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BEHAVIOR OF THE MAXIMAL SOLUTION OF THE CAUCHY
PROBLEM FOR SOME NONLINEAR PSEUDOPARABOLIC

EQUATION AS |x| → ∞

TATIANA KAVITOVA

Abstract. We prove a comparison principle for solutions of the Cauchy prob-
lem of the nonlinear pseudoparabolic equation ut = ∆ut+∆ϕ(u)+h(t, u) with
nonnegative bounded initial data. We show stabilization of a maximal solution
to a maximal solution of the Cauchy problem for the corresponding ordinary
differential equation ϑ′(t) = h(t, ϑ) as |x| → ∞ under certain conditions on an
initial datum.

1. Introduction

In this article we consider the Cauchy problem for the pseudoparabolic equation

ut = ∆ut + ∆ϕ(u) + h(t, u), x ∈ Rn, t > 0, (1.1)

subject to the initial condition

u(x, 0) = u0(x), x ∈ Rn. (1.2)

Put R+ = (0,+∞) and ΠT = Rn × [0, T ], n ≥ 1, T > 0. Throughout this paper
we suppose that the functions ϕ and h satisfy the following conditions:

ϕ(p) is defined for p ≥ 0, h(t, p) is defined for t ≥ 0 and p ≥ 0,
ϕ(p) ∈ C2(R+)∩C3(R+), h(t, p) ∈ C0,α

loc (R+×R+)∩C0,1+α
loc (R+×

R+), 0 < α < 1, h(t, 0) = 0, t ∈ R+, ϕ(p) + h(t, p) does not
decrease in p for all t ∈ R+.

(1.3)

Assume that one of the following conditions is satisfied:

h(t, p) ≥ 0, t ∈ R+, p ∈ R+, (1.4)

or
h(t, p) does not increase in p for all t ∈ R+. (1.5)

Let the initial data have the following properties:

u0(x) ∈ C2(Rn), 0 ≤ u0(x) ≤ M (M ≥ 0), x ∈ Rn, (1.6)

lim
|x|→∞

u0(x) = M. (1.7)
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Equations ut = ∆ut +∆up +uq and ut = ∆ut +∆(ul +up)−up, where p, l ≥ 2, q >
0, are typical examples of equation (1.1) satisfying (1.3) under conditions (1.4)
and (1.5) respectively.

If we suppose u0(x) ≡ M in (1.2) then a solution of the Cauchy problem for the
corresponding ordinary differential equation

ϑ′(t) = h(t, ϑ), ϑ(0) = M (1.8)

will be a solution of (1.1), (1.2).

Remark 1.1. We note that problem (1.8) may have more than one solution. In-
deed, we put h(t, ϑ) = ϑp, 0 < p < 1, and M ≡ 0 then problem (1.8) has the
solutions ϑ1(t) ≡ 0 and ϑ2(t) = (1− p)

1
1−p t

1
1−p .

Definition 1.2. A nonnegative solution ϑ(t) of (1.8) is called maximal on [0, T )
if for any other nonnegative solution f(t) of (1.8) the inequality f(t) ≤ ϑ(t) is
satisfied for 0 ≤ t < T .

We suppose that the maximal nonnegative solution ϑ(t) of (1.8) exists on [0, T0),
T0 ≤ +∞. Similarly we define the maximal solution of (1.1), (1.2).

Assume that (1.3) and (1.6) hold. Then there exists a nonnegative solution
u(x, t) ∈ C2,1(ΠT ) of (1.1), (1.2) (see [9]) satisfying for any T < T0 the inequality

0 ≤ u(x, t) ≤ ϑ(t), (x, t) ∈ ΠT .

The main result of this article is the following statement.

Theorem 1.3. Let (1.3), (1.6), (1.7) hold and u(x, t), ϑ(t) are maximal solutions
of problems (1.1), (1.2) and (1.8) respectively. Suppose that either (1.4) or (1.5) is
satisfied in addition. Then we have

u(x, t) → ϑ(t) as |x| → ∞
uniformly in [0, T ] (T < T0).

Results similar to Theorem 1.3 were obtained in [5, 7] and [2, 3, 8, 11, 12,
13] respectively in studying of an asymptotic behavior of solutions of parabolic
equations, systems and blow-up solutions of nonlinear heat equations and reaction-
diffusion systems at infinity. Pseudoparabolic equations has been analyzed by many
authors (see [14] and the references therein).

Our main research tool is a comparison principle.

