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FACTORIZATION OF SECOND-ORDER STRICTLY
HYPERBOLIC OPERATORS WITH NON-SMOOTH

COEFFICIENTS AND MICROLOCAL DIAGONALIZATION

MARTINA GLOGOWATZ

Abstract. We study strictly hyperbolic partial differential operators of second-
order with non-smooth coefficients. After modeling them as semiclassical
Colombeau equations of log-type we provide a factorization procedure on some
time-space-frequency domain. As a result the operator is written as a product
of two semiclassical first-order constituents of log-type which approximates the
modelled operator microlocally at infinite points. We then present a diagonal-
ization method so that microlocally at infinity the governing equation is equal
to a coupled system of two semiclassical first-order strictly hyperbolic pseudo-
differential equations. Furthermore we compute the coupling effect. We close
with some remarks on the results and future directions.

1. Introduction

When studying strictly hyperbolic partial differential equations with generalized
coefficients the results commonly depend on the appropriate choice of the asymp-
totic scale of the regularizing parameter. In this paper we consider certain types of
second order partial differential equations with generalized coefficients of the form

LU = F (1.1)

where U,F are Colombeau generalized functions (See section 2 for the precise as-
ymptotic behavior in this case.) in G2,2 on Rn+1 and on the level of representatives
the operator L acts as

(uε)ε 7→ (Lε(x, z,Dt, Dx, Dz)uε)ε ∀(uε)ε ∈MH∞ .

In detail the operator Lε is considered to be of the form

Lε := ∂2
z +

n−1∑
j=1

bj,ε(x, z)∂2
xj
− cε(x, z)∂2

t . (1.2)

Here the coefficient cε(x, z) is of log-type up to order r ∈ N, i.e. for some constant
C > 0 we have ‖∂αcε‖L∞ = O(log|α|/r(C/ε)) as ε→ 0, and strictly non-zero in the
sense that there exists ε1 ∈ (0, 1] such that infy∈Rn |cε(x, z)| ≥ C for all ε ∈ (0, ε1]
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and some constant C > 0 independent of ε. Also bj,ε is of log-type up to order r
and strictly non-zero. Moreover we assume that cε → c and bj,ε → bj in the Hölder
space C0,µ(Rn) with exponent µ ∈ (0, 1) as ε→ 0.

The aim of this paper is to provide a symbolic calculus to explain a diagonal-
ization with respect to the parameter z of the equation in (1.1). To do so we will
reduce the diagonalization problem to a factorization theorem which in the case of
smooth coefficients can be found in [29, Appendix II], [25, Chapter 23]. We note
that in these references the results are only valid for operators with simple charac-
teristics on the phase space with the zero section excluded. This is different to our
approach as we are interested in factorizations with respect to the parameter z.

For recent contributions to a related topic we refer the reader to the work by
Garetto and Oberguggenberger [20]. There the authors established existence and
regularity results for solutions to strictly hyperbolic systems with Colombeau co-
efficients using symmetrisation up to regularizing errors. In detail, they proved
existence of generalized solutions in the case of slow scale coefficients and, in addi-
tion they showed regularity in the case of logarithmic slow scale coefficients. Note
that a net rε ∈ R(0,1] is a logarithmic slow scale net if |rε| = O(logp(1/ε)) for all
p > 0 as ε → 0 and a generalized coefficient (aε)ε is said to be logarithmic slow
scale regular if for all α ∈ Nn there exists a logarithmic slow scale net rε such that

‖∂αaε‖L∞(Rn) = O(rε) ε→ 0.

Again, the square roots of the principal symbol of the operator are assumed to be
simple on the phase space without the zero section in this case.

So when studying an equation of the form (1.1) with coefficients that satisfy
strongly positive logarithmic slow scale estimates one can adapt the results in
[17, 29] to obtain a diagonalization in some microlocal subregion of the phase space
and microlocal regularity has to be understood in a G∞2,2 sense. Recall that G∞2,2 is
the space of regular generalized functions in G2,2 and is characterized by uniform
ε-growth in all derivatives. This is a generalization of the results in the smooth
coefficient case which will be briefly explained in the beginning of Subsection 1.1.
Since in the Colombeau framework the evolution behavior of propagating singular-
ities is not yet sufficiently understood it is not clear how one can derive well-posed
approximated Cauchy problems from the resulting microlocal first-order equations
due to the diagonalization. For the theory for first-order hyperbolic pseudodiffer-
ential equations with generalized symbols we refer to [26, 33, 20].

However, to analyze operators as in (1.2) with less regular coefficients as in [20]
we try a different approach. To overcome the necessity of the logarithmic slow
scale assumption (e.g. construction of an approximative inverse) we associate to
the operator Lε in (1.2) a semiclassical modification Lψ,ε such that Lψ,ε = ε2Lε.
Here the ψ = ψ(ε) refers to the phase function in which the semiclassical scaling
is kept to be retained and depend on the regularizing parameter ε ∈ (0, 1]. The
detailed explanation of the correspondence between the operators L and Lψ is given
in Subsection 2.1. Then instead of working with the equation (1.1) we consider the
corresponding semiclassical problem

LψU = F (1.3)

where U,F are generalized functions in G2,2 and the operator Lψ : G2,2 → G2,2 acts
on the level of representatives as

(uε)ε 7→ (Lψ,ε(x, z,Dt, Dx, Dz)uε)ε ∀(uε)ε ∈MH∞ .
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Due to the additional ε-dependent semiclassical scaling parameter we then apply
the theory of generalized semiclassical pseudodifferential operators which we call
the ψ-pseudodifferential operators in the following for short. This enables us to
state a factorization theorem for Lψ in terms of two first-order ψ-pseudodifferential
operators with respect to the parameter z modulo two different types of error op-
erators. As already mentioned above the factorization is only valid when imposing
certain restrictions on the underlying time-space-frequency domain which we left
ε-independent. In detail the error operators are characterized by a semiclassical
negligibility condition outside a compact set. Since global semiclassical negligible
operators are easy to handle as they map moderate nets to negligible ones the
interesting case is to understand the compactly supported error operators. But,
due to the semiclassical scaling, worse ε-asymptotics are introduced when study-
ing boundedness of such compactly supported operators. The basic notions and a
general calculus of ψ-pseudodifferential operators can be found in Sections 2 and 3,
the factorization procedure is explained in Section 4.

To eliminate the remainder terms produced in the factorization procedure we
then proceed in Section 5 by presenting an adapted notion of microlocal regularity
which essentially corresponds to the semiclassical wave front set at infinite points
within the Colombeau framework. This allows us to overcome the difficulties that
arise due to the compactly supported error operators occurring in the factorization.
Concepts of the wave front set in Colombeau’s theory have been explored in [31, 17,
18, 14]. For an introduction to semiclassical analysis and microlocalization we refer
to [30, 11, 23, 1]. Again we remark that unlike to the case of smooth coefficients
we lose the property that singularities are propagating on geometrically determined
phase space trajectories.

In Section 6 we then combine the factorization with our notion of microlocal
regularity in order to describe the desired microlocal diagonalization method. As a
result we obtain a coupled system of two first-order ψ-pseudodifferential equations
that approximate equation (1.3) microlocally at infinite points on an adequate
subdomain of the phase space.

1.1. The smooth background case. A particular example of a strictly hyper-
bolic partial differential equation of second order is the wave equation describing
phenomena such as propagation of elastic waves and vibrations. However, in this
subsection of the introduction we give a motivation for the present survey and is
devoted to one-way wave propagation in inhomogeneous acoustic media in the case
of smooth background coefficients. For more information on the relevance in seismic
imaging and migration models we refer the reader to [6, 4, 39, 40].

To start with a real life problem we may ask whether and how one can establish
a tap-proof communication link between a source and a receiver in an underwater
environment. In the following we analyze how the correlation between the source
and the receiver location can help to detect a desired information in downward
continuation problems. The mathematical reformulation of such problems corre-
sponds to initial value problems of second-order partial differential equations with
a space-like direction as evolution parameter and is in general not well-defined.

To overcome the ill-posedness the concept of wave-field decomposition enables us
to rewrite the full wave equation into a coupled system of approximative one-way
wave equations. Using microlocal techniques the system of one-way equations can
then be decoupled assuming that the wave field propagates in one direction within
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certain propagation angles and prohibits propagation in the opposite direction.
Therefore the approximation allows to determine the high-frequency components
of the solution as they propagate along curved trajectories in the phase space.

In the following we recall the crucial statements given by Stolk for the directional
wave field decomposition in the present of smooth background data [37, 38]. For
a discussion on the inverse scattering problem with simultaneous consideration
of possible reflection data see for example [36, 40, 9] and the references therein.
Also we refer to [34, 35] for investigations of the Cauchy problem of first-order
pseudodifferential equations and to [43] for numerical implementations.

As in [37] our basic type of model will be the wave equation for inhomogeneous
acoustic media in n-dimensions, n ≥ 2. Since we are interested in approximative
one-way equations we allocate the vertical direction z, which we call the depth, the
lateral directions are denoted by x. The medium itself is described by the wave
speed c = c(x, z) and the fluid density ρ = ρ(x, z). Also we let U = U(t, x, z)
denote the acoustic wave field and F = F (t, x, z) a source which usually describes
the initiation of an acoustic wave. Then the acoustic wave equation is given by

PU :=
(
− 1
ρ

1
c2
∂2
t +

n−1∑
j=1

∂xj

1
ρ
∂xj + ∂z

1
ρ
∂z

)
U = F (1.4)

where U and F are in the distribution space D′(Rn+1). Further we assume smooth
background data, i.e. the wave speed and the density are functions in C∞(Rn),
which shall also satisfy the boundedness conditions 0 < c(x, z), ρ(x, z) <∞ for all
(x, z) ∈ Rn−1 × R.

In the case of slow varying media and the presence of a source function we follow
Stolk’s approach and restrict the analysis to a microlocal region IΘ2 that is given
by

IΘ2 := {(t, x, z, τ, ξ, ζ) | (x, z, τ, ξ) ∈ I ′Θ2
, |ζ| ≤ C|τ |}

I ′Θ2
:= {(x, z, τ, ξ) | τ 6= 0, |ξ| ≤ sinΘ2|c(x, z)−1τ |}

for some angle Θ2 ∈ (0, π/2). An illustration of the first of these domains is
presented in Figure 1; see [34].

θ

Θ2

|ξ|

ζ2 + |ξ|2 =
τ
2

c(x,z)2

|ζ|

Figure 1. The shaded area corresponds to IΘ2 at a given (t, x, z)
and frequency τ . The bold dotted line designates the characteristic
set Char(P ) and θ is the propagation angle of the singularities

Then under the assumption that the wave front set of U is contained in IΘ2 , one
can rewrite a microlocal equivalent model to (1.4) in terms of a coupled system of
one-way wave equations with the depth as evolution parameter.



EJDE-2012/144 FACTORIZATION OF HYPERBOLIC OPERATORS 5

The main result is then the following. The equation

PU = F microlocally on IΘ2

is equivalent to the system of two first-order strictly hyperbolic partial differential
equations of the form

P0,±u± :=
(
∂z − iB±(x, z,Dt, Dx)

)
u± = f± microlocally on IΘ2 , (1.5)

where the plus-minus sign refers to downward and upward migration. Here u±, f±
are distributions and B± are pseudodifferential operators of order 1 that can be
chosen selfadjoint. Furthermore the coupling effect of the counterpropagating con-
stituents u±, f± and the original data U,F can be computed by a Douglis Nirenberg
elliptic pseudodifferential operator transfer matrix.

To model wave propagation in the downward direction in the source-free case one
decouples (1.5) microlocally and we are interested in the solutions to the problem

PU = 0 z > z0

WF(U) ∩ {z = z0, ζ/τ > 0} = ∅

for some initial depth z0 ∈ R such that U |z0 is well-defined.
Using the geometry of the microlocal region we let the set JΘ,+(z0) ⊂ T ∗Rn+1\0

consisting of points (t, x, z, τ, ξ, ζ) so that the bicharacteristics (t(z), x(z), τ(z), ξ(z))
corresponding to B+, parametrized by z, and with propagation angle θ(z), pass
through (t0, x0, τ0, ξ0) at initial depth z = z0 and the points (x(z), z, τ(z), ξ(z))
remain in I ′Θ for all z ∈ [0, Z]. So JΘ,+(z0) is the set that can be reached from the
initial depth z = z0 while staying in IΘ,+ and the propagation angle θ(z) along the
bicharacteristic is always smaller than Θ (cf. Figure 1).

Since the equation for downward migration in (1.5) holds only microlocally, one
obtains approximative solutions when studying a perturbation P+ of the operator
P0,+ including an additional damping term C = C(x, z,Dt, Dx) which vanishes in
IΘ1 for some fixed positive angle Θ1 < Θ2 and suppresses singularities outside IΘ2 .
Also note that u− is vanishing on IΘ2 ∩{z = z0} so that the perturbed initial value
problem for downward propagation now reads

P+u+ = (∂z − iB+ + C)u+ = 0 Rn × (z0, Z)

u+|z0 = Q−1
+ (z0)U |z0

where Q−1
+ is the essential component of the transfer matrix mentioned above.

As a result the solution to the initial value problem for the perturbed first-order
pseudodifferential equation can be related to that of P0,+u+ = 0 using the geometry
in the region JΘ,+. In detail one can recover the high frequency part of the original
wave field on some subset JΘ1,+ of the phase space that can be reached from an
initial given depth z0 while staying in IΘ1 for propagation angles θ(z) < Θ1 < Θ2.

2. Basic notions

In this section we specify the basic notions that are needed for our constructions.
As the problem is treated within the framework of Colombeau algebras we refer to
the literature [7, 32, 31, 22, 16, 15] for a systematic treatment in this field.

One of the main objects in our setting are Colombeau generalized functions
based on L2-norm estimates which were first introduced in [3]. The elements in
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this algebra are given by equivalence classes u := [(uε)ε∈(0,1]] of nets of regular-
izing functions uε in the Sobolev space H∞ = ∩k∈ZH

k corresponding to certain
asymptotic seminorm estimates. More precisely, we denote by MH∞ the nets of
moderate growth whose elements are characterized by the property

∀α ∈ Nn ∃N ∈ N : ‖∂αuε‖L2(Rn) = O(ε−N ) as ε→ 0.

Negligible nets are denoted by NH∞ and are nets in MH∞ whose elements satisfy
the additional condition:

∀q ∈ N : ‖uε‖L2(Rn) = O(εq) as ε→ 0.

For properties of negligible nets see [12, Proposition 3.4]. Then the algebra of
generalized functions based on L2-norm estimates is defined as the factor space
GH∞ = MH∞/NH∞ for which we continue to write G2,2(Rn) as in [3]. For sim-
plicity, we shall also use the notation (uε)ε instead of (uε)ε∈(0,1] throughout the
paper.

Using [3, Theorem 2.7] we first note that the distributions H−∞ = ∪k∈ZH
k are

linearly embedded in G2,2(Rn) by convolution with a mollifier ϕε(x) = ε−nϕ(ε−1x)
where ϕ ∈ S (Rn) is a Schwartz function such that∫

ϕ(x) dx = 1,
∫
xαϕ(x) dx = 0 for all |α| ≥ 1. (2.1)

Further, by the same result, H∞(Rn) is embedded as a subalgebra of G2,2(Rn).
More generally, we introduce Colombeau algebras based on a locally convex

vector space E topologized through a family of seminorms {pi}i∈I as in [13, Section
3], [19, Section 1]. Again we call the elements of

ME = {(uε)ε ∈ E(0,1] | ∀i ∈ I ∃N ∈ N : pi(uε) = O(ε−N ) as ε→ 0}
E-moderate and the set

NE = {(uε)ε ∈ E(0,1] | ∀i ∈ I ∀q ∈ N : pi(uε) = O(εq) as ε→ 0}
is said to be E-negligible. Then NE is an ideal in ME and the space of Colombeau
algebra based on E is defined by the factor space GE = ME/NE and possesses
the structure of a C̃-module. Here C̃ denotes the ring of complex generalized
numbers which is obtained by setting E = C, this means C̃ := MC/NC. For
more information about the topological structure of C̃ we refer to [13].

