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SPECTRAL MAPPING THEOREM FOR AN EVOLUTION
SEMIGROUP ON A SPACE OF VECTOR-VALUED

ALMOST-PERIODIC FUNCTIONS

OLIVIA SAIERLI

Abstract. We give some characterizations for exponential stability of a pe-
riodic evolution family of bounded linear operators acting on a Banach space
in terms of evolution semigroups acting on a special space of almost periodic
functions. As a consequence, a spectral mapping theorem is stated.

1. Introduction

In the recent article [5], some connections between exponential stability of a
q-periodic evolution family of bounded linear operators acting on a Banach space
and spectral properties of the infinitesimal generator of the evolution semigroup
associated to the evolution family, was established. There we cannot close the
chain of equivalences, as in Theorem 4.1 below, because the state space of functions
where the evolution semigroup acts, is not rich enough. The aim of this article is to
enlarge the state space of functions, used there, such that the chain to be closed. As
consequence, a spectral mapping theorem for the evolution semigroup is obtained.

This article is organized as follows. The next section contains the necessary
definitions for the paper to be self-contained. In the third section we introduce
the evolution semigroup associated with the periodic evolution family. Section 4 is
devoted to prove the main result, while the last section deals with a spectral map-
ping theorem for the evolution semigroup, which is a consequence of the theoretical
result established in the previous section.

2. Notation and preliminary results

Throughout this article X stands for a Banach space and L(X) denotes the
Banach algebra of all linear and bounded operators acting on X. The norms in X
and in L(X) are denoted by the same symbol, namely with ‖ · ‖.

Let q > 0. Recall that a family U = {U(t, s) : t ≥ s ≥ 0} ⊂ L(X) is a strongly
continuous and q-periodic evolution family on X if:

(1) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r ≥ 0.
(2) U(t, t) = I for t ≥ 0, where I is the identity operator of L(X).
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(3) For each x ∈ X, the map

(t, s) 7→ U(t, s)x : {(t, s) ∈ R2 : t ≥ s ≥ 0} → X

is continuous.
(4) U(t + q, s + q) = U(t, s) for all pairs (t, s) with t ≥ s ≥ 0.

Clearly, any q-periodic evolution family U = {U(t, s)} defined for the pairs (t, s)
with t ≥ s ≥ 0 could be extended to a q-periodic evolution family for all pairs (t, s)
with t ≥ s ∈ R, by setting U(t, s) = U(t + kq, s + kq), where k is the smallest
positive integer number for which s + kq ≥ 0. We say that the evolution family
U has exponential growth if there exist the constants M ≥ 1 and ω ∈ R such that
‖U(t, s)‖ ≤ Meω(t−s), for all t ≥ s. Every strongly continuous and q-periodic
evolution family acting on a Banach space has an exponential growth, [9]. Recall
that a one parameter family T = {T (t)}t≥0 is a strongly continuous semigroup if
T (t + s) = T (t) ◦ T (s) for all t ≥ s ≥ 0, T (0) = I and for each x ∈ X the map t 7→
T (t)x is continuous. If a strongly continuous evolution family U = {U(t, s)}t≥s≥0,
verifies the convolution condition, U(t, s) = U(t − s, 0), for every pair (t, s) with
t ≥ s ≥ 0, then the one parameter family, {T (t)}t≥0, defined by T (t) := U(t, 0),
is a strongly continuous semigroup. Each strongly continuous semigroup T has an
infinitesimal generator A : D(A) ⊂ X → X, defined by Ax := d

dtT (t)x|t=0. It is
well-known that A is linear, densely defined and closed operator. The domain D(A)
consists by all x ∈ X for which the map t 7→ T (t)x is differentiable at t = 0. By
ρ(A) is denoted the resolvent set of A, i.e. the set of all complex scalars z for which
zI −A is an invertible operator in L(X). The set σ(A) := C \ ρ(A) is the spectrum
of the operator A and the set s(A) := sup{Re(λ) : λ ∈ σ(A)} is the spectral bound
of A. For further details concerning the theory of strongly continuous semigroups
we refer to the monographs [12, 1].