Theorem 1.4. Let (1.3) hold and u1(x, t), u2(x, t) be nonnegative bounded solu-
tions of (1.1) in ΠT and one of them is not less some positive constant. Suppose
that the corresponding initial data u01(x) and u02(x) satisfying (1.6) and the in-
equality

u01(x) ≤ u02(x), x ∈ Rn.

Then
u1(x, t) ≤ u2(x, t), (x, t) ∈ ΠT .

For problem (1.1), (1.2) with ϕ(u) = u2 and h(t, u) = 0 the comparison principle
was established in [1]. For an initial–boundary value problem for equation (1.1)
with h(t, u) = h(u) it was proved in [10].

This paper is organized as follows. In the next section we prove Theorem 1.4.
Some auxiliary statements used for description a behavior of the maximal solution
of (1.1), (1.2) at infinity are established in Section 3. Theorem 1.3 is proved in
Section 4.
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2. Proof of Theorem 1.4

Without loss of generality we may assume that u2(x, t) ≥ ε, ε > 0, (x, t) ∈ ΠT .
Obviously, the function w(x, t) = u2(x, t)− u1(x, t) satisfies the problem

wt = ∆wt + ∆(aw) + bw, (x, t) ∈ Rn × (0, T ), (2.1)

w(x, 0) = u02(x)− u01(x), x ∈ Rn. (2.2)

Here

a(x, t) =
∫ 1

0

ϕ′(z(θ)) dθ, b(x, t) =
∫ 1

0

hz(θ)(t, z(θ)) dθ,

where z(θ) = θu2(x, t) + (1 − θ)u1(x, t). By (1.3) the functions a(x, t) and b(x, t)
have the following properties:

a(x, t) ∈ C2,0(ΠT ), b(x, t) ∈ Cα,0
loc (ΠT ),

a(x, t) + b(x, t) ≥ 0, |a(x, t)|+ |b(x, t)| ≤ m, (x, t) ∈ ΠT ,
(2.3)

where m is some positive constant.

Lemma 2.1. Let a(x, t) and b(x, t) be functions such that conditions (2.3) are
satisfied. Then a solution of (2.1), (2.2) is unique.

The proof of the above lemma is analogous to the proof the same statement for
problem (1.1), (1.2) with h(t, p) = 0 in [6].

Let Q be a bounded domain in Rn for n ≥ 1 with a smooth boundary ∂Q. We
denote QT = Q× (0, T ) and ST = ∂Q× (0, T ). Let us consider the equation

ut = Φ(x, t, u) + F (u(·, t)), (x, t) ∈ QT , (2.4)

subject to the initial data

u(x, 0) = u0(x), x ∈ Q, (2.5)

where the function Φ(x, t, ξ) is defined on the set Q× [0, T ]×R and F (u(·, t)) is a
nonlinear integral operator.

Definition 2.2. We shall say that a function σ+(x, t) ∈ C0,1(QT ), −∞ < mT ≤
σ+(x, t) ≤ MT < +∞, (x, t) ∈ QT , is a supersolution of (2.4), (2.5) in QT if

σ+
t (x, t) ≥ Φ(x, t, σ+) + F (σ+(·, t)), (x, t) ∈ QT ,

σ+(x, 0) ≥ u0(x), x ∈ Q,
(2.6)

where mT , MT are constants depending on T .

Analogously we say that σ−(x, t) ∈ C0,1(QT ), mT ≤ σ−(x, t) ≤ MT , (x, t) ∈ QT ,
is a subsolution of (2.4), (2.5) in QT if it satisfies inequalities (2.6) in the reverse
order. Under the assumption σ−(x, t) ≤ σ+(x, t), (x, t) ∈ QT , we introduce the
set O(σ−, σ+) = {u ∈ C(QT )|σ− ≤ u ≤ σ+, (x, t) ∈ QT } and make the following
assumptions on data of (2.4), (2.5):

There exist a supersolution σ+(x, t) and a subsolution σ−(x, t) of
(2.4), (2.5) in QT such that σ−(x, t) ≤ σ+(x, t), (x, t) ∈ QT .

(2.7)

Φ(x, t, ξ) and Φξ(x, t, ξ) are continuous functions on the set Q× [0, T ]×R. (2.8)
The operator F (u(·, t)), on C(QT ) into C(QT ), is completely con-
tinuous and monotone on O(σ−, σ+).