To realize the log-type up to order r ∈ N conditions on the coefficients of the
model operator (1.2) a rescaling in the mollification is required, see [27, 32]. In
detail, we are going to consider regularized functions where the asymptotic growth
is estimated in powers of ωε := (log(C/ε))1/r for some r ∈ N and a constant C > 0
such that (ωε)ε is strongly positive. Here the exponent 1/r is not essential in the
further considerations but we give some remarks in this regard in Section 6. In this
case the regularization is obtained by convolution with the logarithmically scaled
mollifier ϕω−1

ε
(.) := ωnε ϕ(ωε.) with ϕ ∈ S (Rn) as in (2.1).

Further terminology. To establish a factorization theorem for generalized semi-
classical partial differential operator as in (1.3) we will have to give a meaning to the
square root of such operators. For this reason we introduce generalized semiclas-
sical pseudodifferential operators which are characterized by symbols with respect
to a certain phase function. Because the phase function is of simple type we shall
initially discuss the main notions of generalized symbols which satisfy asymptotic
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growth conditions with respect to ωε = (log(C/ε))1/r as already mentioned above.
As usual, we use the notation 〈ξ〉 := (1 + |ξ|2)1/2.

First, we let m ∈ R and denote by Sm = Sm(Rn×Rn) the set of symbols of order
m as introduced by Hörmander in [25, Definition 18.1.1.]. Furthermore the space
Smhg = Smhg(Rn× (Rn \ 0)) consists of homogeneous functions a ∈ C∞(Rn× (Rn \ 0))
of order m; i.e., a(x, λξ) = λma(x, ξ) for all λ > 0 and ξ 6= 0, such that

∀α, β ∈ Nn ∃C > 0 : |∂αξ ∂βxa(x, ξ)| ≤ C|ξ|m−|α| for (x, ξ) ∈ Rn × (Rn \ 0).

Since the symbol class Sm satisfies global estimates we remark thatMSm is different
to the symbol classes in [19, Section 1.4]. We note that MSm is the space ME by
setting E = Sm. In the following we will typically encounter subspaces of MSm

subjected to two different asymptotic scales. This extends the definition of MSm

and NSm in the following way:

Definition 2.1. Let ν be a non-negative real number and l, k ∈ R. For m ∈ R
we let (aε)ε be a family of symbols aε ∈ Sm. We then say that (aε)ε is in the
generalized symbol class M(ν,l)

Sm,k if and only if

∃η ∈ (0, 1] ∀α, β ∈ Nn ∃C > 0 ∀ε ∈ (0, η] :

q
(m)
α,β (aε) := sup

(x,ξ)∈R2n

|∂αξ ∂βxaε(x, ξ)|〈ξ〉−m+|α| ≤ Cεkων|β|+lε . (2.2)

We call m, k and (ν, l) the order, the growth type and the log-type respectively of
M(ν,l)

Sm,k .

This definition is similar to that for generalized symbols Sm,µρ,δ,ω in [16, Definition
4.1]. Also, since (ωε)ε is a strongly positive slow scale net we note that a generalized
symbol (aε)ε in M(ν,l)

Sm,k can always be estimated in the following way:

∃η ∈ (0, 1] ∀α, β ∈ Nn ∃C > 0 such that

q
(m)
α,β (aε) ≤ Cεk−1 ∀ε ∈ (0, η].

(2.3)

Later in Lemma 6.1 we give the construction scheme for approximative inverse
operators and the advantage of using (2.2) rather than (2.3) will be clear then.
Hereafter we typically work in spaces M(ν,l)

Sm,k with ν ∈ {0, 1}. Analogously to

Definition 2.1 one introduces the space M(ν,l)

Sm,k

hg

(Rn × (Rn \ 0)).

Furthermore the notion of negligibility in M(ν,l)

Sm,k is defined as follows:

Definition 2.2. An element of M(ν,l)

Sm,k is said to be negligible, denoted by NSm ,
if the following condition is fulfilled:

∃η ∈ (0, 1] ∀q ∈ N ∀α, β ∈ Nn ∃C > 0 such that

q
(m)
α,β (aε) ≤ Cεq ∀ε ∈ (0, η].

To give an example, let P (x,Dx) =
∑

|α|≤m aα(x)Dα
x be a partial differential

operator with bounded and measurable coefficients. Then the logarithmically scaled
regularized coefficients aα,ε := aα ∗ ϕω−1

ε
satisfy the estimate

‖∂αaα,ε‖L∞(Rn) = O(ω|α|ε ) = O(log|α|/r(C/ε)).



8 M. GLOGOWATZ EJDE-2012/144

Therefore (aα,ε)ε is of log-type up to order r, that is ‖∂αaα,ε‖L∞(Rn) = O(log(C/ε))
for all |α| ≤ r, but it is not logarithmic slow scale regular. Recall that the asymp-
totic norm estimate (of any order) of a logarithmic slow scale coefficient has a bound
O(rε) where |rε| = O(logp(1/ε)) for all p > 0 as ε tends to 0. In the same manner
we obtain for the logarithmically scaled regularization of the operator a symbol
(pε)ε where pε(x, ξ) := (p(., ξ) ∗ ϕω−1

ε
)(x) which is of class M(1,0)

Sm,0 and of log-type
up to order (∞, r), cf. [26, Remark 3.2].

Also we will use the following microlocal symbol classes:

Definition 2.3. Let U ⊂ Rn × Rn be open and conic with respect to the second
variable. We say that a generalized symbol (aε)ε is in M(ν,l)

Sm,k(U) if aε ∈ C∞(U)
for fixed ε ∈ (0, 1] and there is a constant K > 0 independent of ε such that:

∃η ∈ (0, 1] ∀α, β ∈ Nn ∃C > 0 for which

|∂αξ ∂βxaε(x, ξ)| ≤ Cεkων|β|+lε 〈ξ〉m−|α| for (x, ξ) ∈ VK , ε ∈ (0, η],

where VK := {(x, ξ) ∈ U | d(ξ, ζ) ≥ K, ζ ∈ ∂pr2(U) 6= ∅}. We observe that, if
(x, ξ) ∈ VK then (x, λξ) ∈ VK for all λ ≥ 1.

Note that Definition 2.1 is equivalent to Definition 2.3 in the case that U = Rn×
Rn. Also, Definition 2.3 is different to a straightforward Colombeau generalization
of global symbols Sm(U). Also note the difference to the definition of the classical
symbols which in the case of local symbols is given in [5, Definition 2.3, page 141].

In the following subsection we give some motivating remarks for the microlocal
constructions used in Section 5.

2.1. Remarks on the governing equation in a semiclassical Colombeau
setting. As this is a first investigation we will concentrate on operators as given in
(1.2) which are characterized by homogeneity. Also note that our model operators
have less regular log-type coefficients than logarithmic slow scale.

As pointed out in the motivation the main aim is to provide a diagonalization
procedure using factorization theorems and microlocal analysis. Because it turns
out that the log-type condition is not strong enough for our constructions we will
introduce certain pseudodifferential operators defined on the Heisenberg group, so-
called semiclassical generalized pseudodifferential operators.

In the usual theory of semiclassical pseudodifferential operators in the Kohn-
Nirenberg or standard quantization one associates to a symbol a ∈ Sm an operator
A : S → S in the following way

Aψ(x,Dx)u(x) := (2π)−n
∫

(Fa)(q, p)e−ipq~/2π~(q, p)u(x) dq dp

= (2π~)−n
∫
ei(x−y)ξ/~a(x, ξ)u(y) dy dξ

where in the first line F(a) denotes the Fourier transform of a on the projected
Heisenberg group and π~(q, p) is the projected Schrödinger representation of the
Heisenberg group on R2n with parameter ~ and the second line corresponds to the
more familiar presentation of the first one. In detail we have(

π~(q, p)u
)
(x) := ei(qx+~pq/2)u(x+ ~p)

and ~ denotes the normalized Planck constant. Note that for ~ = 1 this representa-
tion leads to the usual Kohn-Nirenberg calculus. Also, using representation theory
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we observe for ~ 6= ~′ that π~ and π~′ are inequivalent representations on L2(Rn)
and moreover for ~ 6= 0 the representation π~ is irreducible and unitary on L2(Rn).

Once introduced such an additional artificial parameter ~ gives us now the op-
portunity to apply the theory of ~-pseudodifferential operators used in semiclassical
analysis which is a formalism in an asymptotic regime ~ � 1. As we want to com-
bine this with the theory of generalized pseudodifferential operators we start writing
~ := ~(ε) with the restriction ~(ε) → 0 in the case that ε→ 0.

For technical reasons (e.g. construction of an approximative inverse) we also have
to prevent other possible values of the function ~(ε). As this is a first approach in
this field we have chosen ~(ε) := ε at this point.

So when given a family (aε)ε ∈ MSm we define the corresponding semiclassical
pseudodifferential operator of Colombeau type to be the linear operator Aψ : G2,2 →
G2,2 which acts on the level of representatives as

(uε)ε 7→ (Aψ,ε(x,Dx)uε)ε ∀(uε)ε ∈MH∞ . (2.4)

Here for fixed ε ∈ (0, 1] the right hand side corresponds to the standard quantization
of the symbol (aε)ε with parameter ~(ε) = ε; that is,

Aψ,ε(x,Dx)uε(x) := (2π)−n
∫

Rn

(Faε)(q, p)e−ipq/2π~(q, p)uε(x) dq dp

= (2πε)−n
∫
ei(x−y)ξ/εaε(x, ξ)uε(y) dy dξ.

Then with Lε as in (1.2) the corresponding ψ-pseudodifferential operator Lψ is
essentially given by the oscillatory integral

Lψ,εuε(t, y) = (2πε)−n−1

∫
eitτ/ε+iyη/εlε(y, τ, η)ûε(τ/ε, η/ε) dτ dη

for fixed ε ∈ (0, 1] and (lε)ε is called the generalized symbol of Lψ and is given by

lε(y, τ, ξ, ζ) := −ζ2 − 〈bε(y)ξ, ξ〉+ cε(y)τ2

where we have set bε(y) := diag (b1,ε(y), . . . , bn−1,ε(y)), y := (x, z) and η := (ξ, ζ).
Hence (lε)ε ∈ M(1,0)

S2,0 and the operator Lε can easily be reconstructed from Lψ,ε;
i.e., Lε = ε−2Lψ,ε, because of the homogeneity of the operators.

Given such a scaled generalized operator as above we carry out all transforma-
tions within algebras of generalized functions from now on. More explicitly we will
study the action of the linear operator Lψ = OPψ(lε) from G2,2 into itself in the
following sense: on the level of representatives Lψ acts as in (2.4). This explains
our governing equation

LψU = F

for which we will now present a microlocal diagonalization method.

3. ψ-Pseudodifferential calculus

In this section we introduce a general calculus for ψ-pseudodifferential operators
which are certain semiclassical standard quantizations of generalized symbols as
demonstrated in the previous section. For an introduction in semiclassical analysis
we refer the reader to [30, 11, 23]. Since most of the techniques are similar to
the classical theory of pseudodifferential operators we also want to give [25, 41]
as references. Moreover a detailed discussion on pseudodifferential operators with
Colombeau generalized symbols can be found in [16, 15].
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To continue, given a generalized symbol (aε(x, ξ))ε one can assign the semiclassi-
cal standard quantization which we denote by OPψ(aε) := aε(x, εDx). In this sense
ψ = ψ(ε) can be thought of as a scaled phase function on phase space. Therefore,
we let

ψε(x, ξ) := 〈x, ξ〉/ε := xξ/ε ε ∈ (0, 1].

throughout this article.
Moreover we choose the following convention for defining the Fourier transform

F of a function u ∈ L2(Rn):

Fu(ξ) := û(ξ) :=
∫
e−ixξu(x) dx := lim

σ→0+

∫
e−ixξ−σ〈x〉u(x) dx.

Then the Fourier transform is an isomorphism on L2 and the inverse Fourier trans-
form of u ∈ L2(Rn) is given by the following formula

F−1u(x) := (2π)−n
∫
eixξu(ξ) dξ := lim

σ→0+
(2π)−n

∫
eixξ−σ〈ξ〉u(ξ) dξ.

More detailed pieces of information of the Fourier transform on G2,2 can be found
in [2]. As already mentioned above we will focus on generalized pseudodifferential
operators having the following phase-amplitude representation.

Definition 3.1. Let (aε)ε ∈M(ν,l)

Sm,k(Rn×Rn). We define the corresponding linear
operator Aψ : G2,2 → G2,2 such that on the level of representatives we have

(uε)ε 7→ (Aψ,ε(x,Dx)uε)ε ∀(uε)ε ∈MH∞

and

Aψ,ε(x,Dx)uε(x) := (2πε)−n
∫
ei(x−y)ξ/εaε(x, ξ)uε(y) dy dξ

= ε−nF−1
ξ→x/ε

(
aε(x, ξ)ûε(ξ/ε)

) (3.1)

where the above integral is interpreted as an oscillatory integral. We call Aψ the
ψ-pseudodifferential operator with generalized symbol (aε)ε = (aε(x, ξ))ε. Also we
will often write Aψ ∈ OPψM(ν,l)

Sm,k when the generalized symbol of Aψ belongs to

the class M(ν,l)

Sm,k .

Remark 3.2. (a) Note that the map in the above definition preserves moderateness
and negligibility, respectively, so that Aψ is well-defined on equivalence classes
and continuous (cf. [26, Section 1.2] and [29, Theorem 2.7]). Further, we remark
that (Aψ,ε(x,Dx)uε)ε = (Aε(x, εDx)uε)ε since formally we can always perform the
rescaling. The problem of rescaling will be discussed in the next subsection.

(b) Note that Definition 3.1 agrees with the notion of the semiclassical standard
quantization of a generalized symbol (aε)ε ∈ M(ν,l)

Sm,k(Rn × Rn) and can simply
written as in (3.1) using scaled Fourier transforms. Another commonly used quan-
tization is the Weyl quantization aW (x, εD) which has the nice property that real
symbols correspond to self-adjoint Weyl quantizations. Since we will exclusively
deal with the standard quantization of generalized symbols we decided to call them
ψ-pseudodifferential operators.
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To prepare the factorization theorem of Section 4 we will have to consider prod-
ucts of ψ-pseudodifferential operators. We therefore start with some general obser-
vations concerning the notion of asymptotic expansion of a generalized symbol in
M(ν,l)

Sm,k .

3.1. Asymptotic expansion of the first kind. First we present the asymptotic
expansion of the first kind which is inspired by the results given in [15, Section 2.5]
but also uses a relevant technical aspect from the semiclassical approach. Since
this first notion of an asymptotic expansion turns out to have no suitable invariant
character under rescaling we will further introduce the asymptotic expansion of
second kind which behaves slightly different when performing the rescaling. We
should emphasize here that this invariance property of the asymptotic expansion
of the second kind will be essential from Section 5 onwards, where we discuss
microlocal regularity at infinite points.