Proposition 2.1. Let U = {U(t, s) : t ≥ s ≥ 0} be a strongly continuous and
q-periodic evolution family acting on the Banach space X. The following four state-
ments are equivalent:

(1) The family U is uniformly exponentially stable.
(2) There exist two positive constants N and ν such that

‖U(t, 0)‖ ≤ Ne−νt, for all t ≥ 0.

(3) The spectral radius of U(q, 0) is less than one; i.e.,

r(U(q, 0)) := sup{|λ|, λ ∈ σ(U(q, 0))} = lim
n→∞

‖U(q, 0)n‖ 1
n < 1.

(4) For each µ ∈ R, one has

sup
n≥1

‖
n∑

k=1

e−iµkU(q, 0)k‖ := M(µ) < ∞.

The proof of the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) is obvious. The proof of
(4) ⇒ (1) can be found in [4, Lemma 1].

3. An evolution semigroup

In this section we consider a space of X-valued functions and define an evolution
semigroup acting on it. For this purpose, we need the following spaces:
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• BUC(R, X) which is the space of all X-valued bounded uniformly con-
tinuous functions defined on R, endowed with the “sup” norm ‖f‖∞ :=
supt∈R ‖f‖.

• Pq(R, X) which is the subspace of BUC(R, X) consisting of all functions F
such that F (t + q) = F (t) for all t ∈ R.

• AP1(R, X) which is the space of all X-valued functions defined on R repre-
sentable in the form f(t) =

∑k=∞
k=−∞ eiµktck(f) for all t ∈ R, where µk ∈ R,

ck(f) ∈ X and

‖f‖1 :=
k=∞∑

k=−∞

‖ck(f)‖ < ∞.

Further details about the space AP1(R, X) can be found in [10].
For an arbitrary t ≥ 0, we denote by At the set of all X-valued functions defined

on R such that there exists a function F in Pq(R, X) ∩ AP1(R, X) with F (t) = 0,
f = F|[t,∞)

and f(s) = 0, for all s < t. Set A :=
{
eiµ· ⊗ f : µ ∈ R and f ∈ ∪t≥0At

}
and let E(R, X) := span(A). Consider the space Ẽ(R, X) := span(A) which is
a closed subspace of BUC(R, X) endowed with the ”sup” norm. The evolution
semigroup {T (t)}t≥0 associated to a strongly continuous and q-periodic evolution
family U = {U(t, s)}t≥s on Ẽ(R, X) is formally defined by

(T (t)f̃)(s) :=

{
U(s, s− t)f̃(s− t), s ≥ t

0, s < t
(3.1)

for f̃ ∈ Ẽ(R, X).

Proposition 3.1. The evolution semigroup {T (t)}t≥0, defined in (3.1), acts on
Ẽ(R, X) and is strongly continuous.

Proof. Let f̃(t) = eiµtf(t), with µ ∈ R and f ∈ ∪t≥0At. Then, there exist r ≥ 0
and a function F ∈ Pq(R, X) ∩ AP1(R, X) such that F (r) = 0, f(s) = F (s) for
s ≥ r and f(s) = 0 for s < r. Thus, for each fixed t ≥ 0 and s ∈ R, we have

(T (t)f̃)(s) =

{
eiµ(s−t)U(s, s− t)F (s− t), s ≥ t + r

0, s < t + r.