(2.9)

u0(x) ∈ C(Q). (2.10)
The following existence theorem has been proved in [1].
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Theorem 2.3. Assume that (2.7)-(2.10) hold. Then there exists a solution of
problem (2.4), (2.5) in QT such that

σ−(x, t) ≤ u(x, t) ≤ σ+(x, t), (x, t) ∈ QT .

Let Gn(x, ξ) be the Green function of the boundary value problem for the oper-
ator L = I −∆ in Q. It is known that

Gn(x, ξ) = En(x− ξ) + gn(x, ξ), (x, ξ) ∈ Q×Q,

where En(x) is the fundamental solution of the operator L of Rn tending to zero
as |x| → ∞ and for any fixed ξ ∈ Q the function gn ∈ C2(Q) ∩ C(Q) satisfies the
equation

Lxgn = 0, x ∈ Q,

and the boundary condition

gn(x, ξ)|x∈∂Q = −En(x− ξ)|x∈∂Q, ξ ∈ Q.

It is well known that

En(x) = cn|x|(2−n)/2K(2−n)/2(|x|), (2.11)

where Kµ(|x|) is the µth order Macdonald function and cn is the normalizing mul-
tiplier such that

∫
Rn En(x)d x = 1.

We note some properties of the Green function (see [4]):

0 < Gn(x, ξ) < En(x− ξ), (x, ξ) ∈ Q×Q,

∂Gn(x, ξ)
∂νξ

≤ 0, ξ ∈ ∂Q, x ∈ Q,∫
Q

Gn(x, ξ) dξ = 1 +
∫

∂Q

∂Gn(x, ξ)
∂νξ

dS, x ∈ Q,

min
y∈∂Q

(−En(x− y)) < gn(x, ξ) < 0, (x, ξ) ∈ Q×Q,

(2.12)

where νξ is the outward normal derivative on ∂Q in variables of ξ.
We consider the integro–differential equation, in QT ,

wt(x, t) = −a(x, t)w(x, t) +
∫

Q

Gn(x, ξ)[a(ξ, t) + b(ξ, t)]w(ξ, t) dξ (2.13)

subject to the initial condition, in Q,

w(x, 0) = u02(x)− u01(x). (2.14)

Let u02(x)− u01(x) ≤ M1, x ∈ Rn, M1 ∈ R+.

Lemma 2.4. Let conditions (2.3) hold. Then there exists a solution of (2.13),
(2.14) in QT such that

0 ≤ w(x, t) ≤ M1e
2mt, (x, t) ∈ QT . (2.15)

Proof. We use the following functions

Φ(x, t, w) = −a(x, t)w(x, t), F (w(·, t)) =
∫

Q

Gn(x, ξ)[a(ξ, t) + b(ξ, t)]w(ξ, t) dξ
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and show that the conditions of Theorem 2.3 are valid. It is obvious, that σ−(x, t) ≡
0 is the subsolution of (2.13), (2.14). We shall show that σ+(x, t) = M1e

2mt is the
supersolution of (2.13), (2.14). Indeed,

Φ(x, t, σ+) + F (σ+) = −a(x, t)M1e
2mt +

∫
Q

Gn(x, ξ)[a(ξ, t) + b(ξ, t)]M1e
2mt dξ

≤ mM1e
2mt + mM1e

2mt ≤ 2mM1e
2mt

= σ+
t (x, t), (x, t) ∈ QT ,

σ+(x, 0) = M1 ≥ w0(x), x ∈ Q.

Condition (2.8) of Theorem 2.3 is satisfied by virtue of (2.3). As a(x, t)+b(x, t) ≥ 0
then the operator F is monotone on O(σ−, σ+). We shall prove that the operator
F is completely continuous on O(σ−, σ+). Let w ∈ O(σ−, σ+) then

|F (w(·, t))| =
∣∣∣ ∫

Q

Gn(x, ξ)[a(ξ, t) + b(ξ, t)]w(ξ, t) dξ
∣∣∣ ≤ mM1e

2mT .

Hence, the operator F is bounded. Suppose x, y ∈ Q and w ∈ O(σ−, σ+). Then

|F (w(x, t))− F (w(y, t))| =
∣∣∣ ∫

Q

[Gn(x, ξ)−Gn(y, ξ)](a(ξ, t) + b(ξ, t))w(ξ, t) dξ
∣∣∣

≤ mM1e
2mT

∫
Q

|Gn(x, ξ)−Gn(y, ξ)| dξ,

that implies the validity of (2.9). Relations (1.6) for the initial data u01(x) and
u02(x) are valid then all conditions of Theorem 2.3 are satisfied. Hence, there exists
a solution w(x, t) of (2.13), (2.14) in QT for which inequality (2.15) holds. �

Lemma 2.5. If conditions (2.3) are satisfied then there exists a nonnegative solu-
tion of (2.1), (2.2) in ΠT .