The definition of the asymptotic expansion of the first kind is now the following:

Definition 3.3. For j ∈ N let {mj}j be a strictly decreasing sequence of real
numbers with mj ↘ −∞ as j → ∞, m0 = m and {lj}j be a sequence of the form
lj = σj + l for some fixed σ, l ∈ R and σ ≥ 0. Further let {(aj,ε)ε}j be a sequence
with (aj,ε)ε ∈ M(ν,lj)

Smj,k so that the following uniform growth type condition is
satisfied:

∃η ∈ (0, 1] ∀j ∈ N ∀α, β ∈ Nn ∃C > 0 for which

q
(mj)
α,β (aj,ε) ≤ Cεkων|β|+ljε ∀ε ∈ (0, η].

(3.2)

We say that
∑∞
j=0(ε

jaj,ε)ε is the asymptotic expansion of the first kind for (aε)ε ∈
M(ν,l)

Sm,k , denoted by (aε)ε ∼
∑
j(ε

jaj,ε)ε, if and only if

(aε −
N−1∑
j=0

εjaj,ε)ε ∈M(ν,l)

SmN ,N+k−1 ∀N ≥ 1.

Moreover (a0,ε)ε is said to be the principal symbol of (aε)ε if a0,ε is not identically
vanishing for any fixed ε ∈ (0, η].

We are now in a position to state our first result.

Lemma 3.4. Let {lj}j, {mj}j and {(aj,ε)ε}j be as in Definition 3.3. Then there
exists a generalized symbol (aε)ε ∈M(ν,l)

Sm,k such that (aε)ε ∼
∑
j(ε

jaj,ε)ε inM(ν,l)

Sm,k .
Moreover the asymptotic expansion of the first kind determines (aε)ε uniquely mod-
ulo NS−∞ .

Before presenting the proof of Lemma 3.4 we need a technical auxiliary result.

Lemma 3.5. Let {(aj,ε)ε}j be as in Definition 3.3 and χ a smooth function such
that χ ≡ 0 on [0, 1], χ ≡ 1 on [2,∞) and 0 ≤ χ ≤ 1. Then there exists a zero
sequence {µj}j such that for some fixed η ∈ (0, 1] we have for every j ∈ N and
α, β ∈ Nn with |α+ β| ≤ j:

|χ(µj(εωσε )−1)q(mj)
α,β (aj,ε)| ≤ 2−j−1εkων|β|+ljε (εωσε )−1 ∀ε ∈ (0, η],

with the same σ as in Definition 3.3.



12 M. GLOGOWATZ EJDE-2012/144

Proof. Using the uniformity condition (3.2) of the sequence {(aj,ε)ε}j we obtain
that for some η ∈ (0, 1] and ∀j ∈ N, ∀α, β ∈ Nn, ∃C(1)

j,α,β > 0 and for all ε ∈ (0, η]
we have

ε−kω−ν|β|−ljε |χ(µj(εωσε )−1)q(mj)
α,β (aj,ε)| ≤ C

(1)
j,α,βχ(µj(εωσε )−1)

= C
(1)
j,α,β

µj
εωσε

χ(µj(εωσε )−1)
εωσε
µj

≤ C
(1)
j,α,β

µj
εωσε

since χ(µj(εωσε )−1) = 0 for µj ≤ εωσε and 0 ≤ χ ≤ 1. We now choose the sequence
{µj}j in the following way: for all j ∈ N and all α, β ∈ Nn with |α+β| ≤ j we have

C
(1)
j,α,βµj ≤ 2−j−1 (3.3)

and the proof is complete. �

Proof of Lemma 3.4. In the following proof we basically combine techniques from
the theory of non-linear generalized functions, [15, Theorem 2.2], and Borel’s The-
orem from the semiclassical approach as in [11, Theorem 4.11] or alternatively [30,
Proposition 2.3.2]. To avoid overload calculations, we may assume without loss of
generality that k = 0 in Lemma 3.4 and therefore also in the uniformity condition
(3.2).

We let φ ∈ C∞(Rn), 0 ≤ φ ≤ 1 such that φ(ξ) = 0 for |ξ| ≤ 1 and φ(ξ) = 1 for
|ξ| ≥ 2. Further let χ and {µj}j be as in Lemma 3.5. We introduce functions

b
(1)
j,ε (x, ξ) := χ(µj(εωσε )−1)aj,ε(x, ξ)

b
(2)
j,ε (x, ξ) :=

(
1− χ(µj(εωσε )−1)

)
φ(λjξ)aj,ε(x, ξ)

where {λj}j is a strictly decreasing zero sequence such that for all j : λj ≤ 1 and
will be specified later. For fixed ε ∈ (0, 1] we also define

aε(x, ξ) :=
∑
j≥0

εjb
(1)
j,ε (x, ξ) +

∑
j≥0

εjb
(2)
j,ε (x, ξ).

By construction the first sum consists of at most finitely many nonzero terms (de-
pending on ε ∈ (0, 1] fixed), since µj → 0 as j → ∞. Moreover the second sum is
locally finite and we conclude that (aε)ε ∈ E(Rn × Rn)(0,1].

Step 1: In the first part of the proof we show that (aε)ε ∈ M(ν,l)

Sm,0 . Since

(aj,ε)ε ∈ M
(ν,lj)

Smj,0 satisfy the uniform growth type condition with k = 0 we obtain
that there exists η ∈ (0, 1] such that for all j ∈ N, and all α, β ∈ Nn we have

|∂αξ ∂βx b
(1)
j,ε (x, ξ)| ≤ C

(1)
j,α,βω

ν|β|+lj
ε 〈ξ〉mj−|α| ∀ε ∈ (0, η] (3.4)

and the constant C(1)
j,α,β > 0 is the same as in the proof of Lemma 3.5.

Concerning b(2)j,ε we observe that supp(∂αφ)(λjξ) ⊂ {ξ : λ−1
j ≤ |ξ| ≤ 2λ−1

j } for
every |α| ≥ 1. Accordingly, if |α| ≥ 1, we can assume λj ≤ 2/|ξ| ≤ 4〈ξ〉−1 on
supp(∂αφ)(λjξ) and b

(2)
j,ε can be estimated as follows: ∃η ∈ (0, 1] independent of
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α, β and j such that

|∂αξ ∂βx b
(2)
j,ε (x, ξ)| ≤ 〈ξ〉mj−|α|

∑
γ≤α

c(χ, φ, γ)4|α−γ|q(mj)
γ,β (aj,ε)

≤ C
(2)
j,α,βω

ν|β|+lj
ε 〈ξ〉mj−|α|

(3.5)

for all ε ∈ (0, η]. At this point we choose the sequence {λj}j strictly decreasing
and so that

∀j ∈ N ∀α, β ∈ Nn with |α+ β| ≤ j we have: C
(2)
j,α,βλj ≤ 2−j−1. (3.6)

To show that (aε)ε ∈M(ν,l)

Sm,0 we note that

∀α, β ∈ Nn ∃j0 ∈ N : |α+ β| ≤ j0, mj0 + 1 ≤ m (3.7)

and decompose (aε)ε in an appropriate way, that now is

aε(x, ξ) =
∑

j≤j0−1

εjbj,ε(x, ξ) +
∑
j≥j0

εjbj,ε(x, ξ) =: fε(x, ξ) + sε(x, ξ) (3.8)

where we have set bj,ε(x, ξ) := b
(1)
j,ε (x, ξ) + b

(2)
j,ε (x, ξ). Then ∃η ∈ (0, 1] such that for

all α, β ∈ Nn

|∂αξ ∂βxfε(x, ξ)| = |
∑

j≤j0−1

εj∂αξ ∂
β
x

{
b
(1)
j,ε (x, ξ) + b

(2)
j,ε (x, ξ)

}
|

≤ ων|β|+lε 〈ξ〉m−|α|
∑

j≤j0−1

(εωσε )j
(
C

(1)
j,α,β + C

(2)
j,α,β

)
≤ Cj0ω

ν|β|+l
ε 〈ξ〉m−|α|

for all ε ∈ (0, η] by (3.4) and (3.5). We next estimate the remainder sε. For this
purpose we apply (3.3) from Lemma 3.5 and use (3.6) to obtain

ω−ν|β|−lε |∂αξ ∂βx sε(x, ξ)| ≤
∑
j≥j0

(εωσε )j〈ξ〉mj−|α|2−j−1
{
µ−1
j + λ−1

j

}
≤ (εωσε )j0−1〈ξ〉mj0+1−|α|

∑
j≥j0

2−j(εωσε )j−j0

≤ (εωσε )j0−1〈ξ〉mj0+1−|α| ≤ 〈ξ〉m−|α| ∀ε ∈ (0, η]

for some η ∈ (0, 1] independent of the order of differentiation. Note that in the
second inequality we used that µ−1

j ≤ (εωσε )−1 on supp(b(1)j,ε ) and λ−1
j ≤ 〈ξ〉 on

supp(b(2)j,ε ). And so, (aε)ε ∈M(ν,l)

Sm,0 as required.
Step 2: We complete the proof by showing that for every N ≥ 1 we have

(aε −
∑

j≤N−1

εjaj,ε)ε ∈M(ν,lN )

SmN ,N (Rn × Rn). (3.9)

Therefore, we let N ≥ 1 be a fixed natural number and write

aε(x, ξ)−
∑

j≤N−1

εjaj,ε(x, ξ) =
∑

j≤N−1

εj
(
1− χ(µj(εωσε )−1)

)(
φ(λjξ)− 1

)
aj,ε(x, ξ)

+
∑
j≥N

εjbj,ε(x, ξ) =: gε(x, ξ) + tε(x, ξ).
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We first calculate the contribution of gε. For this note that |ξ| ≤ 2λ−1
j on the

support of (φ(λjξ) − 1) and we obtain that ∃η ∈ (0, 1] such that ∀j ≤ N − 1 we
have

|∂αξ ∂βx
(
φ(λjξ)− 1

)
aj,ε(x, ξ)|

≤
∑
γ≤α

c(φ, γ)λ|γ|j q
(mj)
α−γ,β(aj,ε)〈ξ〉

mj−|α−γ|

≤ 〈ξ〉mN−|α|
∑
γ≤α

c(φ, γ)λ|γ|j 〈2λ−1
N−1〉

mj−mN+|γ|q
(mj)
α−γ,β(aj,ε)

≤ CN,α,βω
ν|β|+lj
ε 〈ξ〉mN−|α| ∀ε ∈ (0, η].

Now taking into account that 1−χ(µj(εωσε )−1) 6= 0 only if µj ≤ 2εωσε we compute

ω−ν|β|−lε |∂αξ ∂βxgε(x, ξ)|

≤ CN,α,β〈ξ〉mN−|α|
∑

j≤N−1

(εωσε )j
(
1− χ(µj(εωσε )−1)

)
= CN,α,β(εωσε )N 〈ξ〉mN−|α|

∑
j≤N−1

µj−Nj

( µj
εωσε

)N−j (
1− χ(µj(εωσε )−1)

)
≤ C̃N,α,β(εωσε )N 〈ξ〉mN−|α| ∀ε ∈ (0, η].

We proceed with the estimation of tε in which we again use a decomposition as in
(3.7) and (3.8). Therefore we let N ∈ N, N ≥ 1 be fixed. Then

∀α, β ∈ Nn ∃j0 ∈ N : |α+ β| ≤ j0, mj0 + 1 ≤ mN and j0 − 1 ≥ N ;

we write

tε(x, ξ) =
j0−1∑
j=N

εjbj,ε(x, ξ) + sε(x, ξ) (3.10)

with sε as in (3.8). As already shown in the estimate for sε we also have

|∂αξ ∂βx sε(x, ξ)| ≤ ων|β|+lε (εωσε )j0−1〈ξ〉mj0+1−|α|.

Furthermore we obtain for the first term on the right hand side of (3.10)

|∂αξ ∂βx
j0−1∑
j=N

εjbj,ε(x, ξ)| ≤ ων|β|+lε 〈ξ〉mN−|α|
j0−1∑
j=N

(εωσε )j
(
C

(1)
j,α,β + C

(2)
j,α,β

)
≤ Cj0(εω

σ
ε )Nων|β|+lε 〈ξ〉mN−|α|.

Putting this together we get (3.9) which completes the proof. �

Remark 3.6. Before we proceed we make some observations concerning the con-
struction of the generalized symbol (aε)ε in Lemma 3.4 which was given by the
expression

aε(x, ξ) =
∑
j≥0

εjχ
( µj
εωσε

)
aj,ε(x, ξ) +

∑
j≥0

εj
{

1− χ
( µj
εωσε

)}
φ(λjξ)aj,ε(x, ξ).

Here the first sum is inspired from the semiclassical approach whereas the second
sum is also used in the usual Colombeau framework. Then it is may worth to
mention the following facts:
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(a) To construct the square root of the homogeneous operator Lψ we also need to
discuss polyhomogeneous symbols. Then the second sum in the definition of aε also
makes sense for homogeneous symbols aj,ε, but the first sum would induce a finite
number of singularities (at ξ = 0) for fixed ε ∈ (0, 1]. To overcome this problem
we will introduce generalized symbols that are smoothed off at the zero section so
that we can require a symbol to have an asymptotic expansion in homogeneous
terms if we allow some additional error terms in the asymptotic expansion. For
the precise description of these so-called polyhomogeneous generalized symbols we
refer to Definition 4.1.

(b) Another important property concerns the effect of rescaling. This will be used
in Section 5 where we test microlocal regularity of generalized functions using L2-
boundedness results of zeroth-order ψ-pseudodifferential operators. To exemplify
this let {(aj,ε)ε}j be a sequence with (aj,ε)ε ∈ M

(ν,lj)

S−j,k and lj as in Definition 3.3,

j ≥ 0. By Lemma 3.4 there exists (aε)ε ∈M(ν,l)

S0,k such that for all N ≥ 1 we have

(rε)ε := (aε −
∑

j≤N−1

εjaj,ε)ε ∈M(ν,l)

S−N,N+k−1 . (3.11)

Now using the rescaling (x, ξ) 7→ (rε(x, εξ))ε we obtain for every N ≥ 1

(x, ξ) 7→ (rε(x, εξ))ε ∈M(ν,l)

S−N,k−1

concluding that the asymptotic expansion of the first kind keeps the order of the
error operator invariant under rescaling but not its growth type. According to the
L2-boundedness it seems suitable to have an asymptotic expansion which preserves
the growth type of the error operator in (3.11) under rescaling rather than the order
of the same.

Therefore, note that (rε)ε in (3.11) can also be considered as a symbol of class
NS0 . Then the rescaling does not influence the negligibility of the symbol (rε)ε
since

(x, ξ) 7→ (rε(x, εξ))ε ∈ NS0 .

Using this we now introduce the asymptotic expansion of the second kind to achieve
an invariant growth type under rescaling at least when studying zeroth-order opera-
tors. In detail we will study asymptotic expansions of the form (

∑
j≥0 ε

jaj,ε)ε which
are similar those in Definition 3.3 but where the sequence {(aj,ε)ε}j is uniformly
bounded in the generalized symbol class of order m = m0.

3.2. Asymptotic expansion of the second kind. To eliminate the rescaling
problem arising in Remark 3.6(b) we now present the asymptotic expansion of the
second kind.

