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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
QUASI-LINEAR DIFFERENTIAL EQUATIONS WITH

DEVIATING ARGUMENTS

RAJIB HALOI, DHIRENDRA BAHUGUNA, DWIJENDRA N. PANDEY

Abstract. We prove the existence and uniqueness of a local solution to a
quasi-linear differential equation of parabolic type with deviated argument
in an arbitrary Banach space. The results are obtained by applying the

Sobolevskĭi-Tanabe theory of parabolic equations, fractional powers of op-
erators, and the Banach fixed point theorem. We include an example that
illustrates the theory.

1. Introduction

Differential equations with a deviating argument are differential equations in
which the unknown function and its derivative appear under different values of the
argument. Differential equations with a deviating argument have many applica-
tions in science and technology. These includes the theory of automatic control,
the theory of self-oscillating systems, the problems of long-term planning in eco-
nomics, the study of problems related with combustion in rocket motion, a series of
biological problems, and many other areas of science and technology, the number
which is steadily expanding, for more details we refer to [3, 6, 7, 8, 12, 16] and
references cited therein.

We shall study the existence and uniqueness of a local solution for the following
differential equation in a Banach space (X, ‖ · ‖),

du

dt
+A(t, u(t))u(t) = f(t, u(t), u(h(t, u(t)))), t > 0;

u(0) = u0.
(1.1)

Here, we assume that −A(t, x), for each t ≥ 0 and x ∈ X, generates an analytic
semigroup of bounded linear operators on X. The nonlinear X-valued functions f
and h satisfy suitable growth conditions in their arguments stated in Section 2.

The existence and uniqueness of solutions for a quasi-linear differential equation
in Banach spaces have been studied by many authors (see e.g. [1, 2, 13, 14, 15,
18, 19, 21, 22, 23]). Using fixed point argument, Pazy [19] obtained the mild and

2000 Mathematics Subject Classification. 34G20, 34K30, 35K90, 47N20.
Key words and phrases. Analytic semigroup; parabolic equation; deviated argument;
Banach fixed point theorem.
c©2012 Texas State University - San Marcos.
Submitted August 15, 2011. Published January 17, 2012.

1



2 R. HALOI, D. BAHUGUNA, D. N. PANDEY EJDE-2012/13

classical solution to the following homogeneous quasi-linear differential equation in
a Banach space (X, ‖ · ‖),

du

dt
+A(t, u(t))u(t) = 0, 0 < t ≤ T ;

u(0) = u0,

for some T (See Pazy [19]).
Consider the following inhomogeneous quasi-linear differential equation in a Ba-

nach space (X, ‖ · ‖),

du

dt
+A(t, u(t))u(t) = f(t, u(t)), 0 < t ≤ T ;

u(0) = u0,
(1.2)

where −A(t, x), for each T ≥ t ≥ 0 and x ∈ X, generates an analytic semigroup
of bounded linear operators on X and the nonlinear function f is uniformly locally
Hölder continuous in t and uniformly locally Lipschitz continuous in x. The exis-
tence and uniqueness of a classical solution of Equation (1.2) had been obtained by
Sobolevskĭi [23]. For more detail, we refer to Friedman [4] and Sobolevskĭi [23].

Our objective is to establish the existence and uniqueness of a local solution to
(1.1) that will generalize the results of Sobolevskĭi [23].

The article is organized as follows. In Section 2, we will provide preliminaries,
assumptions and Lemmas that will be needed for proving our main results. We
shall prove the local existence and uniqueness of a solution to (1.1) in Section 3.
Finally, we shall provide an example to illustrate the application of the abstract
results.

2. Preliminaries and Assumptions

In this section, we will introduce assumptions, preliminaries and Lemmas that
will be used in the sequel. We briefly outline the facts concerning analytic semi-
groups, fractional powers of operators, and the homogeneous and inhomogeneous
linear Cauchy initial value problem. The material presented here is covered in more
detail by Friedman [4] and Tanabe [24].

Let X be a complex Banach space with norm ‖ · ‖. Let T ∈ [0,∞) and {A(t) :
0 ≤ t ≤ T} be a family of closed linear operators on the Banach space X. Let the
following assumptions hold:

(A1) The domain D(A) of A(t) is dense in X and independent of t.
(A2) For each t ∈ [0, T ], the resolvent R(λ;A(t)) exists for all Reλ ≤ 0 and there

is a constant C > 0 (independent of t and λ) such that

‖R(λ;A(t))‖ ≤ C

|λ|+ 1
, Reλ ≤ 0, t ∈ [0, T ].