Proof. Let Gn(x, ξ, l) be the Green function of the boundary value problem for the
operator L = I − ∆ in Ql = {x ∈ Rn : |x| < l}, l > 0. Let the functions of the
sequence wl(x, t) (l = 1, 2, . . . ) satisfy equation (2.13) in Ql,T = Ql × (0, T ) and
initial data (2.14) in Ql. According to Lemma 2.4 there exists a solution wl(x, t)
of (2.13), (2.14) in Ql,T such that

0 ≤ wl(x, t) ≤ M1e
2mt, (x, t) ∈ Ql,T . (2.16)

Differentiating (2.13) with respect to xi (i = 1, . . . , n) we obtain

wltxi(x, t) = −axi(x, t)wl(x, t)− a(x, t)wlxi(x, t)

+
∫

Ql

Gnxi
(x, ξ, l)[a(ξ, t) + b(ξ, t)]wl(ξ, t) dξ, (x, t) ∈ Ql,T ,

from which we find that

wlxi(x, t) = e−
R t
0 a(x,τ) dτ

[
u02(x)− u01(x) +

∫ t

0

pl(x, τ)e
R τ
0 a(x,τ1) dτ1 dτ

]
, (2.17)

where

pl(x, t) = −axi(x, t)wl(x, t) +
∫

Ql

Gnxi(x, ξ, l)[a(ξ, t) + b(ξ, t)]wl(ξ, t) dξ.

It follows from (2.12), (2.13), (2.16) and (2.17) that absolute values of functions
wl, wlt, wlxi

(i = 1, 2, . . . , n) are uniformly bounded with respect to l on each
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set Qk,T , where k is an arbitrary fixed natural number, k < l. According to
the Arzela–Ascoli theorem the sequence wl(x, t) is compact in Qk,T . By applying
diagonal process we can extract from the sequence wl(x, t) a subsequence wls(x, t)
such that

wls(x, t) → w(x, t) uniformly in Qk,T . (2.18)
Without loss of generality we assume that (2.18) is valid for the sequence wl(x, t).
Integrating equation (2.13) with respect to t we obtain

wl(x, t) = u02(x)− u01(x)−
∫ t

0

a(x, τ)wl(x, τ) dτ

+
∫ t

0

∫
Ql

Gn(x, ξ, l)[a(ξ, τ) + b(ξ, τ)]wl(ξ, τ) dξ dτ , (x, t) ∈ Ql,T .

(2.19)
Let (x, t) be an arbitrary point of ΠT and let k be such that (x, t) ∈ Qk,T , k < l.
By virtue of (2.12), (2.16) and (2.18) we obtain

lim
l→∞

∫ t

0

∫
Ql

Gn(x, ξ, l)[a(ξ, τ) + b(ξ, τ)]wl(ξ, τ) dξ dτ

=
∫ t

0

∫
Rn

En(x− ξ)[a(ξ, τ) + b(ξ, τ)]w(ξ, τ) dξ dτ .

(2.20)

Letting l →∞ in (2.19) and using (2.18) and (2.20) we conclude that

w(x, t) = u02(x)− u01(x)−
∫ t

0

a(x, τ)w(x, τ) dτ

+
∫ t

0

∫
Rn

En(x− ξ)[a(ξ, τ) + b(ξ, τ)]w(ξ, τ) dξ dτ , (x, t) ∈ ΠT .

(2.21)

By (2.3) the solution w(x, t) of (2.21) belongs to the class C2,1(ΠT ) and
∆ (wt(x, t) + a(x, t)w(x, t))

= ∆
∫

Rn

En(x− ξ)[a(ξ, t) + b(ξ, t)]w(ξ, t) dξ

= −[a(x, t) + b(x, t)]w(x, t) +
∫

Rn

En(x− ξ)[a(ξ, t) + b(ξ, t)]w(ξ, t) dξ

= wt(x, t)− b(x, t)w(x, t), (x, t) ∈ Rn × (0, T ),

w(x, 0) = u02(x)− u01(x), x ∈ Rn.

