

s∑
i=1

∫
Bδ0 (xi)

|∇2um|2 + |∇um|4

=
∫

Ss
i=1 Bδ0 (xi)

|∇2um|2 + |∇um|4

≤
∫

Ω

|∇2um|2 + |∇um|4 ≤ M < ∞.

This implies s ≤ Mε−2
0 .

Therefore, for any x0 ∈ Ω\Σ there exists an r0 > 0 such that µ(B2r0(x0)) < ε2
0.

On account of

lim sup
m→∞

∫
Br0 (x0)

|∇2um|2 + |∇um|4 ≤ µ(B2r0(x0)),

which states clearly that we may assume that there exists K0 ≥ 1 such that while
m > K0, it follows that ∫

Br0 (x0)

|∇2um|2 + |∇um|4 ≤ ε2
0. (3.2)

Therefore, from Lemma 2.2 it implies that u is a biharmonic map in Br0(x0). Since
x0 ∈ Ω\Σ is arbitrary, we conclude that u is a biharmonic map in Ω\Σ. It is
standard argument to show that u is biharmonic map in Ω (see [15, 16]). The proof
of Theorem 1.3 is complete. �
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