(A3) There are constants C > 0 and ρ ∈ (0, 1], such that

‖[A(t)−A(τ)]A−1(s)‖ ≤ C|t− τ |ρ,

for t, s, τ ∈ [0, T ]. Here, C and ρ are independent of t, τ and s.

It is well known that assumption (A2) implies that for each s ∈ [0, T ], −A(s)
generates a strongly continuous analytic semigroup {e−tA(s) : t ≥ 0} in L(X),
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where L(X) denotes the Banach algebra of all bounded linear operators on X.
Then there exist positive constants C and d such that

‖e−tA(s)‖ ≤ Ce−dt, t ≥ 0; (2.1)

‖A(s)e−tA(s)‖ ≤ Ce−dt/t, t > 0, (2.2)

for all s ∈ [0, T ]. It is to be noted that the assumption (A3) implies that there
exists a constant C > 0 such that

‖A(t)A−1(s)‖ ≤ C, (2.3)

for all 0 ≤ s, t ≤ T . Hence, for each t, the functional y → ‖A(t)y‖ defines an
equivalent norm on D(A) = D(A(0)) and the mapping t → A(t) from [0, T ] into
L(X1, X) is uniformly Hölder continuous.

Consider the homogeneous Cauchy problem
du

dt
+A(t)u = 0; u(t0) = u0. (2.4)

Then the solution to this problem is given by the following Theorem.

Theorem 2.1 ([4, 23]). Let the Assumptions (A1)–(A3) hold. Then there exists a
unique fundamental solution {U(t, s) : 0 ≤ s ≤ t ≤ T} to (2.4) that possesses the
following properties:

(i) U(t, s) ∈ L(X) and U(t, s) is strongly continuous in t, s for all 0 ≤ s ≤ t ≤
T .

(ii) U(t, s)x ∈ D(A) for each x ∈ X, for all 0 ≤ s ≤ t ≤ T .
(iii) U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t ≤ T .
(iv) the derivative ∂U(t, s)/∂t exists in the strong operator topology and belongs

to L(X) for all 0 ≤ s < t ≤ T , and strongly continuous in s and t, where
s < t ≤ T .

(v) ∂U(t,s)
∂t +A(t)U(t, s) = 0 and U(s, s) = I for all 0 ≤ s < t ≤ T .

For t0 ≥ 0, let Cβ([t0, T ];X) denote the space of all X-valued functions h(t),
that are uniformly Hölder continuous on [0, T ] with exponent β, where 0 < β ≤ 1.
Define

[h]β = sup
t0≤t,s≤T

‖h(t)− h(s)‖/|t− s|β .

Then Cβ([t0, T ];X) is a Banach space with respect to the norm

‖h‖Cβ([t0,T ];X) = sup
t0≤t≤T

‖h(t)‖+ [h]β .

Consider the inhomogeneous Cauchy problem
du

dt
+A(t)u = f(t); u(t0) = u0. (2.5)

Theorem 2.2 ([4, 23]). Let the assumptions (A1)-(A3) hold. If f ∈ Cβ([t0, T ];X),
then there exists a unique solution of (2.5). Furthermore, the solution can be written
as

u(t) = U(t, t0)u0 +
∫ t

t0

U(t, s)f(s)ds, t0 ≤ t ≤ T,

and u : [t0, T ] → X is continuously differentiable on (t0, T ].

We shall use the following assumption to establish the existence and uniqueness
of a local solution to (1.1).
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(F1) The operator A0 = A(0, u0) is closed operator with domain D0 (D0 denote
domain of A0) dense in X and there exists a constant C > 0 independent
of λ such that

‖(λI −A0)−1‖ ≤ C

1 + |λ|
; for all λ with Re λ ≤ 0. (2.6)

Assumption (F1) allows us to define negative fractional powers of the operator
A0. For α > 0, define negative fractional powers A−α

0 by the formula

A−α
0 =

1
Γ(α)

∫ ∞

0

e−tA0tα−1dt.