The map s 7→ G(s) := e−iµtU(s, s − t)F (s − t) is q-periodic and belongs to
AP1(R, X). Moreover

‖G(·)‖1 ≤ ‖U(s, s− t)‖‖
k=∞∑

k=−∞

eiµk(s−t)ck(F )‖ ≤ Meωt‖F (·)‖1 < ∞,

for some M ≥ 1 and ω ∈ R. Thus, T (t)f̃ ∈ A.
As operator from Ẽ(R, X) to BUC(R, X), T (t) is linear. When f̃ = αg̃ +

βh̃ ∈ E(R, X), with g̃, h̃ ∈ A and α, β are complex scalars, one has T (t)f̃ =
αT (t)(g̃) + βT (t)(h̃). But T (t)(g̃), T (t)(h̃) ∈ A and therefore T (t)f̃ belongs to
E(R, X). Finally, let f̃ in Ẽ(R, X). There exists a sequence (f̃n) in E(R, X) such
that supt≥0 ‖f̃n(t)− f̃(t)‖ → 0 as n →∞. Hence

sup
s≥0

‖(T (t)f̃n)(s)− (T (t)f̃)(s)‖ = sup
s≥t

‖U(s, s− t)f̃n(s− t)− U(s, s− t)f̃(s− t)‖
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≤ Meωt sup
s≥t

‖f̃n(s− t)− f̃(s− t)‖ → 0.

Thus, the evolution semigroup T acts on Ẽ(R, X). In what follows we prove that
it is strongly continuous. For each f ∈ A, we have

‖T (t)f − f‖ eE(R,X)

= sup
s≥t

‖U(s, s− t)f(s− t)− f(s)‖

= sup
s≥t

‖U(s, s− t)f(s− t)− U(s, s− t)f(s) + U(s, s− t)f(s)− f(s)‖

≤ sup
s≥t

‖U(s, s− t)‖‖f(s− t)− f(s)‖+ sup
s≥t

‖[U(s, s− t)− U(s, s)]f(s)‖

≤ Meωt sup
s≥t

‖f(s− t)− f(s)‖+ sup
s≥t

‖[U(s, s− t)− U(s, s)]f(s)‖.

The first term of the last line tends to zero as t → 0, because the function f̃ is
uniformly continuous, while the second one tends to zero because the evolution
family U is strongly continuous.

Let f̃ ∈ Ẽ(R, X) and let (fn) be a sequence in E(R, X) converging to f̃ . Choose
a positive integer number N such that ‖f̃ − fN‖∞ is sufficiently small. Then,

‖T (t)f̃ − f̃‖ eE(R,X)

≤ ‖T (t)f̃ − T (t)fN‖ eE(R,X) + ‖T (t)fN − fN‖ eE(R,X) + ‖fN − f̃‖∞

≤ Meωt‖f̃ − fN‖∞ + ‖T (t)fN − fN‖+ ‖fN − f̃‖∞.

The middle term tends to zero as t → 0+ as is shown before. �

4. Results

In the next theorem we collect some characterizations for uniform exponential
stability of a q-period evolution family in terms of evolution semigroups and admis-
sibility related to the spaces Ẽ(R, X) and BUC(R, X). Similar results to Theorem
4.1 was stated in [5], but there the chain of equivalences was not closed. Our space
Ẽ(R, X) is rich enough and this property allow us to prove (5) ⇒ (1) under the
assumption that there is a dense set D ⊂ X such that the map U(·, 0)x satisfy a
Lipschitz condition on R+ := (0,∞).

Theorem 4.1. Let U be a strongly continuous and q-periodic evolution family
acting on a Banach space X and let T be its associated evolution semigroup on
Ẽ(R, X). Denote by G its infinitesimal generator. Consider the statements:

(1) U is uniformly exponentially stable.
(2) T is uniformly exponentially stable.
(3) G is invertible.
(4) For each f̃ ∈ Ẽ(R, X) the map

t 7→ g ef (t) :=
∫ t

0

U(t, s)f̃(s)ds

belongs to Ẽ(R, X).
(5) For each f̃ ∈ Ẽ(R, X) the map g ef belongs to BUC(R+, X).
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Then,
(1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5).

In addition, if there is a dense subset D of X such that for each x ∈ D the map
s 7→ U(s, 0)x : R+ → X satisfy a Lipschitz condition on R+, then (5) ⇒ (1).

