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AN ALGORITHMIC APPROACH FOR PEAK LOAD
EVALUATION OF STRUCTURAL ELEMENTS OBEYING A

MENÉTREY-WILLAM TYPE YIELD CRITERION

AURORA ANGELA PISANO

Abstract. A numerical procedure for the evaluation of the peak load of a
general class of structures is presented. Namely the addressed structures obey
to a three stress invariants constitutive criterion of Menétrey-Willam-type en-
dowed with cap in compression. The formulation, developed in the Haigh-
Westergaard coordinates, allows an easy treatment of the mechanical problem
in a 3D context as well as an interesting geometrical interpretation in the
principal stress space.

1. Introduction

The broadest area of success of plasticity theory with concrete structures is the
treatment of situations in which the material acts primarily in compression. The
usual procedure is nowadays to apply plasticity theory in the compression zone and
treat the zones in which at least one principal stress is tensile by one of several
version of fracture and/or damage mechanics also with the use of non local internal
variables, see e.g. [1]. To guarantee a reliable design is essential to possess codes
able to catch the behaviour of concrete structures even above the elastic limit; post
elastic step-by-step analyses are the common tools available to this aim. However,
the obtainable results, in the case of concrete elements, are strongly influenced
by the dependence of strength, stiffness and ductility of this material on the load
path. A valid alternative can be given by direct methods, i.e. the methods that are
able to predict the load bearing capacity of a structure, or a structural element, in
terms of peak load value, the one corresponding to the exhaustion of the strength
capabilities, so avoiding any evolutive analysis.

A number of recent contributions are given in [11] and references therein. The
numerical procedure for limit analysis, here adopted and known as Linear Matching
Method (LMM), is the one originally proposed by Ponter and Carter [7] for Von
Mises materials and recently generalized in Pisano and Fuschi [4, 5], Pisano et al
[6], with reference to Tsai-Wu-type anisotropic, non associative composite plates.
The method is here deeply reformulated in the Haigh-Westergaard coordinates with
reference to a 3D-plasticity model for concrete with a pressure-sensitive yield surface
with curved meridians in the Rendulic section, J3 dependence, cap in compression
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and a non associated flow rule. The yield surface turns into the failure surface
proposed by Menétrey and Willam [3], calibrated from elementary strength data
and including the standard strength hypotheses of Huber-Mises, Drucker-Prager,
Rankine, Mohr-Coulomb and Leon as special cases. The assumed yield surface is
given in terms of three independent stress invariants and, in principal stress space
it is convex and smooth. The LMM is applied to compute an upper bound to
the peak load multiplier for simple concrete elements and one academic example
is considered to estimate the gap between the computed upper bounds and the
corresponding theoretical peak load values.

2. Constitutive model and theoretical background

The adopted three dimensional constitutive model for concrete is due to Menétrey
and Willam [3]. It provides a three parameter failure surface having the following
expression:

f(ξ, ρ, θ) = [
√

1.5
ρ

f ′c
]2 + m[

ρ√
6f ′c

r(θ, e) +
ξ√
3f ′c

]− c = 0, (2.1)

where

r(θ, e) =
4(1− e2) cos2 θ + (2e− 1)2

2(1− e2) cos θ + (2e− 1)
[
4(1− e2) cos2 θ + 5e2 − 4e

]1/2
, (2.2)

m := 3
f ′c

2 − f ′t
2

f ′c f ′t

e

e + 1
. (2.3)

Equation (2.1) is expressed in terms of three stress invariants ξ, ρ and θ known
as the Haigh-Westergaard coordinates; m is the friction parameter of the material
depending on the uniaxial compressive strength f ′c, on the uniaxial tensile strength
f ′t as well as on the eccentricity parameter e. The eccentricity e defines the smooth-
ness of the Menétrey-Willam surface and its value strongly influences the failure
description either in biaxial tension or in compression. In (2.1), ξ is the hydrostatic
stress invariant, ρ is the deviatoric stress invariant, and θ is the deviatoric polar
Lode angle; the Haigh-Westergaard (H-W) coordinates are given by