Definition 3.7. Let m, k ∈ R and {lj}j be a sequence of real numbers of the form
lj = σj + l for some fixed σ, l ∈ R and σ ≥ 0, j ∈ N. Further we let {(aj,ε)ε}j be a
sequence with (aj,ε)ε ∈M

(ν,lj)

Sm,k satisfying the uniformity condition:

∃η ∈ (0, 1] ∀j ∈ N ∀α, β ∈ Nn ∃C > 0 such that

q
(m)
α,β (aj,ε) ≤ Cεkων|β|+ljε ∀ε ∈ (0, η].
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We say that the
∑∞
j=0(ε

jaj,ε)ε is the asymptotic expansion of the second kind for

the symbol (aε)ε ∈M(ν,l)

Sm,k , denoted by (aε)ε ≈
∑
j(ε

jaj,ε)ε, if

(aε −
N−1∑
j=0

εjaj,ε)ε ∈M(ν,lN )

Sm,N ∀N ≥ 1.

Again we call (a0,ε)ε the principal symbol of (aε)ε if a0,ε is not identically zero for
every fixed ε > 0 sufficiently small.

Comparing Definition 3.3 and 3.7 we observe that any generalized symbol (aε)ε
from Lemma 3.4 also admits an asymptotic expansion of the second kind.

Furthermore we note that our notions of an asymptotic expansion are different
from the one used in the semiclassical approach. A crucial difference is that in the
semiclassical setting one uses the Hörmander symbol class Sm0,0 as the underlying
classical space and not Sm := Sm1,0 as in our case, cf. [24]. As above, the semiclassi-
cal asymptotic expansion provides an invariant character of zeroth-order operators
under rescaling. For more details on the semiclassical asymptotic expansion we
refer to [10, 30, 23].

3.3. Composition of ψ-pseudodifferential operators. In this subsection we
establish the composition law of two ψ-pseudodifferential operators utilizing the
method of stationary phase to determine the asymptotic behavior in the occurring
oscillatory integrals. Because of the specific construction of the ψ-pseudodifferential
operators it suffices to study a corollary of the stationary phase formula which can
be found in [30, Corollary 2.6.3] and [21, Example 2.2].

In detail, this simplified formula says that given a function a ∈ C∞c (R2n) then
for every N ≥ 1 one has(

λ

2π

)n ∫
e−iλxya(x, y) dx dy =

∑
|α|≤N−1

1
α!λ|α|

(
Dα
x∂

α
y a
)
(0, 0) + SN (a;λ)

where the parameter λ is considered in the limit λ→∞. Moreover the remainder
term SN (a;λ) can be estimated as follows

|SN (a;λ)| ≤ C

N !λN
∑

|α+β|≤2n+1

‖∂αx ∂βy (∂x · ∂y)Na‖L1(R2n) λ ≥ 1

where ∂x · ∂y =
∑n
j=1 ∂xj

∂yj
and the constant C > 0 is independent of λ. In

the application we will work with smooth functions a which are not compactly
supported but are well-behaved at infinity and also depend on the parameter λ. For
a more general discussion on the method of stationary phase we refer the reader to
[30, Section 2.6] or alternatively to [21, Section 2].

Using the above formula we can show the following result.

Proposition 3.8. Let Aψ(x,Dx) and Bψ(x,Dx) be two ψ-pseudodifferential oper-
ators with generalized symbols (aε)ε ∈ M(ν,l1)

Sm1,k1
and (bε)ε ∈ M(ν,l2)

Sm2,k2
respectively.

Then the product AψBψ is well-defined and maps G2,2 into itself. Moreover AψBψ is
a ψ-pseudodifferential operator with generalized symbol (aε#bε)ε in M(ν,l1+l2)

Sm1+m2,k1+k2
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and we have the following representation

(aε#bε)ε ∼
∑
|α|≥0

(
ε|α|

α!
Dα
ξ aε(x, ξ)∂

α
x bε(x, ξ)

)
ε

. (3.12)

Note that in Proposition 3.8 the generalized symbol (aε#bε)ε is given by its
asymptotic expansion of the first kind. Hence it can also be reinterpreted as a
symbol having an asymptotic expansion of the second kind.

The following proof is an adaption of [30, Theorem 2.6.5] and [11, Theorem 9.13].

Proof of Proposition 3.8. Without loss of generality we assume that (aε)ε and (bε)ε
are of growth type 0; i.e., k1 = k2 = 0, as the proof for more general growth type
assumptions requires only slight changes in the argumentation. Let u ∈ G2,2(Rn)
having (uε)ε as representative and let ε ∈ (0, 1] be fixed and arbitrary. Then AψBψu
makes sense as an oscillatory integral and we write

Aψ,εBψ,εuε(x) =
1

(2πε)n
lim
σ→0+

∫
ei(x−y)η/ε−σ〈y〉−σ〈η〉aε(x, η)(Bψ,εuε)(y) dy dη

=
1

(2πε)n
lim

σ→0+, τ→0+

∫
eixξ/ε−τ〈ξ〉cσ,ε(x, ξ)ûε(ξ/ε) dξ (3.13)

where we have set

cσ,ε(x, ξ) = (2πε)−n
∫
ei(x−y)(η−ξ)/ε−σ〈y〉−σ〈η〉aε(x, η)bε(y, ξ) dy dη.

In what follows we show that cσ,ε(x, ξ) corresponds to a generalized symbol in
M(ν,l1+l2)

Sm1+m2,0 uniformly for all σ > 0. Here the relevant asymptotic behavior of cσ,ε
as ε→ 0 is described by using the method of stationary phase. Finally, by passing
to the limit σ → 0+, we obtain by Lebesgue’s dominated convergence theorem that
the limit of (cσ,ε)ε exists in M(ν,l1+l2)

Sm1+m2,0 and admits a representation as stated in
(3.12).

For that purpose we first split the integral representation of cσ,ε(x, ξ) into three
parts. Therefore, let χ ∈ C∞c (R) such that χ(s) = 1 for |s| ≤ 1/4 and χ(s) = 0 for
|s| ≥ 1/2 and set χ1(x, y) = χ(|x− y|) for x, y ∈ Rn. For |ξ| ≥ 1 we write

cσ,ε(x, ξ) = dσ,ε(x, ξ) + eσ,ε(x, ξ) + fσ,ε(x, ξ), (3.14)

where dσ,ε, eσ,ε and fσ,ε are defined by the additional factors 1 − χ(|ξ − η|/|ξ|),
χ(|ξ − η|/|ξ|)(1− χ1(x, y)) and χ(|ξ − η|/|ξ|)χ1(x, y) in the integrand of cσ,ε. Also
we note that fσ,ε represents the part of cσ,ε that will determine its asymptotic
behavior as we meet the critical points of the phase.

In the following we give the proof under the assumption that |ξ| ≥ 1. In the case
that |ξ| ≤ 1 a likewise decomposition as in (3.14) will lead to the desired result.
Again, this is similar as in the proof of [30, Theorem 2.6.5].

As a first step we check that the integrand of dσ,ε is in L1(Rny × Rnη ) uniformly
in σ > 0. Therefore, we introduce the operator

Lε :=
(
1 +

|ξ − η|2

ε2
+
|x− y|2

ε2

)−1(
1 +

ξ − η

ε
Dy +

x− y

ε
Dη

)
satisfying the equality

Lεe
i(x−y)(η−ξ)/ε = ei(x−y)(η−ξ)/ε.
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Using integration by parts we obtain

(2πε)ndσ,ε(x, ξ)

=
∫
ei(x−y)(η−ξ)/ε(tLε)k

{
(1− χ(|ξ − η|/|ξ|))e−σ〈y〉−σ〈η〉aε(x, η)bε(y, ξ)

}
dy dη.

Further, for every k ∈ N with k > n+ 1/2 we obtain

(2πε)ndσ,ε(x, ξ)

=
∫
|ξ−η|≥|ξ|/4

O
( ωkν+l1+l2ε 〈η〉m1〈ξ〉m2

(1 + |ξ − η|/ε+ |x− y|/ε)k
)
dy dη

=
∫
|ξ−η|≥|ξ|/4

O
(
εnωkν+l1+l2ε 〈η〉m1〈ξ〉m2

{
1 +

|ξ − η|
ε

}n+1/2−k)
dη

=
∫
|ξ−η|≥|ξ|/4

O
(
εk−1/2ωkν+l1+l2ε

〈η〉m1〈ξ〉m2

(1 + |ξ|+ |η|)k−n−1/2

)
dη as ε→ 0.

Then, by a straightforward calculation one shows that for every k ≥ |m1|+ 2n+ 1
we have

(2πε)ndσ,ε(x, ξ) = O
(
εk−1/2ωkν+l1+l2ε 〈ξ〉m1+m2−k+2n+1+|m1|

)
for ε sufficiently small. Since (ωε)ε is a slow scale net we conclude that

(2πε)ndσ,ε(x, ξ) = O
(
εNωl1+l2ε 〈ξ〉m1+m2−N

)
∀ N ≥ 0

uniformly for every (x, ξ) ∈ R2n with |ξ| ≥ 1 and σ > 0 as ε→ 0.
We next estimate eσ,ε(x, ξ). Using the coordinate change z = y− x and integra-

tion by parts we can write

(2πε)neσ,ε(x, ξ) =
∫

|z|≥1/4
|ξ−η|≤|ξ|/2

e−iz(η−ξ)/ε(tL1,ε)krσ,ε(x, z, ξ, η) dz dη

where we have set L1,ε := −εz/|z|2Dη and

rσ,ε(x, z, ξ, η) := χ(|ξ − η|/|ξ|)(1− χ(|z|))e−σ〈x+z〉−σ〈η〉aε(x, η)bε(x+ z, ξ).

Note that the operator L1,ε satisfies
tL1,ε = −L1,ε and L1,εe

−iz(η−ξ)/ε = e−iz(η−ξ)/ε.

Also, the integrand of eσ,ε(x, ξ) is integrable with respect to z if we take k > n.
To check the integrability with respect to the η-variable we partition the domain
of integration into the two regions

Ω1 := {η ∈ Rn : |ξ − η| ≤ 1/4}, Ω2 := {η ∈ Rn : |ξ − η| ≥ 1/4}

and write

(2πε)neσ,ε(x, ξ) =
2∑
j=1

∫
Ωj

e−iz(η−ξ)/ε(tL1,ε)krσ,ε(x, z, ξ, η) dz dη =:
2∑
j=1

Ij .

Concerning I1 we use the coordinate transformation ζ = η − ξ and by Peetre’s
inequality 〈ξ + ζ〉s ≤ 2|s|/2〈ξ〉s〈ζ〉|s| for every s ∈ R we obtain

I1 =
∫
|z|≥1/4
|ζ|≤1/4

O(εkωl1+l2ε |z|−k〈ξ〉m2〈ξ + ζ〉m1−k) dz dζ = O(εkωl1+l2ε 〈ξ〉m1+m2−k)
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for every k > n as ε→ 0. For the estimation of the second part I2 we introduce

L2,ε :=
ε2

|ξ − η|2
ξ − η

ε
Dz

and let j ∈ N. Again using integration by parts we obtain for |ξ| ≥ 1

I2 =
∫
e−iz(η−ξ)/ε(tL2,ε)j(tL1,ε)krσ,ε(x, z, ξ, η) dz dη

=
∫

|z|≥1/4
1/4≤|ξ−η|≤|ξ|/2

O(εj+kωjν+l1+l2ε |z|−k〈ξ〉m2〈η〉m1−k|ξ − η|−j) dz dη

and is integrable with respect to z if we take k > n for sufficiently small ε. Then
using the coordinate change η = ξ + ζ and applying Peetre’s inequality gives

I2 =
∫

1/4≤|ζ|≤|ξ|/2
O(εj+kωjν+l1+l2ε 〈ξ〉m1+m2−k〈ζ〉|m1|+k−j) dζ

= O(εj+kωjν+l1+l2ε 〈ξ〉m1+m2−k)

for every j, k ∈ N with k > n and j > |m1|+ k+ n as ε→ 0. Combining the above
yields to

(2πε)neσ,ε(x, ξ) = O
(
εNωl1+l2ε 〈ξ〉m1+m2−N

)
∀N ≥ 0

uniformly for all σ > 0 and (x, ξ) ∈ R2n, |ξ| ≥ 1 as ε→ 0. By the same arguments
as above one can also show that for every α, β ∈ Nn, |ξ| ≥ 1 and N ∈ N we have

|∂αξ ∂βxdσ,ε(x, ξ)|+ |∂αξ ∂βx eσ,ε(x, ξ)| = O
(
εNων|β|+l1+l2ε 〈ξ〉m1+m2−|α|−N

)
uniformly for σ > 0 as ε→ 0. So we deduce that (dσ,ε)ε and (eσ,ε)ε are contained in
M(ν,l1+l2)

Sm1+m2−N,N for every N ∈ N uniformly with respect to σ > 0 and (x, ξ) ∈ R2n,
|ξ| ≥ 1.

So it remains to study the term (2πε)nfσ,ε(x, ξ) which was given by∫
ei(x−y)(η−ξ)/εχ(|ξ − η|/|ξ|)χ1(x, y)e−σ(〈y〉+〈η〉)aε(x, η)bε(y, ξ) dy dη.

Now writing ξ = λν where λ = |ξ| and using the coordinate transformations

ζ = (η − ξ)/λ, z = y − x

we obtain

fσ,ε(x, ξ) =
λn

(2πε)n

∫
|z|≤1/2, |ζ|≤1/2

e−iλzζ/εtσ,ε(z, ζ;x, ξ) dz dζ

where tσ,ε is a function in C∞c (Rnz ×Rnζ ) containing (x, ξ) as parameters and is given
by

tσ,ε(z, ζ;x, ξ) = χ(|ζ|)χ(|z|)e−σ〈x+z〉−σ〈λ(ν+ζ)〉aε(x, λ(ν + ζ))bε(x+ z, λν).

Then the method of stationary phase gives for every N ∈ N, N ≥ 1

fσ,ε(x, ξ) =
∑

|α|≤N−1

ε|α|

α!λ|α|
Dα
ζ ∂

α
z tσ,ε(z, ζ;x, ξ)

∣∣∣z=0
ζ=0

+ SN (tσ,ε;λ/ε)

and the remainder can be estimated as follows

|SN (tσ,ε;λ/ε)| ≤
CεN

N !λN
∑

|α+β|≤2n+1

‖∂αζ ∂βz (∂ζ · ∂z)N tσ,ε‖L1(Rn
z×Rn

ζ )
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= O
(
εNω(2n+1+N)ν+l1+l2

ε λm1+m2−N
)

= O
(
εN−1ωl1+l2ε 〈ξ〉m1+m2−N

)
for |ξ| ≥ 1 and ε sufficiently small. Finally, since similar estimates hold true for the
derivatives and we conclude that (SN (tσ,ε))ε is contained in M(ν,l1+l2)

Sm1+m2−N,N−1 for
every N ∈ N uniformly with respect to σ > 0 for every (x, ξ) ∈ R2n with |ξ| ≥ 1.

As already mentioned in the beginning of the proof we now pass to the limit
σ → 0+. Then by Lebesgue’s dominated convergence theorem we have

cσ,ε(x, ξ) → cε(x, ξ) as σ → 0+

so that equation (3.13) reads

Aψ,εBψ,εuε(x) = (2πε)−n lim
τ→0+

∫
eixξ/ε−τ〈ξ〉cε(x, ξ)ûε(ξ/ε) dξ

= (2πε)−n
∫
eixξ/εcε(x, ξ)ûε(ξ/ε) dξ

where the last equation holds in the sense of oscillatory integrals. Moreover the
generalized symbol (cε)ε is equal to (aε#bε)ε as described in (3.12) and in particular
(cε)ε ∈M(ν,l1+l2)

Sm1+m2,0 . This completes the proof. �

4. A factorization procedure for Lψ

Concerning products of ψ-pseudodifferential operators that approximate Lψ we
make similar considerations as in the smooth setting which can be found in [29,
Appendix II] and [25, Chapter 23]. First we write for Lψ = ε2Lε with Lε from the
beginning

Lψ(y,Dt, Dx, Dz) =: (∂2
z +A(y,Dt, Dx))ψ (4.1)

where Aψ = Aψ(y,Dt, Dx) is the ψ-pseudodifferential operator with generalized
symbol (aε)ε and

aε(y, τ, ξ) = cε(y)τ2 − 〈bε(y)ξ, ξ〉 ε ∈ (0, 1]. (4.2)

To recall the requirements made on the coefficients cε(y) and bj,ε(y), 1 ≤ j ≤ n− 1
we also refer to Section 1.