�

According to Lemmas 2.1 and 2.5 we have

u2(x, t) ≥ u1(x, t), (x, t) ∈ ΠT .

Remark 2.6. The comparison principle is valid without the condition that one
of the solution is not less some positive constant if we assume that h(t, p) ∈
C0,1+α

loc (R+ ×R+), 0 < α < 1.

Remark 2.7. If the inequality u0(x) ≥ m > 0 and (1.4) hold then problem (1.1),
(1.2) has an unique solution.

Indeed, in the same way as it was done in [9] we can show the existence of the
solution u(x, t) of problem (1.1), (1.2) such that u(x, t) ≥ m > 0.
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3. Auxiliary statements

Let condition (1.4) hold. We consider the Cauchy problem for equation (1.1)
subject to the initial condition

u(x, 0) = u0(x) + ε, x ∈ Rn. (3.1)

If we suppose u0(x) ≡ M in (3.1) then a solution of the Cauchy problem for the
corresponding ordinary differential equation

ϑ′(t) = h(t, ϑ), ϑ(0) = M + ε (3.2)

will be a solution of (1.1), (3.1).
Suppose that the solution ϑε(t) of (3.2) exists on [0, T0,ε), T0,ε ≤ +∞. It is easy

to show (see [9]) that a solution uε(x, t) of the integral equation

uε(x, t) = u0(x) + ε−
∫ t

0

ϕ(uε(x, τ)) dτ

+
∫ t

0

∫
Rn

En(x− ξ)[ϕ(uε(ξ, τ)) + h(τ, uε(ξ, τ))] dξ dτ

(3.3)

for any Tε < T0,ε solves in ΠTε
problem (1.1), (3.1) and satisfies the inequality

ε ≤ uε(x, t) ≤ ϑε(t), (x, t) ∈ ΠTε . (3.4)

We note that problem (3.2) is equivalent to the integral equation

ϑε(t) = M + ε +
∫ t

0

h(τ, ϑε(τ)) dτ , t ∈ [0, T0,ε). (3.5)

Lemma 3.1. Let (1.3), (1.4), (1.6) and (1.7) hold. Then for some T∗,ε < T0,ε we
have

uε(x, t) → ϑε(t) as |x| → ∞

uniformly in [0, T∗,ε].

Proof. Put u0,ε(x, t) ≡ ϑε(t). We define a sequence of functions uk,ε(x, t) (k =
1, 2, . . . ) in the following way

uk,ε(x, t) = u0(x) + ε−
∫ t

0

ϕ(uk−1,ε(x, τ)) dτ

+
∫ t

0

∫
Rn

En(x− ξ)[ϕ(uk−1,ε(ξ, τ)) + h(τ, uk−1,ε(ξ, τ))] dξ dτ.

(3.6)

Fix any Tε such that Tε < T0,ε and show that the sequence uk,ε(x, t) converges to the
solution uε(x, t) of (1.1), (3.1) as k →∞ uniformly in some layer ΠT∗,ε (T∗,ε ≤ Tε).

At first we show that the sequence uk,ε(x, t) is uniformly bounded in some layer
ΠT∗,ε . Using the method of mathematical induction we prove the inequality

ε

2
≤ uk,ε(x, t) ≤ M +

3ε

2
+ ϑε(Tε), (x, t) ∈ ΠT∗,ε

, k = 0, 1, . . . . (3.7)

It is obviously that (3.7) is true for k = 0. We assume that (3.7) holds for k = k0

and we shall prove the inequality for k = k0 + 1. Using the property of function
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ϕ + h and the mean value theorem we obtain

uk0+1,ε(x, t) = u0(x) + ε−
∫ t

0

ϕ(uk0,ε(x, τ)) dτ

+
∫ t

0

∫
Rn

En(x− ξ)[ϕ(uk0,ε(ξ, τ)) + h(τ, uk0,ε(ξ, τ))] dξ dτ

≤ M + ε +
∫ t

0

∫
Rn

En(x− ξ)
[
ϕ(M +

3ε

2
+ ϑε(Tε))

+ h(τ,M +
3ε

2
+ ϑε(Tε))

]
dξ dτ −

∫ t

0

ϕ(uk0,ε(x, τ)) dτ

≤ M + ε +
∫ t

0

{
ϕ(M +

3ε

2
+ ϑε(Tε))− ϕ(uk0,ε(x, τ))

+ h(τ,M +
3ε

2
+ ϑε(Tε))

}
dτ

≤ M + ε + T∗,ε(M + ε + ϑε(Tε)) max
ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
|ϕ′(θ)|

+ T∗,ε max
0≤t≤Tε

h(t, M +
3ε

2
+ ϑε(Tε))

(3.8)

and
uk0+1,ε(x, t)

≥ ε +
∫ t

0

{
ϕ(

ε

2
)− ϕ(uk0,ε(x, τ)) + h(τ,

ε

2
)
}

dτ

≥ ε− T∗,ε

(
(M + ε + ϑε(Tε)) max

ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
|ϕ′(θ)|+ max

0≤t≤Tε

h(t,
ε

2
)
)
.