ξ =
1√
3
I1, I1 = σii , (2.4)

ρ =
√

2 J2, J2 =
1
2
sijsij , (2.5)

cos 3θ =
3
√

3
2

J3

J
3/2
2

, J3 =
1
3
sijsjkski , (2.6)

with sij denoting the deviatoric stress components; i.e., sij = σij − 1
3σkkδij being

δij the Kronecker symbol. It is worth to note that, for 0 ≤ θ ≤ π
3 , the following

relations, between principal stresses of σij and H-W coordinates, hold:σ1

σ2

σ3

 =
1√
3

ξ
ξ
ξ

 +

√
2
3
ρ

 cos θ
cos(θ − 2π

3 )
cos(θ + 2π

3 )

 . (2.7)

The sector 0 ≤ θ ≤ π
3 confining the values of the Lode angle θ given by (2.6)1 or,

equivalently, by cos θ = (2σ1−σ2−σ3)/2
√

3J2, is consequence of a regular ordering
of the eigenvalues of the stress tensor σij ; i.e., σ1 ≥ σ2 ≥ σ3, as assumed in the
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Figure 1. Triaxial failure surface of Menétrey-Willam with cap:
(a) deviatoric sections at three generic values of hydrostatic pres-
sure; (b) compressive and tensile meridians in the Rendulic plane

following. Remembering that the Lode angle θ is the deviatoric projection of the
angle between the radius vector of the current stress point in the principal stress
space and the axis σ1, the arbitrariness in the ordering of the eigenvalues of a tensor
implies that six different points (i.e. six θ values satisfying (2.6)1) correspond in the
H-W representation to a given stress tensor. As a result, the M-W surface has to
be symmetric with respect to the projections of the principal axes on the deviatoric
plane. The surface represented by (2.1), defined for 0 ≤ θ ≤ π

3 , so extends to all
polar directions 0 ≤ θ ≤ 2π using the three-fold symmetry shown in Figure 1(a).
The above condition is obviously met by the postulated isotropy of the material for
which the labels 1,2,3 attached to the coordinate axes are arbitrary.

With the assumed ordering of the eigenvalues of the stress tensor there are two
extreme cases:

σ1 = σ2 > σ3; σ1 > σ2 = σ3; (2.8)

corresponding to θ = π
3 and θ = 0, respectively. The meridian at θ = π

3 is called
compressive meridian (see also Figure 1(b)) in that (2.8)1 represents a stress state
corresponding to an hydrostatic stress state with a compressive stress superimposed
in one direction. The meridian determined by θ = 0 (see again Figure 1(b)),
represents an hydrostatic stress state with a tensile stress superimposed in one
direction and is therefore called the tensile meridian. A realistic representation of
concrete, viewed as a frictional material, requires to take into account the dilatancy,
i.e. the volumetric expansion under compression. To this aim a non associated flow
rule has to be postulated. Moreover, to capture the concrete behaviour near the
hydrostatic axis, a cap is adopted to “close” the surface given by (2.1). This cap,
in the H-W coordinates has the shape

ρCAP (ξ, θ) = −ρMW (ξa, θ)
(ξa − ξb)2

[ξ2 − 2ξa(ξ − ξb)− ξ2
b ]

with ξb ≤ ξ ≤ ξa, 0 ≤ θ ≤ π

3

(2.9)
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where ρMW (ξ, θ) is the explicit form of the parabolic meridian of the M-W surface
that, looking at (2.1), can be given by the expression

ρMW (ξ, θ) =
1
2a
{−b(θ) + [b2(θ)− 4a c(ξ)]1/2}

with ξa ≤ ξ ≤ ξv, 0 ≤ θ ≤ π

3

(2.10)

where:
a :=

1.5
(f ′c)2

, b(θ) :=
m√
6f ′c

r(θ, e), c(ξ) :=
m√
3f ′c

ξ − 1. (2.11)

The three-fold symmetry of the M-W surface is maintained and the cap surface,
given by (2.9), extends to all polar directions 0 ≤ θ ≤ 2π as sketched in Figure 1.
The values ξa and ξb appearing in (2.9) locate the cap position that can be detected
experimentally as given by Li and Crouch [2].