Then A−α
0 is one-to-one and bounded linear operator on X. Thus, there exists an

inverse of the operator A−α
0 . We define the positive fractional powers of A0 by

Aα
0 ≡ [A−α

0 ]−1. Then Aα
0 is closed linear operator with dense domain D(Aα

0 ) in X
and D(Aα

0 ) ⊂ D(Aβ
0 ) if α > β. For 0 < α ≤ 1, let Xα = D(Aα

0 ) and equip this
space with the graph norm

‖x‖α = ‖Aα
0x‖.

Then Xα is a Banach space with respect to this norm. If 0 < α ≤ 1, the embedding
X1 ↪→ Xα ↪→ X are dense and continuous. We define, for each α > 0, X−α =
(Xα)∗, the dual space of Xα, endowed with the natural norm

‖x‖−α = ‖A−α
0 x‖.

Let R,R′ > 0 and Bα = {x ∈ Xα : ‖x‖α < R}, Bα−1 = {y ∈ Xα−1 : ‖y‖α−1 < R′}.
We shall also use the following assumptions:

(F2) For some α ∈ [0, 1) and for any v ∈ Bα, the operator A(t, v) is well defined
on D0 for all t ∈ [0, T ]. Furthermore, for any t, s ∈ [0, T ] and v, w ∈ Bα,
the following condition holds

‖[A(t, v)−A(s, w)]A−1(s, w)‖ ≤ C(R)[|t− s|θ1 + ‖v − w‖α] (2.7)

for some 0 < θ1 ≤ 1.
(F3) (a) For every t, s ∈ [0, T ]; x, y ∈ Bα and x′, y′ ∈ Bα−1, there exist constants

Lf = Lf (t, R,R′) > 0 and 0 < θ1 ≤ 1, such that the nonlinear map
f : [0, T ]×Bα ×Bα−1 → X satisfies the condition

‖f(t, x, x′)− f(s, y, y′)‖ ≤ Lf (|t− s|θ1 + ‖x− y‖α + ‖x′ − y′‖α−1), (2.8)

(b) There exist constants Lh = Lh(t, R) > 0 and 0 < θ2 ≤ 1, such that
h(·, 0) = 0, h : Bα × [0, T ] → [0, T ] satisfies the following condition,

|h(x, t)− h(y, s)| ≤ Lh(‖x− y‖α + |t− s|θ2), (2.9)

for all x, y ∈ Bα and for all s, t ∈ [0, T ].
(F4) Let u0 ∈ Xβ for some β > α and

‖u0‖α < R. (2.10)

Let us state the following Lemmas that will be used in the subsequent sections.

Lemma 2.3 ([5, Lemma 1.1]). Let h ∈ Cβ([t0, T ];X). Define the function H :
Cβ([t0, T ];X) → C([t0, T ];X1) by

Hh(t) =
∫ t

t0

U(t, s)h(s)ds, t0 ≤ t ≤ T.
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Then H is a bounded mapping, and ‖Hh‖C([t0,T ];X1) ≤ C‖h‖Cβ([t0,T ];X), for some
constant C > 0.

We have the following corollary.

Corollary 2.4. For y ∈ X1, define

P (y;h) = U(t, 0)y +
∫ t

0

U(t, s)h(s)ds, 0 ≤ t ≤ T.

Then P is a bounded linear mapping from X1 × Cβ([t0, T ];X) into C([t0, T ];X1).

3. Existence of a Solution

In this section, we will establish the existence and uniqueness of a local solution
to (1.1). Let I = [0, δ] for some positive number δ to be specified later. Let Cα,
0 ≤ α ≤ 1, denote the space of all Xα-valued continuous functions on I, endowed
with the sup-norm, supt∈I ‖ψ(t)‖α, ψ ∈ C(I;Xα). Let

Yα = CLα(I;Xα) = {ψ ∈ Cα : ‖ψ(t)− ψ(s)‖α−1 ≤ Lα|t− s|, for all t, s ∈ I},
where Lα is a positive constant to be specified later. It is clear that Yα is a Banach
space with the sup-norm of Cα.

Definition 3.1. Given u0 ∈ Xα, by a solution of problem (1.1), we mean a function
u : I → X that satisfies the followings:

(i) u(.) ∈ CLα(I;Xα) ∩ C1((0, δ);X) ∩ C(I;X);
(ii) u(t) ∈ Xα, for all t ∈ (0, δ);
(iii) du

dt +A(t, u(t))u(t) = f(t, u(t), u([h(u(t), t)])), for all t ∈ (0, δ);
(iv) u(0) = u0.