Proof. (1) ⇒ (2). Let N and ν be two positive constants such that ‖U(t, s)‖ ≤
Ne−ν(t−s) for all t ≥ s. Then, for all t ≥ 0 and any f̃ belonging to Ẽ(R, X), one
has

‖T (t)f̃‖ eE(R,X) = sup
s≥t

‖U(s, s− t)f̃(s− t)‖

≤ Ne−νt sup
s≥t

‖f̃(s− t)‖

= Ne−νt‖f̃‖ eE(R,X).

(2) ⇒ (1). Let g be a q-periodic function given on [0, q] by g(s) := 4
q2

(
s− q

2

)2.
It is obviously that g belongs to AP1(R, C). Then, for each nonzero x ∈ X, the
map

s 7→ fx(s) :

{
eiµsg(s)x, s ≥ q

2

0, s < q
2 ,

belongs to Ẽ(R, X). By assumption, there exist two positive constants N and ν
such that for all s ≥ t ≥ 0, have that

Ne−νt‖f̃x‖ eE(R,X) ≥ ‖(T (t)f̃x)(s)‖ ≥ g(s− t)‖U(s, s− t)x‖.

For s = t + q this yields

Ne−νt‖x‖ ≥ Ne−νt‖f̃x‖ eE(R,X) ≥ g(q)‖U(t + q, q)x‖ = ‖U(t, 0)x‖.

The assertion follows by applying Proposition 2.1.
(2) ⇒ (3). The growth bound ω0(T ) is negative and s(G) ≤ ω0(T ). Hence 0

belongs to ρ(G).
(3) ⇒ (4). We need de following lemma.

Lemma 4.2. Let f̃ , ũ ∈ Ẽ(R, X). The following two statements are equivalent:

• ũ ∈ D(G) and Gũ = −f̃ .
• ũ(t) =

∫ t

0
U(t, s)f̃(s)ds for all t ≥ 0.

The proof of this lemma is similar to [13, Lemma 1.1], an it is omitted. Let
f̃ ∈ Ẽ(R, X). The surjectivity of G yields the existence of u in D(G) subset of
E(R, X) such that Gu = −f̃ . The assertion follows by applying Lemma 4.2.

(4) ⇒ (5). The map g ef is bounded because it belongs to Ẽ(R, X) which is a
subset of BUC(R, X).

(5) ⇒ (1). Let consider the map H : Ẽ(R, X) → BUC(R, X), given by

H(f̃) :=
∫ ·

0

U(·, s)f̃(s)ds.

Let f̃ , h̃, f̃n ∈ Ẽ(R, X) with f̃n → f̃ and H(f̃n) → h̃. Then for each fixed t ≥ 0,
one has (

H(f̃n)−H(f̃)
)

(t) =
∫ t

0

(
U(t, s)(f̃n(s)− f̃(s))

)
ds → 0,
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when n → ∞. Therefore, h̃ = H(f̃); i.e., the operator H is closed, and then it is
bounded. As a consequence there exists a positive constant k, such that

‖H(f̃)‖∞ ≤ k‖f̃‖∞, ∀f̃ ∈ Ẽ(R, X).

Let g in Pq(R, R) satisfying a Lipschitz condition on R and having the properties
that g(0) = g(q) = 0, sups∈[0,q] g(s) := k1 < ∞ and m(µ) :=

∫ q

0
eiµsg(s)ds 6= 0 for

each real number µ. For an arbitrary x in D let us consider the map gx ∈ Pq(R+, X)
given on [0, q] by gx(s) := g(s)U(s, 0)x. Obviously, gx satisfies a Lipschitz condition
on R, and by [2, Lemma 3.3], it belongs to AP1(R, X). Now, consider the map

s 7→ f̃x,µ(s) :=

{
eiµsgx(s), s ≥ 0
0, s < 0.

Clearly, f̃x,µ belongs to Ẽ(R, X). Then,

H(f̃x,µ)(t) =
∫ t

0

U(t, t− s)f̃x,µ(t− s)ds =
∫ t

0

U(t, ρ)f̃x,µ(ρ)dρ.