Before stating the main theorem of this section we give a few more details about
notation. In the following we will study operators on Rn+1 of the form

Sψ =
2∑
j=0

Sj,ψ(y,Dt, Dx)(∂2−j
z )ψ

with coefficients Sj,ψ ∈ OPψM
(1,lj)

Skj,0 for some kj , lj ∈ R, j = 0, 1, 2. Further we
write

Sψ =
2∑
j=0

Sj,ψ(y,Dt, Dx)(∂2−j
z )ψ on I ′

when the symbols of the coefficients Sj,ψ are restricted to a set I ′.
Concerning the factorization domain we make similar considerations as in [37]

and introduce the set

I ′θ1 :=
{
(y, τ, ξ) | τ 6= 0, 〈b(y)ξ, ξ〉 < sin2(θ1)c(y)τ2

}
(4.3)
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for some θ1 ∈ (0, π/2). Then I ′θ1 is an open subset of Rn × (Rn \ 0) and conic with
respect to the second variable. Moreover we have chosen I ′θ1 independent of the
parameter ε ∈ (0, 1] for simplicity. Note that the main reason for restricting the
analysis to the domain I ′θ1 is that (aε)ε is non-negative there.

Further, as already mentioned in Section 3 it is necessary to introduce the notion
of polyhomogeneous generalized symbols that are smoothed off at the origin.

Definition 4.1. We say that a generalized symbol (pε)ε is polyhomogeneous in
M(ν,l)

Sm,k , denoted by (pε)ε ∈ M(ν,l)

Sm,k

phg

, if there exist a sequence of symbols (pm−j,ε)ε

in M(ν,νj+l)

Sm−j,k

hg

, j ≥ 0 and a cut-off ϕ ∈ C∞c (Rn) equal to 1 near the origin so that

∀N ≥ 1 we have(
pε −

N−1∑
j=0

εj(1− ϕ)pm−j,ε
)
ε
∈M(ν,νN+l)

Sm−N,N+k for ξ sufficiently large. (4.4)

For this we will use the following notation

(pε)ε∼̇
∑
j≥0

(
εjpm−j,ε

)
ε

in M(ν,l)

Sm,k .

Here the homogeneous part (pm,ε)ε is called the principal symbol of (pε)ε if there
exist an η ∈ (0, 1] and a constant K > 0 such that pm,ε 6≡ 0 for all |ξ| ≥ K and any
fixed ε ∈ (0, η]. In particular a ψ-pseudodifferential operator is polyhomogeneous if
its generalized symbol is polyhomogeneous.

Remark 4.2. First note that the principal symbol is uniquely determined if the
dual variable is sufficiently large. Also (4.4) can be interpreted in the following
sense: ∀N ≥ 1 we have(

pε −
N−1∑
j=0

εj(1− ϕ)pm−j,ε
)
ε

= (rε)ε + (sε)ε (4.5)

for some (sε)ε ∈ M(ν,νN+l)

Sm−N,N+k and (rε)ε is some compactly supported regular gen-
eralized symbol of order −∞ in the following sense:

∃η ∈ (0, 1] ∃k ∈ R ∀m ∈ R ∀α, β ∈ Nn ∃C > 0 such that

|∂αξ ∂βx rε(x, ξ)| ≤ Cεk〈ξ〉m−|α| ∀ε ∈ (0, η].

We refer to Section 5 where it is essential to distinguish between the two different
types of errors on the right hand side of (4.5).

The aim of this section is now to factorize Lψ on I ′θ1 in terms of two first-order
operators of the form Lj,ψ = (∂z + Aj)ψ on I ′θ1 with Aj,ψ a polyhomogeneous

ψ-pseudodifferential operator with generalized symbol in M(1,0)

S1,0
phg

on I ′θ1 , j = 1, 2.

Here a first rough approximation would suggest Aj,ψ to be the square root of the
operator Aψ = OPψ((aε)ε) given in (4.1) on the set I ′θ1 where ±(i

√
aε)ε is described

explicitly, j = 1, 2.
We are now going to show the following result.

Theorem 4.3. Let Lψ = (∂2
z + A)ψ and I ′θ1 be as in (4.1) and (4.3) respectively.

Then the operator Lψ can be factorized into

Lψ = L1,ψL2,ψ +Rψ on I ′θ1 (4.6)
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where Lj,ψ = (∂z + Aj)ψ and Aj,ψ ∈ OPψM(1,0)

S1,0
phg

on I ′θ1 whose principal sym-

bol is equal to ±(i
√
aε)ε, j = 1, 2. Moreover the remainder is given by Rψ =

Γ0,ψ+Γ1,ψ(∂z)ψ for some ψ-pseudodifferential operators Γj,ψ with generalized sym-
bol (γj,ε)ε in NS2−j on I ′θ1 , j = 0, 1.

We remark that the product L1,ψL2,ψ in (4.6) is not a ψ-pseudodifferential op-
erator on Rn+1. But one can overcome this by introducing a generalized cut-off
gψ(Dt, Dy) such that the difference L1,ψL2,ψgψ −L1,ψL2,ψ is insignificant on some
adequate subdomain of the phase space T ∗Rn+1 \ 0 under a microlocal point of
view. For the specification for microlocal analysis we refer to the next section.

Technical preliminaries. Note that aε as in (4.2) is a homogeneous function with
respect to the dual variables (τ, ξ) and so that there exists η ∈ (0, 1] such that

|aε(y, τ, ξ)| ≥ C|(τ, ξ)|2 on I ′θ2 for every ε ∈ (0, η]

for some fixed θ2 ∈ (0, π/2) with θ1 < θ2 and the constant C > 0 independent of ε.
Moreover we set for some ε0 ∈ (0, 1] which will be specified later

b
(0)

j,ε (y, τ, ξ) :=

{
±i
√
aε(y, τ, ξ), ε ∈ (0, ε0]

0, ε ∈ (ε0, 1]
on I ′θ2 (4.7)

which in turn gives (b
(0)

j,ε )ε ∈M
(1,0)

S1,0
hg

on I ′θ2 . We now associate (b
(0)

j,ε )ε to a generalized

symbol (c(0)j,ε )ε ∈M
(1,0)

S1,0 (Rn × (R \ 0)×Rn−1) so that the difference (c(0)j,ε − b
(0)

j,ε )ε is
in NS1 on I ′θ1 in the sense of Definition 2.3.

Therefore, since (cε(y))ε is strictly non-zero we can define for fixed ε ∈ (0, ε1]

fε(y, τ, ξ) :=
〈bε(y)ξ, ξ〉
cε(y)τ2

on Rn × (R \ 0)× Rn−1.

Recall that ε1 ∈ (0, 1] is so that infy∈Rn |cε(y)| ≥ C for some C > 0 and every
ε ∈ (0, ε1]. Furthermore for every fixed ε ∈ (0, ε1] we let h̃ε be the smooth function
defined on Rn × (R \ 0)× Rn−1, 0 ≤ h̃ε ≤ 1, which is given by

h̃ε(y, τ, ξ) :=


0, |fε| ≥ sin2 γ2

1, |fε| ≤ sin2 γ1(
1 + e

1
|fε|−sin2 γ1

− 1
sin2 γ2−|fε|

)−1

, sin2 γ1 < |fε| < sin2 γ2

(4.8)

for some fixed γ1 and γ2 with 0 < γ1 < γ2 < π/2. For all other ε ∈ (0, 1] we
may set h̃ε ≡ 0 and we obtain that (h̃ε)ε ∈ M(1,0)

S0,0 (Rn × (R \ 0) × Rn−1) and also

(h̃ε)ε ∈M(1,0)

S0,0
hg

on I ′θ2 .

Here and hereafter we let θ1, θ2 be fixed so that 0 < θ1 < γ1 < γ2 < θ2 < π/2.
Then there is an ε2 ∈ (0, 1] such that

I ′θ1 ⊂ {(y, τ, ξ) | τ 6= 0 and |fε| ≤ sin2 γ1} ε ∈ (0, ε2]

because of the assumptions made on the coefficients cε(y), bj,ε(y), y ∈ Rn, 1 ≤ j ≤
n− 1.

Similar observations yield to the following: there exists ε3 ∈ (0, 1] such that

{(y, τ, ξ) | τ 6= 0, |f | ≥ sin2 θ2} ⊂ {(y, τ, ξ) | τ 6= 0, |fε| ≥ sin2 γ2}
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for all ε ∈ (0, ε3] where we have set f := limε→0 fε.
Then with (b

(0)

j,ε )ε as in (4.7) we set ε0 := min1≤k≤3 εk and define its extension

(c(0)j,ε )ε by (
c
(0)
j,ε

)
ε

:=
(
h̃εb

(0)

j,ε

)
ε
∈M(1,0)

S1,0 (Rn × (R \ 0)× Rn−1).

Indeed we have that (c(0)j,ε − b
(0)

j,ε )ε ∈ NS1 on I ′θ1 since h̃ε ≡ 1 on I ′θ1 .

Factorization procedure. Our aim here is to decompose the operator Lψ as
announced in (4.6). Therefore we give a construction scheme for the generalized
symbols (aj,ε)ε of the operators Aj,ψ, j = 1, 2 by means of their polyhomogeneous
asymptotic expansions; i.e., on the set I ′θ1 we have

(aj,ε(y, τ, ξ))ε∼̇
∑
µ≥0

(
εµc

(µ)
j,ε (y, τ, ξ)

)
ε

in M(1,0)

S1,0 (4.9)

and the sequence {(c(µ)
j,ε )ε}µ∈N consists of elements (c(µ)

j,ε )ε ∈ M(1,µ)

S1−µ,0(Rn × (R \
0)× Rn−1) and satisfies the uniformity condition:

∃η ∈ (0, 1] ∃K > 0 ∀µ ∈ N ∀α, β ∈ Nn ∃C > 0 for which

|∂α(τ,ξ)∂
β
y c

(µ)
j,ε (y, τ, ξ)| ≤ Cω|β|ε 〈ξ〉1−µ−|α| for |τ | ≥ K, ε ∈ (0, η]

for j = 1, 2. More precisely we will recursively construct a sequence {(b(µ)

j,ε )ε}µ of

symbols (b
(µ)

j,ε )ε in M(1,µ)

S1−µ,µ

hg

on I ′θ2 , j = 1, 2 such that(
c
(µ)
j,ε (y, τ, ξ)

)
ε

=
(
ε−µb

(µ)

j,ε (y, τ, ξ)
)
ε

on I ′θ2 .

Recall that on I ′θ1 (4.9) is equivalent to the following: there exists a smooth cut-off
equal to 1 near the origin such that for every N ≥ 1 we have on I ′θ1(

aj,ε −
N−1∑
µ=0

εµ(1− ϕ)c(µ)
j,ε

)
ε
∈M(1,N)

S1−N,N for |(τ, ξ)| sufficiently large.

Proof of Theorem 4.3. To begin with, we set for j = 1, 2 and ε ∈ (0, ε0]

a
(1)
j,ε := b

(0)

j,ε , l
(1)
j,ε := iζ + a

(1)
j,ε

where
b
(0)

j,ε (y, τ, ξ) = ±i
√
aε(y, τ, ξ) on I ′θ2 , j = 1, 2.

Moreover (a(1)
j,ε )ε ∈ M

(1,0)

S1,0
phg

with polyhomogeneous asymptotic expansion (h̃εb
(0)

j,ε )ε

with h̃ε as in (4.8) and (b
(0)

j,ε )ε only prescribed on I ′θ2 , j = 1, 2. As in (4.7) we set b
(0)

j,ε

and l(1)j,ε equal to zero for all other ε ∈ (0, 1]. Furthermore we define the first-order

operator L(1)
j,ψ through (∂z +A

(1)
j )ψ where A(1)

j,ψ = OPψ((a(1)
j,ε )ε) for j = 1, 2.

Now taking L(1)
1,ψL

(1)
2,ψ as a first approximation for Lψ we can compute the error

as follows:

L
(1)
1,ψL

(1)
2,ψ − Lψ = (∂z +A

(1)
1 )ψ(∂z +A

(1)
2 )ψ − (∂2

z +A)ψ

= (A(1)
1 +A

(1)
2 )ψ(∂z)ψ + OPψ

((
ε∂za

(1)
2,ε

)
ε

)
+A

(1)
1,ψA

(1)
2,ψ −Aψ

=: Γ(1)
0,ψ + Γ(1)

1,ψ(∂z)ψ
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where we have used the Leibniz composition rule for ψ-pseudodifferential operators;
that is, (∂z)ψA

(1)
2,ψ = A

(1)
2,ψ(∂z)ψ + OPψ

(
(ε∂za

(1)
2,ε)ε

)
. Then Γ(1)

1,ψ = (A(1)
1 + A

(1)
2 )ψ ∈

OPψNS1 on I ′θ1 . Moreover Γ(1)
0,ψ is equal to OPψ

(
(ε∂za

(1)
2,ε)ε

)
+ A

(1)
1,ψA

(1)
2,ψ − Aψ

and is a polyhomogeneous ψ-pseudodifferential operator with generalized symbol
(γ(1)

0,ε)ε in M(1,1)

S1,1
phg

(I ′θ1) by Proposition 3.8. In detail (γ(1)
0,ε)ε admits the asymptotic

expansion (
γ

(1)
0,ε

)
ε
∼̇
(
ε∂za

(1)
2,ε +

∑
|α|≥1

ε|α|

α!
(
Dα
ξ a

(1)
1,ε

)(
∂αx a

(1)
2,ε

))
ε

on I ′θ1 .

To improve this argument we will construct recursively the N -th approximation:
L

(N)
1,ψ L

(N)
2,ψ −Lψ. Before, for convenience of the reader, we compute the second order

approximation for Lψ.
Therefore we let ε ∈ (0, ε0] be fixed and define

a
(2)
j,ε := a

(1)
j,ε + b

(1)

j,ε , l
(2)
j,ε := iζ + a

(2)
j,ε

where (a(2)
j,ε )ε denotes the symbol with polyhomogeneous asymptotic expansion

(h̃εa
(2)
j,ε )ε and the existence of the generalized symbol (b

(1)

j,ε )ε will be clarified im-

mediately. Again we set b
(1)

j,ε and l
(2)
j,ε equal zero for all other ε ∈ (0, 1]. From the

preceding observations we have the approximation

L
(1)
1,ψL

(1)
2,ψ − Lψ = Γ(1)

0,ψ + Γ(1)
1,ψ(∂z)ψ on I ′θ1 .