Let K > 0 and 0 < η < β − α be fixed constants. Let

Sα = {y ∈ Cα ∩ Yα : y(0) = u0, ‖y(t)− y(s)‖α ≤ K|t− s|η}.
Then Sα is a non-empty closed and bounded subset of Cα.

Now we prove the following theorem concerning the existence and uniqueness of
a local solution to (1.1). The proof is based on ideas from Gal [6] and Sobolevskĭi
[23]

Theorem 3.2. Let u0 ∈ Xβ, where 0 < α < β ≤ 1. Let the assumptions (F1)–(F4)
hold. Then there exists a positive number δ = δ(α, u0), 0 < δ ≤ T and a unique
solution u(t) to (1.1) in [0, δ] such that u ∈ Sα ∩ C1((0, δ);X).

Proof. Let v ∈ Sα. Then from the assumption (F4), it follows that if δ > 0 is
sufficiently small, then

‖v(t)‖α < R, for t ∈ I. (3.1)
Hence, the operator

Av(t) = A(t, v(t)) (3.2)
is well defined for each t ∈ I. Again from the assumption (F2) and inequality (2.3),
it is clear that

‖[Av(t)−Av(s)]A−1
0 ‖ ≤ C|t− s|µ, for µ = min{θ1, η}, (3.3)

where C > 0 is a constant independent of δ and of the particular v ∈ Sα. It is also
to be noted that

Av(0) = A0. (3.4)
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If δ > 0 is sufficiently small, then from assumption (F1) and inequality (3.3), we
have

‖(λI −Av(t))−1‖ ≤ C

1 + |λ|
; for λ with Re λ ≤ 0, t ∈ I. (3.5)

Also from assumption (F2), it follows that

‖[Av(t)−Av(s)]A−1
v (τ)‖ ≤ C|t− s|µ, if t, τ, s ∈ I. (3.6)

Thus the operator Av(t) satisfies conditions (A1), (A2) and (A3). Hence, there
exists a fundamental solution Uv(t, s) corresponding to Av(t) and satisfies all esti-
mates derived in Theorem 2.1 uniformly with respect to v ∈ Sα.

Put fv(t) = f(t, v(t), v([h(v(t), t)])). Then the assumption (F3) implies that fv is
Hölder continuous on I of exponent γ = min{θ1, θ2, η}. Now consider the equation

dw

dt
+A(t, v(t))w(t) = fv(t), t ∈ I;

w(0) = u0.
(3.7)

By Theorem 2.2, there exists a unique solution wv to (3.7) that is given by

wv(t) = Uv(t, 0)u0 +
∫ t

0

Uv(t, s)fv(s)ds, t ∈ I. (3.8)

For each v ∈ Sα, define a map F by

Fv(t) = Uv(t, 0)u0 +
∫ t

0

Uv(t, s)fv(s)ds, for each t ∈ I. (3.9)

By Lemma 2.3, the map F is well defined. We will claim that F maps from Sα into
itself, for sufficiently small δ > 0. Indeed, if t1, t2 ∈ I with t2 > t1, then we have

‖Fv(t2)− Fv(t1)‖α−1 ≤ ‖[Uv(t2, 0)− Uv(t1, 0)]u0‖α−1

+ ‖
∫ t2

0

Uv(t2, s)fv(s)ds−
∫ t1

0

Uv(t1, s)fv(s)ds‖α−1.

(3.10)
We will use the bounded inclusion X ⊂ Xα−1 to estimate each of the term on
the right-hand side of (3.10). The first term on the right-hand side of (3.10) is
estimated as follows [4, see Lemma II. 14.1],

‖(Uv(t2, 0)− Uv(t1, 0))u0‖α−1 ≤ C1‖u0‖α(t2 − t1), (3.11)

where C1 is some positive constant. We have the following estimate for the second
term on the right hand side of (3.10) [4, Lemma II. 14.4],

‖
∫ t2

0

Uv(t2, s)fv(s)ds−
∫ t1

0

Uv(t1, s)fv(s)ds‖α−1

≤ C2N1(t2 − t1)(| log(t2 − t1)|+ 1),
(3.12)

where N1 = sups∈[0,T ] ‖fv(s)‖ and C2 is some positive constant.
Using estimates (3.11) and (3.12), from (3.10), we obtain