The Menétrey-Willam surface with a cap in compression is here assumed as yield
criterion for the material, while the lack of associativity is overcome by means of
the non-standard limit analysis approach [9].

3. The kinematic approach of limit analysis and the LMM

Figure 2. Stress point at yield PY : (a) deviatoric section at ξ =
ξY ; (b) Rendulic section at θ = θY

To set the problem, let consider a body of volume V and external surface ∂V
both referred to a Cartesian co-ordinate system (xi , i = 1, 2, 3). The body is,
for simplicity, subjected only to surface loads P p̄(x), where: P is a scalar load
multiplier; p̄(x) denotes the reference load vector collecting all the surface force
components, p̄i, acting on points of a portion of the body surface, namely ∂Vt. The
remaining part of ∂V , namely ∂Vu = ∂V − ∂Vt, is assumed to suffer displacements
u = 0. Following the directions of non-standard limit analysis, reference can be
made to a standard material ”bounding from above” the real non-standard one and
obeying to the same yield criterion. Rewriting the M-W-type yield criterion in the
abridged form F (ξ, ρ, θ) = 0, the volumetric and deviatoric strain rate components
at collapse can be expressed in the form

ε̇c
v = λ̇

∂F

∂ξ
; ε̇c

d = λ̇
∂F

∂ρ
; (3.1)
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with λ̇ ≥ 0 scalar multiplier. The kinematic approach of the limit analysis theory
states that

P
UB

∫
∂Vt

p̄i u̇c
i d(∂V ) =

∫
V

(ξY ε̇c
v + ρY

x ε̇c
dx

+ ρY
y ε̇c

dy
) dV. (3.2)

In this equation, P
UB

denotes the searched upper bound to the peak load multiplier;
u̇c

i are the displacement rates at collapse of the points where surface loads, p̄i, act.
Moreover, u̇c

i satisfy the condition u̇c
i = 0 on ∂Vu and are compatible with the

strain rates at collapse. Finally, ξY , ρY
x , ρY

y are the stress components at yield
associated to the volumetric and deviatoric strain rate components at collapse ε̇c

v,
ε̇c

dx
, ε̇c

dy
, respectively. Referring to Figures 2(a)(b) an orthogonal cartesian system

(x, y), centered at ξ = ξY , associated to the cylindrical coordinates (ξ, ρ, θ) has
been introduced for simplicity, (·)x, (·)y denoting components of (·) along x and y
respectively. The set (ε̇c

v, ε̇c
dx

, ε̇c
dy

, u̇c
i ), if given at all stress point at yield (such as

PY in Figures 2(a)(b)), defines a collapse mechanism for the analyzed structure.
The LMM in practice furnishes all the required quantities to compute a P

UB
. The

key idea is to build such quantities assuming the analysed structural element as
made by a linear viscous fictitious material. This material is fictitious in the sense
that it possesses spatially varying moduli and is also subjected to imposed initial
stresses. A Finite Element (FE) analysis is performed on such fictitious structure
so obtaining a fictitious solution. The fictitious moduli and initial stresses are then
adjusted so that the computed fictitious stresses are brought on the yield surface
at a fixed strain rate distribution. This allows one to define a collapse mechanism
(compatible strain and displacement rates (ε̇c

v, ε̇c
dx

, ε̇c
dy

, u̇c
i ), plus related stresses at

yield ξY , ρY
x , ρY

y ) and, eventually, allows to evaluate a value of P
UB

. Such procedure
has to be carried on iteratively to satisfy the equilibrium conditions altered by the
adjusting of the moduli and imposed stresses. A theoretical sufficient condition for
convergence [8] assures the reliability of the final P

UB
; i.e., the one computed at

last iteration.