To obtain a suitable second order approximation we would have to keep the follow-
ing expression small

L
(2)
1,ψL

(2)
2,ψ − Lψ = (L(1)

1 +B
(1)
1 )ψ(L(1)

2 +B
(1)
2 )ψ − Lψ

= Γ(1)
0,ψ + Γ(1)

1,ψ(∂z)ψ + (B(1)
1 +B

(1)
2 )ψ(∂z)ψ (4.10)

+ OPψ
((
ε∂zb

(1)
2,ε

)
ε

)
+A

(1)
1,ψB

(1)
2,ψ +B

(1)
1,ψA

(1)
2,ψ +B

(1)
1,ψB

(1)
2,ψ

where in the above step we have used the Leibniz rule.
We now specify (b

(1)

1,ε)ε, (b
(1)

2,ε)ε on I ′θ2 as follows: because the the generalized

symbol (a(1)
j,ε )ε satisfies:

∃η ∈ (0, 1] : |a(1)
j,ε (y, τ, ξ)| ≥ C|(τ, ξ)| on I ′θ2 , ∀ε ∈ (0, η] (4.11)

for some constant C > 0 that is independent of ε ∈ (0, η], j = 1, 2, the matrix(
1 1
a
(1)
2,ε a

(1)
1,ε

)
(4.12)

is invertible on I ′θ2 . We denote by
(
γ̃

(1)
0,ε

)
ε

and
(
γ̃

(1)
1,ε

)
ε

the naturally extended top

order symbols on I ′θ2 of
(
γ

(1)
0,ε

)
ε

and
(
γ

(1)
1,ε

)
ε

on I ′θ1 respectively. Thus the system

−γ̃(1)
1,ε = b

(1)

1,ε + b
(1)

2,ε

−γ̃(1)
0,ε = b

(1)

1,εa
(1)
2,ε + a

(1)
1,εb

(1)

2,ε

is uniquely solvable for (b
(1)

j,ε )ε in M(1,1)

S0,1
hg

on I ′θ2 , j = 1, 2.
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With this choice of (b
(1)

j,ε )ε the second-order approximation for the operator Lψ
in (4.10) now reads

L
(2)
1,ψL

(2)
2,ψ − Lψ = Γ(2)

0,ψ + Γ(2)
1,ψ(∂z)ψ on I ′θ1

and Γ(2)
0,ψ = Γ(2)

0,ψ(y,Dt, Dx) and Γ(2)
1,ψ = Γ(2)

1,ψ(y,Dt, Dx) are the ψ-pseudodifferential

operators with generalized symbols (γ(2)
0,ε)ε in M(1,2)

S0,2
phg

on I ′θ1 and (γ(2)
1,ε)ε is in NS1

on I ′θ1 , respectively.

To continue the proof, we assume for N ≥ 1 that (b
(ν)

j,ε )ε ∈ M(1,ν)

S1−ν,ν

hg

on I ′θ2 is

determined for all ν ≤ N − 1 and j = 1, 2. For fixed ε ∈ (0, ε0] and j = 1, 2 we set

a
(N)
j,ε :=

N−1∑
ν=0

b
(ν)

j,ε , L
(N)
j,ψ = (∂z +A

(N)
j )ψ

with A
(N)
j,ψ (y,Dt, Dx) = OPψ

(
(a(N)
j,ε )ε

)
with (a(N)

j,ε )ε the symbol with polyhomoge-

neous expansion (h̃εa
(N)
j,ε )ε. Again for all other ε ∈ (0, 1] we set a(N)

j,ε and L(N)
j,ε equal

to zero, j = 1, 2. Furthermore, we suppose an N -th order approximation for Lψ of
the form

L
(N)
1,ψ L

(N)
2,ψ − Lψ = Γ(N)

0,ψ + Γ(N)
1,ψ (∂z)ψ on I ′θ1

where Γ(N)
0,ψ and Γ(N)

1,ψ are the ψ-pseudodifferential operators with generalized sym-

bols (γ(N)
0,ε )ε in M(1,N)

S2−N,N

phg

on I ′θ1 and (γ(N)
1,ε )ε in NS1 on I ′θ1 , respectively.

Again we denote by (γ̃(N)
0,ε )ε and (γ̃(N)

1,ε )ε the naturally extended top order terms

on I ′θ2 of (γ(N)
0,ε )ε and (γ(N)

1,ε )ε on I ′θ1 . For the induction step we specify (b(N)
1,ε )ε, (b

(N)
2,ε )ε

on I ′θ2 as follows: since (a(1)
j,ε )ε satisfies (4.11) the matrix in (4.12) is invertible on

I ′θ2 and thus the system

−γ̃(N)
1,ε = b

(N)

1,ε + b
(N)

2,ε

−γ̃(N)
0,ε = b

(N)

1,ε a
(1)
2,ε + a

(1)
1,εb

(N)

2,ε

is uniquely solvable for (b
(N)

j,ε )ε in M(1,N)

S1−N,N

hg

on I ′θ2 , j = 1, 2.

We write B(N)
j,ψ for the ψ-pseudodifferential operator with polyhomogeneous gen-

eralized symbol (b(N)
1,ε )ε := (h̃εb

(N)

j,ε )ε and set L(N+1)
j,ψ := (L(N)

j + B
(N)
j )ψ. Then the

following is valid

L
(N+1)
1,ψ L

(N+1)
2,ψ − Lψ =

(
L

(N)
1 +B

(N)
1

)
ψ

(
L

(N)
2 +B

(N)
2

)
ψ
− Lψ

= Γ(N)
0,ψ + Γ(N)

1,ψ (∂z)ψ +
(
B

(N)
1 +B

(N)
2

)
ψ

(
∂z
)
ψ

+ OPψ
((
ε∂zb

(N)
2,ε

)
ε

)
+A

(N)
1,ψB

(N)
2,ψ +B

(N)
1,ψ A

(N)
2,ψ +B

(N)
1,ψ B

(N)
2,ψ .

Indeed we have an (N+1)-th order approximation of the form

L
(N+1)
1,ψ L

(N+1)
2,ψ − Lψ = Γ(N+1)

0,ψ + Γ(N+1)
1,ψ (∂z)ψ
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and Γ(N+1)
0,ψ and Γ(N+1)

1,ψ are the ψ-pseudodifferential operators with generalized

symbols (γ(N+1)
0,ε )ε ∈ M(1,N+1)

S1−N,N+1
phg

and (γ(N+1)
1,ε )ε ∈ NS1 on I ′θ1 , respectively. This

completes the induction step. �

5. The generalized infinite wave front set

In this section we will discuss an alternative description of microlocality and
regularity theory in Colombeau algebras of generalized functions. We refer to [31,
17, 18] for more details on the commonly used notion of a generalized wave front
set. Therein the generalized wave front set is explained by replacing the standard
C∞-regularity by G∞-regularity. In the same manner we can reformulate local
H∞-regularity used in the Sobolev based wave front set in terms of G∞-regularity.

In the case of generalized pseudodifferential operators that satisfies logarithmic
slow scale estimates this is a straightforward modification of the regularity results
in [17] within the Colombeau theory in a Sobolev based context as in [42]. But the
situation changes dramatically when working with ψ-pseudodifferential operators
with symbols of log-type.

For this reason we will introduce the notion of generalized infinite wave front
set describing negligibility of a generalized function at infinite points. For further
studies about the infinite wave front set and the more refined semiclassical wave
front set we refer to [8, 1] and [30, 11, 23].

5.1. Microlocal behavior at infinity. Here we introduce a suitable notion of
asymptotic negligibility of a generalized function u ∈ G2,2(Rn) with respect to
certain regularities on the phase space.

To do so we use the following notation which is similar to [8]. For a non-zero
vector ξ0 ∈ Rn we write for the projection onto the unit sphere ξ0/|ξ0|. Moreover,
given such ξ0 we say that Γ∞ξ0 ⊂ Rn is a conic neighborhood of the direction
ξ0/|ξ0| if Γ∞ξ0 is the intersection of the complement of some open ball centered at
the origin with an open cone containing the direction.

Furthermore, for (x0, ξ0) in T ∗Rn \ 0 we say that a generalized symbol p :=
(pε)ε ∈M(ν,0)

Sm,0
phg

is elliptic at (x0,∞ξ0) or also elliptic at infinity at (x0, ξ0), if there

is an open neighborhood U of x0 and a constant C > 0 such that

|pε(x, ξ)| ≥ C〈ξ〉m ∀(x, ξ) ∈ U × Γ∞ξ0 as ε→ 0.

We denote by Elli(p) the set of all points (x0, ξ0) ∈ T ∗Rn \ 0 where p is elliptic at
infinity.

Then the generalized infinite wave front set is defined as follows.

Definition 5.1. For u ∈ G2,2(Rn) we denote by WFi(u) ⊂ T ∗Rn\0 the generalized
infinite wave front set of u which is characterized as follows. We say that (x0, ξ0) /∈
WFi(u) at infinity, denoted by (x0,∞ξ0) /∈ WFi(u), if there exists χ := (χε)ε ∈
M(0,0)

S∞,0
phg

elliptic at (x0,∞ξ0) so that

OPψ(χ)u = 0 in G2,2(Rn).

Remark 5.2. Let (uε)ε ∈ MH∞ and suppose that there exists χm := (χm,ε)ε ∈
M(0,0)

Sm,0
phg

for some m ∈ R elliptic at (x0,∞ξ0) with

∀q ∈ N : ‖OPψ,ε(χm,ε)uε‖L2(Rn) = O(εq) as ε→ 0.
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Using [12, Proposition 3.4] then the above line is equivalent to OPψ(χm)u = 0 in
G2,2.

Furthermore we introduce the notion of an infinite conic support to describe
singularities of ψ-pseudodifferential operators. Therefore let p := (pε)ε ∈ M(ν,l)

Sm,k

phg

be the generalized symbol of Pψ. Then the infinite conic support of Pψ is the set
cone suppi(p) ⊂ T ∗Rn \ 0 and is defined as the complement (in T ∗Rn \ 0) of the set
of points (x0, ξ0) ∈ T ∗Rn \ 0 such that there exist an open neighborhood U of x0,
a conic open neighborhood Γξ0 of the direction ξ0 and a constant K > 0 such that
the following is satisfied:

∀α, β ∈ Nn ∀N ∈ N : |∂αξ ∂βxpε(x, ξ)|〈ξ〉−m+N+|α| = O(εN ) as ε→ 0, (5.1)

uniformly in (x, ξ) ∈ U ×
(
Γξ0 ∩ {ξ ∈ Rn : |ξ| ≥ K}

)
. This is again a condition

on the behavior for a generalized symbol at infinity and we therefore say that
(x0, ξ0) /∈ cone suppi(p) at infinity and write (x0,∞ξ0) /∈ cone suppi(p) whenever
(5.1) is fulfilled.

The idea here is that cone suppi(p)c are the directions on the phase space in
which Pψ annihilates singularities as they are contained in NSm(U ×Γ). To give a
connection to these two notions of wave front sets we state the following theorem.

Theorem 5.3. Given u ∈ G2,2 and Pψ a ψ-pseudodifferential operator with gener-
alized symbol p = (pε)ε ∈M(ν,l)

Sm,k

phg

. Then the following statement is valid

WFi(Pψu) ⊂ WFi(u) ∩ cone suppi(p)

and we say that the ψ-pseudodifferential operator Pψ is microlocal at infinity.

We remark that most of the properties of the infinite wave front set of a gener-
alized function in G2,2 can be derived from the theorem of Calderón-Vaillancourt
for the class pseudodifferential operators with symbols in S0

0,0.

Proof. We first show the inclusion relation WFi(Pψu) ⊂ cone suppi(p). Therefore
we let (x0, ξ0) ∈ T ∗Rn \0 such that (x0,∞ξ0) /∈ cone suppi(p) which in turn implies
that (pε)ε is in NSm(U ×Γξ0) for some open neighborhood U of x0 and some conic
open neighborhood Γξ0 of ξ0. More precisely, we have that ∃K1 > 0 such that for
all α, β ∈ Nn and all N ∈ N

|∂αξ ∂βxpε(x, ξ)|〈ξ〉−m+N+|α| = O(εN ) as ε→ 0,

uniformly in (x, ξ) ∈ U × Γ∞ξ0 with Γ∞ξ0 = Γξ0 ∩ {ξ ∈ Rn : |ξ| ≥ K1}. We will
now construct a symbol

(
χ

(−m)
J,K

)
ε
∈M(0,0)

S−m,0
phg

elliptic at (x0,∞ξ0) such that

∀q ∈ N : ‖OPψ,ε(χ
(−m)
J,K )Pψ,εuε‖L2(Rn) = O(εq) as ε→ 0.

For that reason let φ ∈ C∞c (Rn) such that φ(z) = 1 for |z| ≤ 1/2 and φ(z) = 0 for
|z| ≥ 1. Now, given (x0, ξ0) ∈ T ∗Rn \ 0 we define for fixed J > 0 the function

λ
(−m)
J (x, ξ) := φ

(x− x0

J

)
φ
({ ξ

|ξ|
− ξ0
|ξ0|

} 1
J

)
|ξ|−m for ξ 6= 0.

Further for some fixed K > 0 let

χ
(−m)
J,K (x, ξ) := (1− φ)

( ξ

2K

)
λ

(−m)
J (x, ξ). (5.2)
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Then for J,K > 0 fixed (χ(−m)
J,K (x, ξ))ε ∈ M(0,0)

S−m,0
phg

is elliptic at (x0,∞ξ0) and

supported in

|x− x0| ≤ J,
∣∣∣ ξ|ξ| − ξ0

|ξ0|

∣∣∣ ≤ J, |ξ| ≥ K.

So χ(−m)
J,K is a cut-off in a conic neighborhood of ξ0 and is supported in a cone of

directions near ξ0. In particular we have χ(−m)
J,K #pε = 0 for |ξ| ≤ K. We now

choose J,K > 0 such that

supp(χ(−m)
J,K ) ⊂ U × Γ∞ξ0 .

Then by the L2-boundedness theorem of Calderón-Vaillancourt for symbols of class
S0

0,0, see [41, Chapter 13, Theorem 1.3], there are constants j0, j1 ∈ N and C > 0
each of which depend on n but independent of ε > 0 such that

‖OPψ,ε(χ
(−m)
J,K )Pψ,εuε‖L2 = ‖OPψ,ε(χ

(−m)
J,K #2pε)uε‖L2

≤ C sup
|α|≤j0,|β|≤j1

‖∂αξ ∂βx (χ(−m)
J,K #2pε)‖L∞(R2n)‖uε‖L2

where in the last step we performed the rescaling by means of the asymptotic
expansion of the second kind for the composition formula of the pseudodifferential
operators expressed by using the notation #2, see Subsection 3.2. Moreover we
used the following estimation

|∂αξ ∂βx (χ(−m)
J,K #2pε(x, εξ))| = |ε|α|(∂αξ ∂βxχ

(−m)
J,K #2pε)(x, εξ)|

≤ ε|α| sup
(x,ξ)∈R2n

|(∂αξ ∂βxχ
(−m)
J,K #2pε)(x, εξ)|

= ε|α|‖∂αξ ∂βxχ
(−m)
J,K #2pε‖L∞(R2n).

Now using the fact that (pε)ε ∈ NSm(U × Γξ0) one has for every q ∈ N that

sup
|α|≤j0,|β|≤j1

‖∂αξ ∂βx (χ(−m)
J,K #2pε)‖L∞(R2n) = O(εq) as ε→ 0

by Proposition 3.8 and we deduce that (x0,∞ξ0) /∈ WFi(Pψu) which completes the
first part of the proof.

We continue the proof by showing the following inclusion:
Claim. WFi(Pψu) ⊂ WFi(u).
Proof of the Claim. We take (x0,∞ξ0) /∈ WFi(u) and let U be some open neighbor-
hood of x0 and Γξ0 a conic neighborhood of ξ0. Then, for some j ∈ N there exists
χj := (χj,ε)ε ∈M(0,0)

Sj,0
phg

elliptic at (x0,∞ξ0) such that for some constant K1 > 0 we

have
∃C > 0 ∃η ∈ (0, 1] : |χj,ε(x, ξ)| ≥ C〈ξ〉j ∀ε ∈ (0, η] (5.3)

uniformly on U × Γ∞ξ0 with Γ∞ξ0 = Γξ0 ∩ {(x, ξ) : |ξ| ≥ K1} and for all q ∈ N,

‖OPψ,ε(χj,ε)uε‖L2 = O(εq) as ε→ 0.