‖Fv(t2)− Fv(t1)‖α−1 ≤ Lα|t2 − t1|, (3.13)

where Lα = max{C1(t2 − t1)α−1‖u0‖α, C2N1(| log(t2 − t1)| + 1)} that depends on
C1, C2, N1, δ.
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Our next aim is to show that ‖Fv(t + h) − Fv(t)‖α ≤ Khη, for some constant
K > 0 and 0 < η < 1. If 0 ≤ α < β ≤ 1 and 0 ≤ t ≤ t+ h ≤ δ, then

‖Fv(t+ h)− Fv(t)‖α ≤ ‖[Uv(t+ h, 0)− Uv(t, 0)]u0‖α

+ ‖
∫ t+h

0

Uv(t+ h, s)fv(s)ds−
∫ t

0

Uv(t, s)fv(s)ds‖α.

Using [4, Lemmas II.14.1, II.14.4], we obtain the following two estimates

‖[Uv(t+ h, 0)− Uv(t, 0)]u0‖α ≤ C(α, u0)hβ−α; (3.14)

‖
∫ t+h

0

Uv(t+ h, s)fv(s)ds−
∫ t

0

Uv(t, s)fv(s)ds‖α ≤ C(α)N1h
1−α(1 + | log h|).

(3.15)

From (3.14) and (3.15), it is clear that

‖Fv(t+ h)− Fv(t)‖α ≤ hη[C(α, u0)δβ−α−η + C(α)N1δ
νh1−α−η−ν(| log h|+ 1)]

for any ν > 0, ν < 1− α− η. Hence, for sufficiently small δ > 0 , we have

‖Fv(t+ h)− Fv(t)‖α ≤ Khη,

for some constant K > 0. Thus, we have shown that F maps Sα into itself.
Finally, we will show that F is a contraction map. For v1, v2 ∈ Sα, put z1(t) =

wv1(t) and z2(t) = wv2(t). Thus, for j = 1, 2, we have

dzj

dt
+Avj

(t)zj(t) = fvj
(t), t ∈ I;

zj(0) = u0.
(3.16)

It follows from (3.16) that

d

dt
(z1 − z2) +Av1(t)(z1 − z2) = [Av2(t)−Av1(t)]z2 + [fv1(t)− fv2(t)]. (3.17)

Using [4, Lemmas II.14.3, II.14.5], we obtain that A0(t)z2(t) is uniformly Hölder
continuous for τ ≤ t ≤ δ, τ > 0. Also from Lemma 2.3, A0

∫ t

0
Uv2(t, s)fv2(s)ds is a

bounded function, and hence we have the bound

‖A0z2(t)‖ ≤ Ctβ−1. (3.18)

Further, in view of (2.3) and (3.6), the operator [Av2(t)−Av1(t)]A
−1
0 is uniformly

Hölder continuous for τ ≤ t ≤ δ, τ > 0. Hence, [Av2(t)− Av1(t)]z2(t) is uniformly
Hölder continuous for τ ≤ t ≤ δ, τ > 0. Applying Theorem 2.1, we get that for any
τ ≤ t ≤ δ, τ > 0,

z1(t)− z2(t) = Uv1(t, τ)[z1(τ)− z2(τ)]

+
∫ t

τ

Uv1(t, s){[Av2(s)−Av1(s)]z2(t) + [fv1(s)− fv2(s)]}ds.

(3.19)
The bound in (3.18) allows us to take τ → 0 in (3.19), and passing to the limit, we
obtain

z1(t)− z2(t) =
∫ t

0

Uv1(t, s){[Av2(s)−Av1(s)]z2(t) + [fv1(s)− fv2(s)]}ds.
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Now using (2.7), (2.8), (2.9) and [23, inequality (1.65), page 23], we obtain

‖Fv1(t)− Fv2(t)‖α ≤ C3C(R)
∫ t

0

(t− s)−α(‖v1(s)− v2(s)‖αs
β−1ds

+ C4Lf

∫ t

0

(t− s)−α{‖v1(s)− v2(s)‖α

+ ‖v1([h(v1(s), s)])− v2([h(v2(s), s)])‖α−1}ds

≤ C3C(R)
∫ t

0

(t− s)−α(‖v1(s)− v2(s)‖αs
β−1ds

+
C4

1− α
Lf (2 + LαLh)δ1−α sup

t∈I
‖v1(t)− v2(t)‖α

≤ K̃δβ−α sup
t∈I

‖v1(t)− v2(t)‖α,

(3.20)

where K̃ = max{C3C(R)
1−α , C4

1−αLf (2 + LαLh)}. Choose δ > 0 such that

K̃δβ−α <
1
2
.