3.1. Geometrical interpretation of the LMM. It is worth to remind the formal
analogy existing between a linear viscous problem and a linear elastic problem on
the basis of which the complementary dissipation rate function pertaining to the
linear viscous problem plays the same role of the complementary energy potential
function, say W , pertaining to the elastic problem. As a consequence, the fictitious
linear solution (in terms of rate quantities) can be computed as fictitious elastic
solution (in terms of finite quantities). In the H-W representation and for the
chosen initial values (hereafter denoted by the apex (0)) of material parameters
and initial stresses, W can be given by the expression

W (0)(ξ, ρ) =
(ξ − ξ̄(0))2

6K(0)
+

(ρ− ρ̄(0))2

4G(0)
= W̄ (0). (3.3)

In equation, W̄ (0) is a constant value, K(0) and G(0) are the initial elastic bulk
and shear moduli respectively, while ξ̄(0), ρ̄

(0)
x , ρ̄

(0)
y are the initial stresses. The

volumetric and deviatoric strain rates of the linear problem can then be computed
as:

ε̇`
v =

∂W (0)

∂ξ
; ε̇`

d =
∂W (0)

∂ρ
. (3.4)
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The fictitious linear solution is also given in terms of compatible displacement
rates of the points at which surface loads act, say u̇`

i , and in terms of stress values
ξ`, ρ`

x, ρ`
y, associated to the strain rate components ε̇`

v, ε̇`
dx

, ε̇`
dy

, respectively. The
latter simply being the fictitious strain rates (3.4) referred to the orthogonal carte-
sian system (x, y, ξ) associated to the cylindrical H-W coordinates. Grounding on
the above analogy, the fictitious linear analyses, involved by the LMM procedure,
can be carried on at each iteration as fictitious elastic analyses performed by any
commercial FE code, rendering the whole procedure easy.

Figure 3. Construction of the prolate spheroid W (∗) = const. at
matching: (a) deviatoric section, at ξ̂ = ξ = ξM , of the M-W-type
yield surface and of the spheroid W (∗) = const.; (b) section on the
plane belonging to the sheaf of axis ξ̂ and passing through PM

The above analogy leads also to an interesting geometrical interpretation of the
LMM. First of all, as demonstrated in Ponter et al [8], a sufficient condition to assure
convergence of the iterative procedure relies on a geometrical requirement; i.e., the
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complementary energy equipotential surface of the fictitious material at matching
(circumstance hereafter denoted by the apex ((∗))) has indeed to touch the yield
surface at the matching point PM but must otherwise lie outside the yield surface
in stress space. In the specific case, with reference to (3.3), the complementary
equipotential surface is a prolate spheroid ; i.e., an ellipsoid of revolution obtained
by rotating a generatrix ellipse about its major axis. As sketched in Figure 3(b),
in the principal stress space, the semi-axes lengths of this spheroid at matching
(say W (∗) = const.) are related to the unknown values of the updated fictitious
elastic moduli K(∗) and G(∗). Its origin, C, is located by the unknown values of the
updated initial hydrostatic pressure and deviatoric stresses ξ̄(∗), ρ̄

(∗)
x , ρ̄

(∗)
y . In order

to satisfy either the matching or the sufficient condition for convergence the elastic
moduli and the initial stresses must be updated, at each iteration, according to the
following requisites to be met by the complementary energy surface W (∗) = const.:

(i) it must contain the matching point PM ;
(i) it has to be tangent in PM to the M-W-type yield surface admitting at PM

outward normal equal to ε̇` ≡ ε̇c;
(ii) it has otherwise lie outside the yield surface. The latter requisite can be eas-

ily accomplished by imposing that the ellipse passes through points (outer
to the yield surface but “below” the tangent through PM ) like Pa and Pv

at ξ̂ = ξa and ξ̂ = ξv, respectively, shown in Figure 3(b) for a PM on the
M-W surface. Analogously it can be done for a PM on the cap.

All the above conditions yield to a non linear system of five equations to be solved
at each Gauss point of each finite element in the mesh. In the next section the
whole procedure is presented in a flow-chart style.