Then the assumptions in Lemma 6.1 from the next section are satisfied on U ×Γξ0
and there is a χ̃−j := (χ̃−j,ε)ε ∈M(0,0)

S−j,0
phg

such that

OPψ(χ̃−j) OPψ(χj) = Iψ +Rψ on U × Γξ0

where the generalized symbol (rε)ε of Rψ is in M(0,0)

S−N,N on U×Γξ0 for every N ∈ N.
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As in (5.2) one constructs a generalized symbol (κj−m)ε ∈ M(0,0)

Sj−m,0
phg

elliptic at

(x0,∞ξ0) such that the supp(κj−m) is contained in the set where (5.3) is valid. We
then write

OPψ,ε(κj−m#2pε)

= OPψ,ε(κj−m#2pε#2χ̃−j,ε) OPψ,ε(χj,ε)−OPψ,ε(κj−m#2pε#2rε).

Concerning the first term on the right hand side we rescale and obtain by the
Calderón-Vaillancourt theorem that there are constants j0, j1 ∈ N and C > 0 such
that

‖OPψ,ε(κj−m#2pε#2χ̃−j,ε) OPψ,ε(χj,ε)uε‖L2

≤ C sup
|α|≤j0,|β|≤j1

‖∂αξ ∂βxκj−m#2pε#2χ̃−j,ε)‖L∞(R2n)‖OPψ,ε(χj,ε)uε‖L2

and the latter expression is O(εq) as ε→ 0 for every q ∈ N by assumption. Similarly
we obtain for every q ∈ N:

‖OPψ,ε(κj−m#2pε#2rε)uε‖L2 = O(εq) as ε→ 0

since (rε)ε ∈ NS0 on the support of κj−m. Therefore (x0,∞ξ0) /∈ WFi(Pψu). �

As a next result we reformulate the infinite wave front set in terms of the Fourier
transform of a localized function.

For this purpose we introduce the space Gc(Rn) of compactly supported gen-
eralized functions consisting of those u ∈ G(Rn) such that for some K b Rn the
restriction u to Rn \K is equal to 0 as an element of G(Rn \K). Note that for an
open subset Ω of Rn the space G(Ω) is defined by the space GE by setting E = E(Ω)
the space of smooth functions on Ω topologized through the family of seminorms
pKn,j(f) := supx∈Kn,|α|≤j |∂

αf(x)| where (Kn)n is an exhausting sequence of com-
pact subsets of Ω.

Proposition 5.4. Let u ∈ Gc(Rn). If (x0,∞ξ0) /∈ WFi(u) then there exists γ ∈
C∞c (Rn) with γ(x0) 6= 0 and a conic neighborhood Γ of ξ0 such that for all N, q ∈ N
there exists C > 0 satisfying

|F(γuε)(ξ)| ≤ Cεq〈ξ〉−N as ε→ 0 (5.4)

for all ξ ∈ Γ with |ξ| ≥ K/ε for some K > 0 independent of ε.

Note that our notion of regularity is derived from the infinite wave front set and
therefore differs from [28, Section 6] and [17, Sections 2,3]. It is also different to [31,
Definitions 3.13 and 3.14, Section 3.2.2] if one replaces there the condition of G∞
rapid decrease by rapid decrease. We remark that a generalized function u ∈ G(Rn)
is of rapid decrease if it has a representative (uε)ε with the property:

∃N ∈ N ∀p ∈ N ∃C > 0 ∃η ∈ (0, 1] :

|uε(x)| ≤ Cε−N 〈x〉−p ∀x ∈ Rn, ε ∈ (0, η].

Proof. The following proof is similar to [21, Proposition 7.4]. First note that Gc ⊂
G2,2. Since (x0,∞ξ0) /∈ WFi(u) we can find a χ := (χε)ε ∈ M(0,0)

S−m,0
phg

elliptic at

(x0,∞ξ0) such that OPψ(χ)u = 0 in G2,2 for some m ∈ R. Furthermore we let
γ ∈ C∞c (Rn) with γ(x0) 6= 0. Then there exists a symbol φ ∈ S0(Rn), supp(φ) ⊂
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Γ∞ξ0 = Γξ0 ∩ {ξ : |ξ| ≥ K} for some K > 0 and φ(tξ) = 1 for t ≥ 1, ξ ∈ Γ∞ξ0 so
that

φψ(D)γ(x) = Aψ OPψ(χ) +Rψ

where Aψ and Rψ is a ψ-pseudodifferential operator with generalized symbol in
M(0,0)

Sm,0 and NS0 , respectively. Then by assumption we deduce that φψ(D)γu = 0
in G2,2. In particular we deduce that φψ(D)γu = 0 in GS since GS ↪→ G2,2, see
[12, Proposition 3.5]. Using the fact that the Fourier transform is an isomorphism
on GS we obtain ξ 7→ (φ(εξ)γ̂uε(ξ))ε is in NS under consideration of the scaling.
Hence we also have that

∀N ∈ N ∀q ∈ N : ‖〈ξ/ε〉Nφ(ξ)γ̂uε(ξ/ε)‖L∞ = O(εq)

showing (5.4). �

We also study the behavior of the infinite wave front set of a function under the
action of ψ-pseudodifferential operators that are elliptic at infinity.

Theorem 5.5. Let Pψ be a ψ-pseudodifferential operator with symbol p := (pε)ε in
M(ν,0)

Sm,0
phg

that is elliptic at (x0,∞ξ0) ∈ T ∗Rn \ 0. Then the following holds:

WFi(u) ⊂ WFi(Pψu) ∪ Elli(p)c.

Proof. Suppose (x0,∞ξ0) is not contained in the right hand side of the claimed
inclusion relation. Since (x0,∞ξ0) ∈ Elli(p) the symbol (pε)ε is elliptic at (x0,∞ξ0)
and therefore there is an open neighborhood U of x0 and conic neighborhood Γξ0
containing ξ0 such that

|pε(x, ξ)| ≥ C〈ξ〉m ∀(x, ξ) ∈ U × Γ∞ξ0 as ε→ 0.

By Lemma 6.1 from the next section there exists an approximative inverse Qψ so
that

Iψ = QψPψ +Rψ on U × Γξ0 (5.5)
and (x0,∞ξ0) /∈ cone suppi(r) and r := (rε)ε is the generalized symbol of Rψ.
Hence (x0,∞ξ0) /∈ WFi(Rψu) by Theorem 5.3.

Furthermore, since (x0,∞ξ0) /∈ WFi(Pψu) we obtain that

(x0,∞ξ0) /∈ WFi(QψPψu) ⊂ WFi(Pψu)

and by (5.5) we deduce that (x0,∞ξ0) /∈ WFi(u). �

5.2. Microlocal factorization. In this section we use the notion of microlocal
behavior at infinite points of a given generalized function in G2,2(Rn) to give a
microlocal interpretation of Theorem 4.3. To do so let I be a conic subset of
Rn×(Rn\0). We then say that two generalized functions u, v ∈ G2,2 are microlocally
equivalent at infinity on I if and only if there exists (χε)ε ∈ M(0,0)

S∞,0
phg

elliptic at

(x0,∞ξ0) for every (x0, ξ0) ∈ I such that χψ(u− v) = 0 in G2,2.
Similar to [37] we introduce a subset of the phase space associated to I ′θ1 which

is given by
Iθ1 := {(t, y, τ, η) | (y, τ, ξ) ∈ I ′θ1 , |ζ| ≤

√
c1|τ |} (5.6)

and c1 > 0 is the upper bound of the Hölder continuous coefficient c(y). Note that
in the following Iθ1 will serve as the adequate space-frequency domain on which we
establish the microlocal factorization theorem at infinite points.
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As already mentioned in the preceding section Lj,ψ = (∂z + Aj(y,Dt, Dx))ψ,
j = 1, 2 is not a ψ-pseudodifferential operator on Rn+1. To overcome this we are
going to introduce a microlocal cut-off gψ(Dt, Dy) for Iθ1 such that

gψLj,ψu = Lj,ψu microlocally at infinity on Iθ1 (5.7)

where u ∈ G2,2 and gψLj,ψ is a ψ-pseudodifferential operator with generalized
symbol in M(1,0)

S1,0 . Here the microlocal cut-off gψ is constructed in the following
way.

First let K0,K1 be some fixed constants so that 0 < K0 < K1 < ∞. Then
g ∈ C∞(Rn+1), 0 ≤ g ≤ 1 is defined by

g(τ, η) :=


0, |ζ| ≥ 3

√
c1|(τ, ξ)| or |(τ, ξ)| ≤ K0

σ̃(τ, ξ), |ζ| ≤ 2
√
c1|(τ, ξ)|

σ̃(τ,ξ)

1+e
1

|ζ|/|(τ,ξ)|−2√c1
− 1

3√c1−|ζ|/|(τ,ξ)|
, 2

√
c1|(τ, ξ)| < |ζ| < 3

√
c1|(τ, ξ)|

and the function σ̃ is a cut-off near the origin given by

σ̃(τ, ξ) :=


0, |(τ, ξ)| ≤ K0

1, |(τ, ξ)| ≥ K1

1

1+e
K1−K0

|(τ,ξ)|−K0
− K1−K0

K1−|(τ,ξ)|
, K0 < |(τ, ξ)| < K1.

Then g ∈ S0(Rn+1) has the form shown in Figure 2:

K0

K1

2
√

c1|(τ, ξ)| = |ζ|

3
√

c1|(τ, ξ)| = |ζ|

|(τ, ξ)|

|ζ|

g = 0

g = 1

Figure 2.

Moreover, gψLj,ψ acts as a ψ-pseudodifferential operator in (t, x, z) with gen-
eralized symbol in M(1,0)

S1,0 which can be shown by an adaption of [25, Theorem
18.1.35].

Furthermore (5.7) is satisfied, since cone suppi(g − 1) ∩ Iθ1 = ∅. In the same
manner one shows that gψL1,ψL2,ψ = L1,ψL2,ψ microlocally at infinity on Iθ1 .

Summarizing the observations from above we obtain the following main theorem:

Theorem 5.6. Let Lψ and Iθ1 be as in (4.1) and (5.6). Then the operator Lψ
can be factorized into a product of two first-order ψ-pseudodifferential operators as
follows

Lψ = L1,ψL2,ψ microlocally at infinity on Iθ1

where Lj,ψ =
(
∂z +Aj

)
ψ

and Aj,ψ is the ψ-pseudodifferential operator as in Theo-
rem 4.3.
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6. Microlocal diagonalization for Lψ

The main issue in this section is to diagonalize the microlocal equation LψU = F
using the refined factorization theorem 5.6. In detail, we will rewrite the equation

LψU = F microlocally at infinity on Iθ1
into an equivalent system of the form(

∂z − iB±(x, z,Dt, Dx)
)
ψ
u± = f± microlocally at infinity on Iθ1 .

To show this we will discuss a different approach to the one given by Stolk in [37]
as it turns out that the factorization theorem already contains all the ingredients
for the diagonalization. Let us begin with the following lemma which was already
used in the previous section.

Lemma 6.1. Let m ∈ R and Pψ be a polyhomogeneous ψ-pseudodifferential op-
erator whose generalized symbol is given by (pε)ε∼̇

∑∞
j=0(ε

jpm−j,ε)ε in M(ν,0)

Sm,0 on

I ′θ1 for some (pm−j,ε)ε ∈ M(ν,νj)

Sm−j,0
hg

on I ′θ1 , j ≥ 0. Furthermore suppose that the

principal symbol (pm,ε)ε satisfies an estimate of the form

∃C > 0 ∃η ∈ (0, 1] : |pm,ε(y, τ, ξ)| ≥ C|(τ, ξ)|m on I ′θ1 , ε ∈ (0, η]. (6.1)

Then there exists a ψ-pseudodifferential operator Qψ with generalized symbol in
M(ν,0)

S−m,0
phg

such that the following is valid

QψPψ = Iψ +Rψ on I ′θ1 , (6.2)

where I is the identity and the generalized symbol of Rψ is in NS0 on I ′θ1 . More
precisely, the polyhomogeneous generalized symbol (qε)ε of Qψ is written in terms
of its asymptotic expansion as

(qε)ε∼̇
∑
k≥0

(
εkq−m−k,ε

)
ε

in M(ν,0)

S−m,0 on I ′θ1 (6.3)

for some (q−m−k,ε)ε ∈M
(ν,νk)

S−m−k,0
hg

on I ′θ1 , k ≥ 0.

Proof. The proof follows the classical arguments given in [29, Chapter 2] for ε-
dependent symbols. We construct the generalized symbol of Qψ by means of its
asymptotic expansion. Therefore we will recursively define symbols (q−m−k,ε)ε ∈
M(ν,νk)

S−m−k,0
hg

on I ′θ1 , k ≥ 0, so that the symbol of Qψ is given by (6.3) and satisfies

(6.2).
Because of (6.1) we may define for (y, τ, ξ) ∈ I ′θ1 and some η ∈ (0, 1],

q−m,ε(y, τ, ξ) :=

{
pm,ε(y, τ, ξ)−1, ε ∈ (0, η]
0, otherwise.

Concerning the asymptotic behavior of the derivatives of q−m,ε we use the Leibniz
rule and obtain that there exists C > 0 such that for every ε > 0 sufficiently small,

|∂α(τ,ξ)∂
β
y q−m,ε| =

∣∣ ∑
α1+...+αµ=α
β1+...+βµ=β

(
∂α1
(τ,ξ)∂

β1
y pm,ε

)
. . .
(
∂
αµ

(τ,ξ)∂
βµ
y pm,ε

) 1
p1+µ
m,ε

∣∣
≤ Cων|β|ε |(τ, ξ)|−m−|α| on I ′θ1
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from which we deduce that (q−m,ε)ε ∈M
(ν,0)

S−m,0
hg

on I ′θ1 . We now proceed by induc-

tion. Therefore we define (q−m−k,ε)ε on I ′θ1 by

q−m−k,ε := −
{ ∑
|γ|+j+l=k, l<k

1
γ!
Dγ
ξ q−m−l,ε∂

γ
xpm−j,ε

} 1
pm,ε

k ≥ 1 on I ′θ1 . (6.4)

Assuming that (q−m−N,ε)ε ∈M
(ν,νN)

S−m−N,0
hg

(I ′θ1) for N < k then from the construction

given in (6.4) one easily verifies that (q−m−k,ε)ε ∈M
(ν,νk)

S−m−k,0
hg

(I ′θ1).

Moreover by Lemma 3.4 we get the existence of a polyhomogeneous generalized
symbol (qε)ε ∈M(ν,0)

S−m,0
phg

having the following asymptotic expansion

(qε)ε∼̇
∑
k≥0

(
εkq−m−k,ε

)
ε

in M(ν,0)

S−m,0 on I ′θ1 .