Then, from (3.20), it is clear that F is a contraction map. Since Sα is a complete
metric space, by the Banach fixed-point theorem, there exists u ∈ Sα such that
Fu = u. It follows from Sobolevskĭi [23, Theorem 5] that u ∈ C1((0, δ);X). Thus
u is a solution to (1.1) on [0, δ]. �

4. Example

Consider the quasi-linear parabolic differential equation with a deviated argu-
ment

∂u

∂t
+ a(x, t, u,

∂u

∂x
)
∂2u

∂x2
= H̃(x, u(t, x)) + G̃(t, x, u(t, x));

u(t, 0) = u(t, 1), t > 0;

u(0, x) = u0(x), x ∈ (0, 1),

(4.1)

where a(·, ·, . . . , ·) is a continuously differentiable real valued function in all vari-
ables. Here, H̃(x, u(t, x)) =

∫ x

0
K(x, y)u(g̃(t)|u(t, y)|, y)dy for all (t, x) ∈ (0,∞) ×

(0, 1). Assume that g̃ : R+ → R+ is locally Hölder continuous in t with g̃(0) = 0
and K ∈ C1([0, 1]× [0, 1]; R). The function G̃ : R+ × [0, 1]× R → R is measurable
in x, locally Hölder continuous in t, locally Lipschitz continuous in u, uniformly in
x.

Here, the parabolically means that for any real vector ξ 6= 0 and for arbitrary
values of u, ∂u

∂x , it holds

−a(x, t, u, ∂u
∂x

)ξ2 > 0.

Let A(t, u)u(t) = a(x, t, u, ∂u
∂x )∂2u

∂x2 . If u0 ∈ C1(0, 1), then

A0u ≡ a
(
x, 0, u0,

∂u0

∂x

)∂2u

∂x2

is strongly elliptic operator with continuous coefficient. Let X = L2((0, 1); R).
Then X1 = D(A0) = H2(0, 1) ∩ H1

0 (0, 1), X1/2 = D((A0)1/2) = H1
0 (0, 1) and

X−1/2 = H−1(0, 1). It is well known that the assumption (F1) is satisfied. The
assumption on a implies that A(t, x) satisfies (2.7).
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For x ∈ (0, 1), we define f : R+ ×H1
0 (0, 1)×H−1(0, 1) → L2(0, 1) by

f(t, φ, ψ) = H̃(x, ψ) + G̃(t, x, φ),

where H̃(x, ψ(x, t)) =
∫ x

0
K(x, y)ψ(y, t)dy. We also assume that G̃ : R+ × [0, 1] ×

H−1(0, 1) → L2(0, 1) satisfies

‖G̃(t, x, u)− G̃(s, x, v)‖L2(0,1) ≤ C(|t− s|θ1 + ‖u− v‖H−1(0,1)),

for some constant C > 0. Then it can be seen that f satisfies the condition (2.8)
(see Gal [6]) and h : H1

0 (0, 1) × R+ → R+ defined by h(φ(x, t), t) = g̃(t)|φ(x, t)|
satisfies (2.9) (see Gal [6]). Thus, we can apply the results of previous section to
obtain the existence and uniqueness of a local solution to (4.1).
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[23] P. L. Sobolevskĭi; Equations of parabolic type in a Banach space, Amer. Math. Soc. Transla-
tions (2), 49 (1966), pp. 1-62.

[24] H. Tanabe; On the equations of evolution in a Banach space, Osaka Math. J. Vol. 12 (1960)
pp. 363-376.

Rajib Haloi
Department of Mathematics and Statistics, Indian Institute of Technology Kanpur,
Pin 208016, India
Tel. +91-512-2597053, Fax +91-512-2597500

E-mail address: rajib.haloi@gmail.com

Dhirendra Bahuguna
Department of Mathematics and Statistics, Indian Institute of Technology Kanpur,
Pin 208016, India

E-mail address: dhiren@iitk.ac.in

Dwijendra N. Pandey
Department of Mathematics, Indian Institute of Technology Roorkee, Pin 247667, India

E-mail address: dwij.iitk@gmail.com


	1. Introduction
	2. Preliminaries and Assumptions
	3. Existence of a Solution
	4. Example
	Acknowledgements

	References