3.2. Flow-chart of the iterative scheme of LMM.
• Initialization

Assign to all FEs an initial set of fictitious elastic parameters, say E(0), G(0), ν(0),
and initial stresses ξ̄(0), ρ̄

(0)
x , ρ̄

(0)
y . Set also: k = 1, P (k−1)

UB
= P (0)

UB
= 1 (for k = 1,

P (0)
UB

can be any arbitrary value) and compute the bulk modulus K(0) = E(0)/
3(1− 2ν(0)).
• Start iterations

Step 1: perform a fictitious elastic analysis with elastic parameters E(k−1), G(k−1),
ν(k−1); initial stresses ξ̄(k−1), ρ̄

(k−1)
x , ρ̄

(k−1)
y ; loads P (k−1)

UB
p̄i (at the first iteration use

the initialization quantities). Compute a fictitious linear solution (at Gauss point
level), namely: ε̇

`(k−1)
v , ε̇

`(k−1)
dx

, ε̇
`(k−1)
dy

, u̇
`(k−1)
i together with the stress values

ξ`(k−1), ρ
`(k−1)
x , ρ

`(k−1)
y .

Step 2: compute the constant value of the complementary potential energy for
later use:

W̄ (k−1) =
1
2
ξ`(k−1)ε̇`(k−1)

v + ρ`(k−1)
x ε̇

`(k−1)
dx

+ ρ`(k−1)
y ε̇

`(k−1)
dy

Step 3: impose the matching conditions to update the fictitious quantities: ξ̂
(k)
C ,

ρ̂
(k)
C , G(k), K(k), Ω(k) to be used, if necessary, at next iteration (refer also to Figures

3(a)(b))

ξ̂
(k−1)
M − ξ̂

(k)
C

3K(k)
= ε̇`(k−1)

v ,
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ρ̂
(k−1)
M − ρ̂

(k)
C

2G(k)
= ε̇`(k−1)

d ,

[ξ̂(k−1)
Pi

− ξ̂
(k)
C ]2

6K(k)Ω(k)W̄ (k−1)
+

[ρ̂(k−1)
Pi

− ρ̂
(k)
C ]2

4G(k)Ω(k)W̄ (k−1)
= 1 with i = a, v,M.

Step 4: evaluate the upper bound multiplier

P (k)
UB

=

∫
∂Vt

p̄i u̇
c(k−1)
i d(∂V )∫

V

(
ξY (k−1) ε̇

c(k−1)
v + ρ

Y (k−1)
x ε̇

c(k−1)
dx

+ ρ
Y (k−1)
y ε̇

c(k−1)
dy

)
Step 5: check for convergence

|P (k)
UB

− P (k−1)
UB

| ≤ TOL

{
YES ⇒ EXIT
NOT ⇒ set k = k − 1 and GOTO step 1

• End iterations

4. Numerical application and concluding remarks

Figure 4. Values of the upper bound P
UB

to the peak load multi-
plier versus iteration numbers for a cubic concrete sample subjected
to a central line load

The reliability of the discussed approach is verified by a simple numerical applica-
tion of engineering interest concerning a cubic concrete sample of side d = 150mm,
with: E = 0.588 GPa; ν = 0.2. Moreover, referring to Eqs.(2.1-3), the following
material data have been assumed: f ′c = 30MPa, f ′t = 3MPa and e = 0.539. The
sample is subjected to a central line reference load of global value equal to 100 kN.
The expected peak load is given by the formula P

U
= πd2fst/2 p̄, after [10], with

fst = f ′t/0.9885 so that, for the given data, the expected peak load multiplier is
P

U
= 1.06. All the elastic analyses have been carried out using the FE code AD-

INA, with meshes of 3D-Solid elements, while a Fortran main program has been
developed to drive the iterative procedure and the matching at each Gauss point.
Figure 4 shows the numerical evaluated upper bound to the peak load multiplier,



EJDE-2012/167 PEAK LOAD EVALUATION OF STRUCTURAL ELEMENTS 9

P
UB

, versus the iteration number. A monotonic and rapid convergence of the iter-
ative procedure is exhibited and the numerical P

UB
value appears to be quite close

to the expected one. Even if the considered example is simple, the obtained results
seems to be quite encouraging, comparison with experimental findings on concrete
prototypes of engineering interest exhibiting a greater complexity are the object of
an ongoing research.
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