Let Qψ be the ψ-pseudodifferential operator with generalized symbol (qε)ε. Then
(6.3) is satisfied and it remains to show equation (6.2). Concerning the asymptotic
expansion of QψPψ one has for every N ≥ 1∑

|γ|<N

ε|γ|

γ!
Dγ
ξ qε∂

γ
xpε = q−m,εpm,ε +

N−1∑
k=1

∑
|γ|+l+j=k

εk

γ!
Dγ
ξ q−m−l,ε∂

γ
xpm−j,ε

+
∑
k≥N

∑
|γ|+l+j=k
|γ|<N

εk

γ!
Dγ
ξ q−m−l,ε∂

γ
xpm−j,ε

(6.5)

on VK := I ′θ1 ∩ (Rn×{(τ, ξ) : |(τ, ξ)| ≥ K}) for some K > 0 independent of ε. Here
the second term on the right hand side vanishes by (6.4) on VK . Furthermore the
last expression of (6.5) is in NS0(I ′θ1) and q−m,εpm,ε = 1 on VK which establishes
the statement made in (6.2). �

Similarly one can construct a ψ-pseudodifferential operator Q̃ψ with generalized
symbol in M(ν,0)

S−m,0
phg

having a representation of the form (6.3) and satisfies

PψQ̃ψ = Iψ + R̃ψ on I ′θ1

where the generalized symbol of R̃ψ is in NS0 on I ′θ1 . Furthermore Qψ is related
to Q̃ψ in the following way

Qψ = Qψ(PψQ̃ψ) = (QψPψ)Q̃ψ = Q̃ψ mod OPψNSm on I ′θ1 .

Diagonalization. To get an idea we start rewriting the inhomogeneous equation
LψU = F into a first-order system with respect to the parameter z:[

(Id ∂z)ψ −
(

0 1
−A 0

)
ψ

]( U
(∂z)ψ U

)
=
(

0
F

)
(6.6)

with U,F ∈ G2,2(Rn+1), Id the 2×2 identity matrix and Aψ the ψ-pseudodifferential
operator with generalized symbol (aε)ε as in (4.2). For brevity we will drop the
identity matrix Id in the equations from now on. Hereafter we are going to reduce
the operator in (6.6) to diagonal form. To make this notion rigorous we make the
following arrangements.
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First let

Qψ =
(
Q11 Q12

Q21 Q22

)
ψ

, Pψ =
(
P 11 P 12

P 21 P 22

)
ψ

be 2×2 matrices of ψ-pseudodifferential operators whose entries satisfy the require-
ments of Lemma 6.1. Also we choose the top order of the symbols of Q11

ψ , Q21
ψ

equal to 1−m and those of Q12
ψ , Q22

ψ equal to −m for some fixed m ∈ R.
Using Lemma 6.1 we choose Pψ to be the approximative inverse of Qψ on I ′θ1 in

the following sense: with P 11
ψ , P 12

ψ being operators of order m− 1 and P 21
ψ , P 22

ψ of
order m and one has PψQψ = Idψ +Eψ on I ′θ1 for some 2× 2 ψ-pseudodifferential
operator matrix Eψ of the form

Eψ =
(
E11 E12

E21 E22

)
ψ

and E11
ψ , E22

ψ ∈ OPψNS0 , E12
ψ ∈ OPψNS−1 and E21

ψ ∈ OPψNS1 on I ′θ1 .
Then by (5.7) and (6.6) the equation

LψU = F microlocally at infinity on Iθ1
holds if and only if

gψQψ

(
∂z −1
A ∂z

)
ψ

PψQψ

(
U

(∂z)ψ U

)
= gψQψ

(
0
F

)
microlocally at infinity on Iθ1

where gψ is the microlocal cut-off function from the previous section.
Furthermore we will use the following notation: for l = 1, 2 and k ∈ N we denote

by E(k,l)
ψ operators of the form∑

k≤j≤k+l

R2−j,ψ(y,Dt, Dx)(∂j−kz )ψ

and the generalized symbol of R2−j,ψ = R2−j,ψ(y,Dt, Dx) is in NS2−j for k ≤ j ≤
k + l.

In the following we assume that Rψ is a ψ-pseudodifferential operator valued 2×2
error matrix with entries in E(1,1)

ψ on I ′θ1 . Also, we let B±,ψ = B±,ψ(y,Dt, Dx) ∈
OPψM(1,0)

S1,0
phg

on I ′θ1 .

To obtain a diagonalization for the operator in (6.6) we will search for operators
Pψ, Qψ, Rψ and B±,ψ as above such that the following adapted formulation of the
problem is valid in the region I ′θ1 :

Qψ

[
(∂z)ψ −

(
0 1
−A 0

)
ψ

]
Pψ =

(
∂z − iB+ 0

0 ∂z − iB−

)
ψ

+Rψ. (6.7)

To show the existence of these operators we will construct them explicitly. Therefore
we presume that (6.7) can be solved for some Pψ, Qψ, Rψ and B±,ψ with the above
conditions.

Multiplying equation (6.7) with Qψ
(

1
∂z

)
ψ

from the right we obtain for the left
hand side an expression of the form

Qψ

(
∂z −1
A ∂z

)
ψ

PψQψ

(
1
∂z

)
ψ

=

(
Q12
ψ (∂2

z +A)ψ + S
(1,+)
ψ

Q22
ψ (∂2

z +A)ψ + S
(1,−)
ψ

)
on I ′θ1 (6.8)
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with S(1,±)
ψ ∈ E(m,2)

ψ on I ′θ1 . Similarly we compute for the right hand side[(
∂z− iB+ 0

0 ∂z− iB−

)
ψ

+Rψ

]
Qψ

(
1
∂z

)
ψ

=

(
(∂z− iB+)ψ(Q12

ψ (∂z)ψ +Q11
ψ ) + S

(2,+)
ψ

(∂z− iB−)ψ(Q22
ψ (∂z)ψ +Q21

ψ ) + S
(2,−)
ψ

)
on I ′θ1 (6.9)

where S
(2,±)
ψ ∈ E(m,2)

ψ on I ′θ1 . Combining (6.8) and (6.9) we get an improved
formulation of (6.7) which reads

Q12
ψ (∂2

z +A)ψ = (∂z − iB+)ψ
(
Q12
ψ (∂z)ψ +Q11

ψ

)
+R

(+)
ψ on I ′θ1

Q22
ψ (∂2

z +A)ψ = (∂z − iB−)ψ
(
Q22
ψ (∂z)ψ +Q21

ψ

)
+R

(−)
ψ on I ′θ1 ,

(6.10)

with R(±)
ψ ∈ E(m,2)

ψ on I ′θ1 .
We note that (6.10) is a coupled system of two equations each of which stating

a factorization similar to (4.6) in Theorem 4.3. In the following we relate (4.6) to
(6.10) which will guarantee existence of the basic approach made in (6.7). Now
since Theorem 4.3 allows two different factorizations (depending on the sign of the
principal symbol) we will modify both of them to deduce the refined reformulation
in (6.10).

Thus, with a view to Theorem 4.3, we first write Lψ = (∂2
z +A)ψ in the form

Lψ = (∂z +A11)ψ(∂z +A12)ψ + Γ1,ψ on I ′θ1 (6.11)

and for j = 1, 2, A1j,ψ = A1j,ψ(y,Dt, Dx) is a polyhomogeneous ψ-pseudodifferential
operator with generalized symbol (a1j,ε)ε as in Theorem 4.3. Moreover we choose
A11,ψ and −A12,ψ such that their principal symbols are equal to (−i√aε)ε. Fur-
thermore Γ1,ψ is in E(0,1)

ψ on I ′θ1 . Likewise we obtain

Lψ = (∂z +A21)ψ(∂z +A22)ψ + Γ2,ψ on I ′θ1 (6.12)

where A2j,ψ = A2j,ψ(y,Dt, Dx), j = 1, 2 are polyhomogeneous ψ-pseudodifferential
operators but at this point the top order symbols of A21,ψ and −A22,ψ equal to
(i
√
aε)ε. Again Γ2,ψ is in E(0,1)

ψ on I ′θ1 .
An expansion in (6.11) and (6.12) then gives the following for j = 1, 2

(∂2
z +A)ψ = (∂2

z )ψ + (Aj1 +Aj2)ψ(∂z)ψ + OPψ
((
ε∂zaj2

)
ε

)
+Aj1,ψAj2,ψ + Γj,ψ

on I ′θ1 where we have used the Leibniz rule. By construction of the generalized
symbols of Aj1,ψ and Aj2,ψ we observe that (aj1,ε)ε = (−aj2,ε)ε modulo NS1 on
I ′θ1 , j = 1, 2. Using this (6.11) and (6.12) then read

(∂2
z +A)ψ = (∂z +A11)ψ(∂z −A11)ψ mod E(0,1)

ψ on I ′θ1

= (∂z +A21)ψ(∂z −A21)ψ mod E(0,1)
ψ on I ′θ1 .

(6.13)

With m being the fixed real number from the beginning of this section we now
choose Q̃(±)

ψ ∈ OPψM(1,0)

Sm,0
phg

and so that the requirements of Lemma 6.1 are fulfilled.

Using the same result we obtain the existence of two ψ-pseudodifferential operators
Q

(±)
ψ with generalized symbols in M(1,0)

S−m,0
phg

satisfying (6.3) and

Q̃
(±)
ψ Q

(±)
ψ = Q

(±)
ψ Q̃

(±)
ψ = Iψ mod OPψNS0 on I ′θ1 .
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Inserting Q̃(+)
ψ Q

(+)
ψ into the first line of (6.13) and Q̃

(−)
ψ Q

(−)
ψ into the second line

yields

(∂2
z +A)ψ = (∂z +A11)ψQ̃

(+)
ψ

(
Q

(+)
ψ (∂z)ψ −Q

(+)
ψ A11,ψ

)
mod E(0,2)

ψ on I ′θ1

= (∂z +A21)ψQ̃
(−)
ψ

(
Q

(−)
ψ (∂z)ψ −Q

(−)
ψ A21,ψ

)
mod E(0,2)

ψ on I ′θ1 .

Here we define

−iB+,ψ := Q
(+)
ψ A11,ψQ̃

(+)
ψ −OPψ

(
(ε∂zq(+)

ε )ε
)
Q̃

(+)
ψ

−iB−,ψ := Q
(−)
ψ A21,ψQ̃

(−)
ψ −OPψ

(
(ε∂zq(−)

ε )ε
)
Q̃

(−)
ψ .

(6.14)

Consequently, B±,ψ are polyhomogeneous ψ-pseudodifferential operators with real-
valued top order symbol inM(1,0)

S1,0
hg

on I ′θ1 . Furthermore a straightforward calculation

shows that with this choices for B±,ψ we have(
∂z +A11

)
ψ
Q̃

(+)
ψ = Q̃

(+)
ψ

(
∂z − iB+

)
ψ

mod E(1−m,0)
ψ on I ′θ1(

∂z +A21

)
ψ
Q̃

(−)
ψ = Q̃

(−)
ψ

(
∂z − iB−

)
ψ

mod E(1−m,0)
ψ on I ′θ1 .

leading to the following decomposition on I ′θ1 ,(
∂2
z +A

)
ψ

= Q̃
(+)
ψ

(
∂z − iB+

)
ψ

(
Q

(+)
ψ (∂z)ψ −Q

(+)
ψ A11,ψ

)
mod E(0,2)

ψ

= Q̃
(−)
ψ

(
∂z − iB−

)
ψ

(
Q

(−)
ψ (∂z)ψ −Q

(−)
ψ A21,ψ

)
mod E(0,2)

ψ .

Comparing this with the refined approach (6.10) we make the following choice for
the matrix Qψ from the beginning

Q11
ψ := −Q(+)

ψ A11,ψ, Q12
ψ := Q

(+)
ψ ,

Q21
ψ := −Q(−)

ψ A21,ψ, Q22
ψ := Q

(−)
ψ .

Hence

Qψ =

(
−Q(+)

ψ A11,ψ Q
(+)
ψ

−Q(−)
ψ A21,ψ Q

(−)
ψ

)
=
(
Q(+) 0

0 Q(−)

)
ψ

(
−A11 1
−A21 1

)
ψ

(6.15)

and Q(±)
ψ are polyhomogeneous ψ-pseudodifferential operators of order −m on I ′θ1

and elliptic in the sense of (6.1).
Since the top order symbol of Aj1,ψ is given by (±i√aε)ε, j = 1, 2 it follows from

(6.15) that Qψ is elliptic in the sense of (6.1). Furthermore, the approximative
inverse matrix Pψ of Qψ is given by

Pψ =
(

−Cψ Cψ
−A21,ψCψ 1ψ +A21,ψCψ

)(
Q̃(+) 0

0 Q̃(−)

)
ψ

on I ′θ1

where Cψ is the generalized parametrix of (A11−A21)ψ in the sense of Lemma 6.1.
We have therefore found an appropriate operator-valued matrix Pψ, Qψ, Rψ and
operators B±,ψ solving (6.7). We have therefore proved the following theorem.

Theorem 6.2. Let Lψ as in (4.1) and U,F ∈ G2,2(Rn+1). Then there are operators
Qψ as in (6.15) and B±,ψ as in (6.14) such that the equation

LψU = F microlocally at infinity on Iθ1 (6.16)



EJDE-2012/144 FACTORIZATION OF HYPERBOLIC OPERATORS 37

holds if and only if(
∂z − iB+(y,Dt, Dx)

)
ψ
u+ = f+ microlocally at infinity on Iθ1 and(

∂z − iB−(y,Dt, Dx)
)
ψ
u− = f− microlocally at infinity on Iθ1 .

(6.17)

Furthermore, the coupling effect is computed as follows(
u+

u−

)
:= Qψ

(
U

(∂z)ψU

)
,

(
f+
f−

)
:= Qψ

(
0
F

)
. (6.18)

Closing remarks. Let us briefly summarize the above. First we explained a fac-
torization procedure for the semiclassical operator Lψ in the non-trivial case of
generalized coefficients of log-type when acting on G2,2. To overcome the error
made in this factorization we further introduced an adapted notion of microlocal
regularity.

Concerning the motivating part of this paper we want to make the following re-
marks. Because of the lack of an adequate description of propagation of singularities
in this setting it is not clear so far if and how one can derive approximated solutions
to (6.16) from solutions of a perturbation of the problem (6.17) as we have seen in
the smooth case in Subsection 1.1. Even if we allow the operator Lε given in (1.2)
to have logarithmic slow scale regular coefficients this problem remains unsolved.
Once again, we want to mention that in the case of logarithmic slow scale case no
semiclassical interpretation of the situation is necessary and microlocal regularity
is based on local G∞2,2-regularity.

Moreover we note that apart from the microlocal restrictions in the equations
of (6.17) the operators Lj,ψ meet the conditions of Theorem 3.1 of [26], j = 1, 2,
if the coefficients in (1.2) from the beginning are of log-type with an appropriately
chosen exponent r ∈ N which depends only on the dimension n. More precisely
r plays the same role as k does in [26, Remark 3.2]. Therefore if it is possible to
associate to (6.17) a global description of the same by only slight manipulations
of the operators Lj,ψ =

(
∂z − iB±(y,Dt, Dx)

)
ψ
, j = 1, 2 in a microlocal sense (as

in the smooth setting) one can derive well-posedness to the corresponding Cauchy
problems which in turn approximate (6.16) on Iθ1 .

However, as already pointed out in Subsection 2.1 we so far only handled the case
where the semiclassical asymptotic regime was restricted to ~(ε) = ε as ε→ 0. This
suggests itself to ask for general criteria of other possible choices for the semiclassical
scale ~(ε). Under the viewpoint of parameter-dependent representation theory for
generalized pseudodifferential operators this will hopefully also give more insight
in the notion of microlocal regularity at infinity. Here a future aim is to obtain a
refined notion of microlocalization which is capable to give a global characterization
and hence has to include regularity results for Colombeau generalized objects also
for finite points.
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[24] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proceedings of Sym-
posia in Pure Mathematics, vol. 10 - Singular integrals, Amer. Math. Soc., 1966, pp. 138–183.
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