(3.9)

From (3.8) and (3.9) we conclude that inequality (3.7) is valid for k = k0 + 1
provided

T∗,ε ≤ min
{
Tε,

ε/2
(M + ε + ϑε(Tε))λ + µ

}
, (3.10)

where

λ = max
ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
|ϕ′(θ)|, µ = max

0≤t≤Tε, ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
h(t, θ).

Using the method of mathematical induction it is easy to show the validity in ΠT∗,ε

the estimate

|uk,ε(x, t)− uk−1,ε(x, t)| ≤ M(2λ + ν)k−1 tk−1

(k − 1)!
, (3.11)

where
ν = max

0≤t≤Tε, ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
|hθ(t, θ)|.

For k = 1 we have

|u1,ε(x, t)− u0,ε(x, t)| = ϑε(t)− u0(x)− ε−
∫ t

0

h(τ, ϑε(τ)) dτ ≤ M.

We assume that (3.11) holds for k = k0 and we shall prove the inequality for
k = k0 + 1. By (3.11) and the mean value theorem we have

|uk0+1,ε(x, t)− uk0,ε(x, t)|
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= |
∫ t

0

ϕ′(θ1(x, τ))[uk0,ε(x, τ)− uk0−1,ε(x, τ)] dτ |

+ |
∫ t

0

∫
Rn

En(x− ξ)ϕ′(θ2(ξ, τ))[uk0,ε(ξ, τ)− uk0−1,ε(ξ, τ)] dξ dτ |

+ |
∫ t

0

∫
Rn

En(x− ξ)hθ3(τ, θ3(ξ, τ))[uk0,ε(ξ, τ)− uk0−1,ε(ξ, τ)] dξ dτ |

≤ M(2λ + ν)k0

∫ t

0

τk0−1

(k0 − 1)!
dτ

≤ M(2λ + ν)k0
tk0

k0!
,

where ε
2 ≤ θi ≤ M + 3ε

2 + ϑε(T∗,ε), i = 1, 2, 3.
To show that the sequence uk,ε(x, t) converges uniformly in ΠT∗,ε we consider

the series

u0,ε(x, t) +
∞∑

n=1

(un,ε(x, t)− un−1,ε(x, t)). (3.12)

Then uk,ε(x, t) is the (k + 1)th partial sum of (3.12). By (3.11) every term of
series (3.12) for all (x, t) ∈ ΠT∗,ε is not greater than the absolute value of the
corresponding term of the following convergent series

ϑε(t) + M

∞∑
n=0

(2λ + ν)n
Tn
∗,ε

n!
.

Hence, series (3.12) as well as the sequence uk,ε(x, t) converge uniformly in ΠT∗,ε
.

Let
uε(x, t) = lim

k→∞
uk,ε(x, t).

Passing to the limit as k →∞ in (3.6) and using the Lebesgue theorem we obtain
that the function uε(x, t) satisfies (3.3). Hence, uε(x, t) solves problem (1.1), (3.1)
in ΠT∗,ε .

Using the method of mathematical induction we shall prove that

uk,ε(x, t) → ϑε(t) as |x| → ∞, k = 0, 1, . . . (3.13)

uniformly in [0, T∗,ε].
It is obviously that (3.13) is true for k = 0. We assume that (3.13) holds for

k = k0 and we shall prove (3.13) for k = k0 + 1. Fix an arbitrary δ > 0. By the
induction assumption for any δ0 > 0 there exists a constant A0 = A0(δ0, ε, T∗,ε, k0)
such that if |x| > A0 and 0 ≤ t ≤ T∗,ε then

|uk0,ε(x, t)− ϑε(t)| < δ0.