Let t = nq, for n = 0, 1, 2, . . . . Then∫ nq

0

U(nq, ρ)f̃x,µ(ρ)dρ =
n−1∑
k=0

∫ (k+1)q

kq

eiµρU(nq, ρ)gx(ρ)dρ

=
n−1∑
k=0

∫ q

0

eiµ(kq+τ)U((n− k)q, τ)gx(τ)dτ

=
n−1∑
k=0

( ∫ q

0

eiµτg(τ)dτ
)
eiµkqU(q, 0)n−kx

= m(µ)
n−1∑
k=0

eiµkqU(q, 0)n−kx.

Passing to the norms, we obtain

‖
n−1∑
k=0

eiµkqU(q, 0)n−kx‖ =
1

|m(µ)|
‖

∫ nq

0

U(nq, ρ)f̃x,µ(ρ)dρ‖

≤ k

|m(µ)|
‖fx,µ‖∞ ≤ kk1K

|m(µ)|
‖x‖,

(4.1)

for every x in D, where K := supt∈[0,q] ‖U(t, 0)‖ = Meωq. Taking into account that
D is a dense set in X yields that (4.1) holds for every x in X. The assertion follows
applying by Proposition 2.1. �

Remark 4.3. (i) Let q be a positive number and let h be a C-valued continuous
function that is not differentiable at any point in [0, q]. In addition, we suppose
that h(t) 6= 0, for any t ∈ [0, q], and h(0) = h(q). Denote by h̃ the extension by
periodicity of the function h to R+. An example of such a function could be found
in [15]. We can easily verify that{

U(t, s) :=
h̃(t)

h̃(s)
, t ≥ s ≥ 0

}
,
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is a strongly continuous and q-periodic evolution family on C. As is well known,
every complex-valued function, defined and satisfying a Lipschitz condition on the
interval [0, q], is almost everywhere differentiable on that interval. Then, the map
t 7→ U(t, 0) = 1eh(0)

h̃(t) does not satisfy a Lipschitz condition on (0, q).

(ii) First recall the Weis-Wrobel Theorem, [16].
Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on a complex

Banach space. For each λ in the resolvent set, let us denote by R(λ, A) the resolvent
operator of the infinitesimal generator A of T. If the resolvent set, ρ(A), contains
the closed half plane C+ := {λ ∈ C : Re(λ) ≥ 0} and the map R(·, A) is bounded
on C+, then, the semigroup T is exponentially stable; i. e., the growth bound

ω1(T) = lim sup
t→∞

ln ‖T (t)R(z,A)‖
t

is negative, for some (and then for all) z ∈ ρ(A).
Note that, if f ∈ Ẽ(R, X), then, for each µ ∈ R, eiµ·f belongs to Ẽ(R, X).

Indeed, if f ∈ Ẽ(R, X), then, there exists a sequence (fn), with fn ∈ E(R, X), such
that fn converge uniformly to f . Thus, for every µ ∈ R,

sup
s≥0

‖eiµsfn(s)− eiµsf(s)‖ = sup
s≥0

‖fn(s)− f(s)‖ → 0.

Now, assume that the family U is uniformly bounded and that the statement (5),
from the previous theorem, holds. Then

sup
t≥0

‖
∫ t

0

eiµsU(t, s)g(s)ds‖ ≤ M‖g‖,

where g(s) := e−iµsf(s), for all f ∈ Ẽ(R, X) and µ ∈ R. Applying first [5,
Lemma 3.3] (which remains true when replacing E(R, X)) with Ẽ(R, X) and then
[14, Lemma 3], it follows that iµ ∈ ρ(G) and supµ∈R ‖R(iµ, G)‖ < ∞. Therefore,
by Hille-Yoshida theorem and Phragmen-Lindelöf theorem follows that the map
R(·, A) is bounded on C+.

Now, in view of Weis-Wrobel’s theorem, the evolution semigroup T , associated
to U on Ẽ(R, X), is exponential stable. At least for us, remains as open problem
whether the exponential stability of the evolution semigroup T implies the uniform
exponential stability of U .