From (3.5) and (3.6) we have

|uk0+1,ε(x, t)− ϑε(t)|

= |u0(x) + ε−
∫ t

0

ϕ(uk0,ε(x, τ)) dτ +
∫ t

0

∫
Rn

En(x− ξ)
[
ϕ(uk0,ε(ξ, τ))

+ h(τ, uk0,ε(ξ, τ))
]
dξ dτ −M − ε−

∫ t

0

h(τ, ϑε(τ)) dτ |

≤ |u0(x)−M |+
∫ t

0

|ϕ′(θ1(x, τ))| · |uk0,ε(x, τ)− ϑε(τ)| dτ
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+
∫ t

0

∫
|ξ|≤A0

En(x− ξ)(|ϕ′(θ2(ξ, τ))|+ |hθ3(τ, θ3(ξ, τ))|)|uk0,ε(ξ, τ)− ϑε(τ)| dξ dτ

+
∫ t

0

∫
|ξ|>A0

En(x− ξ)(|ϕ′(θ2(ξ, τ))|+ |hθ3(τ, θ3(ξ, τ))|)|uk0,ε(ξ, τ)− ϑε(τ)| dξ dτ,

where ε
2 ≤ θi ≤ M + 3ε

2 + ϑε(T∗,ε), i = 1, 2, 3. By (1.7) for any δ1 > 0 there exists
a constant A1 = A1(δ1) such that |u0(x)−M | < δ1 if |x| > A1. Using the property
of the fundamental solution En and (3.7) we obtain that for any δ2 > 0 there exists
a constant A2 = A2(δ2, ε) such that if |x| > A2 then∫ t

0

∫
|ξ|≤A0

En(x− ξ)(|ϕ′(θ2(ξ, τ))|+ |hθ3(τ, θ3(ξ, τ))|)|uk0,ε(ξ, τ)− ϑε(τ)| dξ dτ

< δ2.

Hence, we obtain

|uk0+1,ε(x, t)− ϑε(t)| < δ1 + δ2 + T∗,ε(2λ + ν)δ0,

where

λ = max
ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
|ϕ′(θ)|, ν = max

0≤t≤Tε, ε
2≤θ≤M+ 3ε

2 +ϑε(Tε)
|hθ(t, θ)|.

Let δ0 = δ
3T∗,ε(2λ+ν) , δ1 = δ

3 , δ2 = δ
3 and A = max(A0, A1, A2) then

|uk0+1,ε(x, t)− ϑε(t)| < δ

if 0 ≤ t ≤ T∗,ε and |x| > A. It follows that for any δ > 0 by suitable choosing k
and A we obtain

|uε(x, t)− ϑε(t)| = |uε(x, t)− uk,ε(x, t) + uk,ε(x, t)− ϑε(t)|
≤ |uε(x, t)− uk,ε(x, t)|+ |uk,ε(x, t)− ϑε(t)| < δ

for 0 ≤ t ≤ T∗,ε and |x| > A. �

Lemma 3.2. Let (1.3), (1.4), (1.6) and (1.7) hold. Then for any Tε < T0,ε we
have

uε(x, t) → ϑε(t) as |x| → ∞
uniformly in [0, Tε].

Proof. Fix any Tε such that Tε < T0,ε. We recall that for any Tε < T0,ε the solution
uε(x, t) exists in ΠTε and satisfies inequality (3.4). Note that the solution uε(x, t)
of (1.1), (3.1) is unique by Remark 2.7.

By Lemma 3.1 there exists T∗,ε ≤ Tε such that uε(x, t) → ϑε(t) as |x| → ∞
uniformly in [0, T∗,ε]. If T∗,ε < Tε then we construct for t ≥ T∗,ε new sequence
uk,ε(x, t) in the following way:

u0,ε(x, t) ≡ ϑε(t),

uk,ε(x, t) = uε(x, T∗,ε)−
∫ t

T∗,ε

ϕ(uk0−1,ε(x, τ)) dτ

+
∫ t

T∗,ε

∫
Rn

En(x− ξ)[ϕ(uk0−1,ε(ξ, τ)) + h(τ, uk0−1,ε(ξ, τ))] dξ dτ,

for k = 1, 2, . . . . By the similar arguments to Lemma 3.1 we can prove that the
sequence uk,ε(x, t) converges to the solution uε(x, t) of (1.1), (3.1) as k → ∞
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uniformly in the layer Rn× [T∗,ε, T∗,ε +∆Tε] provided ∆Tε satisfies condition (3.10)
with T∗,ε = ∆Tε and the inequality T∗,ε + ∆Tε ≤ Tε. It follows that

uε(x, t) → ϑε(t) as |x| → ∞

uniformly in [T∗,ε, T∗,ε + ∆Tε]. Repeating this procedure we obtain the conclusion
of the theorem. �

4. Behavior of maximal solution at infinity

Proof of Theorem 1.3. Let (1.4) hold and uε(x, t), ϑε(t) be solutions of problems (1.1),
(3.1) and (3.2) respectively. Using Theorem 1.4 for ε1 ≥ ε2 we obtain:

u(x, t) ≤ uε2(x, t) ≤ uε1(x, t), (x, t) ∈ ΠTε1
,

ϑ(t) ≤ ϑε2(t) ≤ ϑε1(t), t ∈ [0, Tε1 ].

According to Dini’s theorem the sequences uε(x, t) and ϑε(t) convergence to some
solutions u(x, t) and ϑ(t) of problems (1.1), (1.2) and (1.8) as ε → 0 uniformly
respectively in ΠT and [0, T ], where T < T0. It is easy to see that u(x, t) and ϑ(t)
are maximal solutions of problems (1.1), (1.2) and (1.8) respectively.

We fix an arbitrary δ > 0 and 0 < T < T0. Choose ε1 > 0 such that for any
ε < ε1 the inequality T < T0,ε holds. By the uniform convergence functions uε(x, t)
to u(x, t) in ΠT and ϑε(t) to ϑ(t) in [0, T ], (T < T0) as ε → 0 we can take ε2 > 0
such that for any ε < ε2,

|uε(x, t)− u(x, t)| < δ

3
, (x, t) ∈ ΠT , (4.1)

|ϑε(t)− ϑ(t)| < δ

3
, t ∈ [0, T ]. (4.2)

Put ε0 = min(ε1, ε2). From Lemma 3.2 there exists the constant A0 = A0(δ, ε0, T )
such that for any |x| > A0 we obtain

|uε0(x, t)− ϑε0(t)| <
δ

3
, (x, t) ∈ ΠT . (4.3)

By (4.1)–(4.3) we conclude that by suitable choosing ε = ε0 and A = A0,

|u(x, t)− ϑ(t)| = |u(x, t)− uε(x, t) + uε(x, t) + ϑε(t)− ϑε(t)− ϑ(t)|
≤ |uε(x, t)− u(x, t)|+ |uε(x, t)− ϑε(t)|+ |ϑε(t)− ϑ(t)| < δ

for 0 ≤ t ≤ T and |x| > A.
Let (1.5) hold. Consider the Cauchy problems

ωt = ∆ωt + ∆ϕ(ω) + h(t, ω)− h(t, ε), x ∈ Rn, t > 0,

ω(x, 0) = u0(x) + ε, x ∈ Rn,
(4.4)

and
g′(t) = h(t, g)− h(t, ε), g(0) = M + ε. (4.5)

We suppose that the maximal nonnegative solution gε(t) of (4.5) exists on [0, T0,ε),
T0,ε ≤ +∞. It is easy to show (see [9]) that for any Tε < T0,ε there exists in ΠTε a
solution ωε(x, t) of (4.4) satisfying the inequality

ε ≤ ωε(x, t) ≤ gε(t), (x, t) ∈ ΠTε .
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Applying Theorem 1.4 we conclude that the solution ωε(x, t) of (4.4) is unique.
Let ε1 ≥ ε2 and ωε1(x, t), ωε2(x, t) are nonnegative bounded solutions of (4.4) with
ε = ε1 and ε = ε2 respectively. Then

ωε1(x, t) ≥ ωε2(x, t), (x, t) ∈ ΠTε1
.

The proof of this statement is analogous to the proof of Theorem 1.4. Then we
consider the sequence ωk,ε(x, t) (k = 0, 1, . . . ):

ω0,ε(x, t) ≡ gε(t),

ωk,ε(x, t) = u0(x) + ε−
∫ t

0

ϕ(ωk−1,ε(x, τ)) dτ +
∫ t

0

∫
Rn

En(x− ξ)
[
ϕ(ωk−1,ε(ξ, τ))

+ h(τ, ωk−1,ε(ξ, τ))− h(τ, ε)
]
dξ dτ, k = 1, 2, . . . .

Analogous to the arguments in Section 3 can be shown that for any Tε < T0,ε

ωε(x, t) → gε(t) as |x| → ∞
uniformly in [0, Tε]. Further arguments are similar to reasoning in the proof of this
theorem with condition (1.4). �
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