Thus, building an example on arbitrary Banach spaces, where the implication
(5) ⇒ (1) does not occur, seems to be a difficult matter that could be the subject
for an another paper.

Corollary 4.4. Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on
X and let T be its associated evolution semigroup on Ẽ(R, X). Denote by G its
infinitesimal generator. The following five statements are equivalent.

(1) T is uniformly exponentially stable.
(2) T is uniformly exponentially stable.
(3) G is invertible.
(4) For each f̃ ∈ Ẽ(R, X) the map

t 7→ g ef (t) :=
∫ t

0

T (t− s)f̃(s)ds

belongs to Ẽ(R, X).
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(5) For each f̃ ∈ Ẽ(R, X) the map g ef is bounded on R+.

Proof. In the proof of (5) ⇒ (1) we no longer need additional conditions. Indeed,
for x ∈ D(A), the map t 7→ T (t)x, is Lipschitz on R+. To see this, let t, s ∈ [0, q].
Then

‖T (t)x− T (s)x‖ = ‖
∫ t

s

d

dτ
T (τ)xdτ‖

= ‖
∫ t

s

T (τ)Axdτ‖

≤ sup
τ∈[0,q]

‖T (τ)‖‖Ax‖ |t− s|.

When t = t∗ + k1q and s = s∗ + k2q, with t∗, s∗ ∈ [0, q] and k1, k2 non-negative
integer numbers, have that

‖T (t)x− T (s)x‖ = ‖T (t∗)x− T (s∗)x‖ ≤ sup
τ∈[0,q]

‖T (τ)‖‖Ax‖ |t− s|.

�

In terms of well-posed abstract Cauchy problems, the result contained in Theo-
rem 4.1 may be read as follows.

Corollary 4.5. Let (A(t), D(A(t)))t≥0 be a family of linear operators acting on
a Banach space X. Assume that the evolution family U = {U(t, s) : t ≥ s ≥ 0},
generated by the family {A(t)}t≥0, is strongly continuous, q-periodic and there is
a dense subset D of X such that the map U(·, 0)x satisfy a Lipschitz condition on
R+ for every x ∈ D. Then, U is uniformly exponentially stable if and only if for
each f̃ ∈ Ẽ(R, X), the solution of the abstract Cauchy Problem

u̇(t) = A(t)u(t) + f̃(t), t > 0

u(0) = 0,

is bounded on R+.

5. Applications

An immediate consequence of Theorem 4.1 is the spectral mapping theorem for
the evolution semigroup T on Ẽ(R, X). Similar results can be found in [3, Theo-
rem 2.5], [6, Theorem 3.5], [8, Theorem 3.6], [7, Theorem 3.1], [13, Corollary 2.4]
for evolution semigroups acting on other spaces.

Theorem 5.1. Let U be a strongly continuous and q-periodic evolution family
acting on X and let T be its associated evolution semigroup on Ẽ(R, X). Let denote
by G the infinitesimal generator of T . Suppose that there is a dense subset D of
X such that for each x ∈ D the map s 7→ U(s, 0)x : R+ → X satisfy a Lipschitz
condition on R+. Then

σ(G) = {z ∈ C : Re(z) ≤ s(G)}.

Proof. It is well-known that ρ(G) ⊇ {z ∈ C : Re(z) > s(G)}. To establish the
converse inclusion, let λ ∈ ρ(G) and µ ∈ C with Re(µ) ≥ Re(λ). We prove that
µ ∈ ρ(G). Consider the evolution family Uλ(t, s) := e−λ(t−s)U(t, s), t ≥ s ≥ 0
whose associated evolution semigroup is Tλ(t) := e−λtT (t). Obviously, λI − G
is the infinitesimal generator of Tλ. Because λI − G is invertible and applying
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Theorem 4.1, Tλ (and then Tµ)is uniformly exponentially stable. Therefore, by
applying again Theorem 4.1, µ ∈ ρ(G). �
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