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PERSISTENCE OF SPREADING SPEED FOR THE DELAYED
FISHER EQUATION

SHUXIA PAN

Abstract. This article concerns the long time behavior of the delayed Fisher
equation without quasimonotonicity. When the time delay is small and the
instantaneous self-limitation effect exists, it is proved that the spreading speed
is the same as that of the classical Fisher equation.

1. Introduction

The geographic expansion mode of biological invasion and pathophoresis is one
of the most important topics in population dynamics, and much evidence indicates
that the mode can be described by the asymptotic spreading. For example, we
refer to Lewis et al. [6] and Murray [12, Chapter 1] for the spatial spreading of
the grey squirrel in the UK. Mathematically, it has been proved that a feature of
the asymptotic spreading of some evolutionary models can be formulated by the
asymptotic speed of spreading (for short, spreading speed) which was first intro-
duced by Aronson and Weinberger [1] for the Fisher equation. After that, this
concept has been widely studied and some important results have been established
for reaction-diffusion equations, lattice differential equations, discrete-time recur-
sions and integral equations, see Diekmann [4], Hsu and Zhao [5], Li et al. [7], Liang
and Zhao [8], Lin et al. [10], Thieme and Zhao [14], Weinberger et al. [16], Zhao
[18] and the references cited therein. For the sake of convenience, we first show the
following definition.

Definition 1.1. Assume that u(x, t) is a nonnegative function for all x ∈ R, t > 0.
Then c∗ > 0 is called the asymptotic speed of spreading of u(x, t) if

(a) limt→∞ sup|x|>(c∗+ε)t u(x, t) = 0 for any given ε > 0;
(b) lim inft→∞ inf |x|<(c∗−ε)t u(x, t) > 0 for any given ε ∈ (0, c∗).

At the same time, Berestycki et al. in [2] and in [3] presented some examples
to illustrate the possible complexity of spreading speed of an unknown function
formulated by a scalar equation.

From the viewpoint of monotone dynamical systems, the results mentioned above
can be applied to an evolutionary system admitting a proper comparison principle
(see Berestycki et al. [2], Berestycki et al. [3], Liang and Zhao [8], Weinberger et
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al. [16]) or controlled by two systems generating monotone semiflows (see Hsu and
Zhao [5], Li et al. [7]). However, if an equation does not have a comparison principle
near the unstable steady state, then these methods fail and the study of asymptotic
spreading will be very hard. Recently, Lin [9] considered the spreading speed of the
following delayed equation

∂u(x, t)
∂t

= d∆u(x, t) + ru(x, t) [1− u(x, t)− au(x, t− τ)] , (1.1)

where u ∈ R, x ∈ R, t > 0, d > 0, r > 0, τ ≥ 0 and a > 0 such that the results
mentioned above cannot be applied. For a ∈ (0, 1), u(x, t) defined by (1.1) has a
spreading speed 2

√
dr if the initial value has nonempty compact support, which is

the same as that of the classical Fisher equation (see Lin [9]). Biologically, a ∈ (0, 1)
implies that the instantaneous self-limitation effect dominates the corresponding
delayed effect.

In this article, we shall further consider the asymptotic spreading of (1.1) if
a ≥ 1 such that the instantaneous self-limitation effect does not dominate the
corresponding delayed effect. Using the theory of abstract functional differential
equations, some properties of the corresponding initial value problem of (1.1) are
proved. In particular, we obtain a positive constant τ0 such that for each fixed
c < 2

√
dr, we prove that

lim inf
t→∞

inf
|x|<ct

u(x, t) > 0

when τ < τ0 is true and the initial value has nonempty support. At the same time,
when c > 2

√
dr and τ ≥ 0, we also confirm that

lim sup
t→∞

sup
|x|>ct

u(x, t) = 0

if (1.1) has an initial value admitting nonempty compact support. Therefore, for
small delay, we obtain the persistence of spreading speed (if τ = 0 holds and the
initial value has nonempty compact support, then the spreading speed of u(x, t)
defined by (1.1) is 2

√
dr, see Lemma 2.4).

2. Initial Value Problem

In this section, we present some results on the corresponding initial value problem
of (1.1). Let

X = {u(x) : u : R → R is bounded and uniformly continuous}.

It is well known that X is a Banach space with respect to the standard supremum
norm | · |. We also denote

X+ = {u : u ∈ X and u(x) ≥ 0 for all x ∈ R}.

If a < b, then
X[a,b] = {u : a ≤ u(x) ≤ b for all x ∈ R}.

For each t > 0, define T (t) : X → X as follows

T (t)u(x) =
1√
4πdt

∫
R

e−
(x−y)2

4dt u(y)dy, u(x) ∈ X.

Then T (t) : X → X is an analytic semigroup [13], and T (t) : X+ → X+ is a
positive semigroup. To use the theory of abstract functional differential equations,
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we regard u(x, t) : R+ → X, and u(t) ∈ X implies that u(x, t) =: (u(t))(x) ∈ X.
Therefore,

T (t)u(s) =: T (t)u(x, s) =
1√
4πdt

∫
R

e−
(x−y)2

4dt u(y, s)dy, u(s) ∈ X.

We now consider the following Cauchy problem
∂u(x, t)

∂t
= d∆u(x, t) + ru(x, t) [1− u(x, t)− au(x, t− τ)] ,

u(x, s) = φ(x, s), x ∈ R, t > 0, s ∈ [−τ, 0],
(2.1)

where all the parameters are the same as those in (1.1).
In Smith and Zhao [13], the authors discussed the initial value problem of delayed

reaction-diffusion equations by the theory in Martin and Smith [11]. Similar to that
in [13, Proof of Theorem 2.2], we give the following existence and uniqueness of the
mild solution of (2.1).

Lemma 2.1. Assume that φ : [−τ, 0] → X is continuous. Then there exists b ∈
(0,∞] such that (2.1) has a unique mild solution u : [−τ, b) → X, which can also
be formulated by the following integral equation

u(t) = T (t)φ(0) +
∫ t

0

T (t− s)F (us)ds (2.2)

with
F (us) = ru(s) [1− u(s)− au(s− τ)] , u(s− θ) ∈ X, θ ∈ [0, τ ].

If t > τ , then u(x, t) is a classical solution satisfying (2.1). Moreover, if b is
bounded, then |u(t)| → ∞ if t → b−.

Recently, by the condition of quasipositivity and the positivity of T (t), Lin [9]
also proved the following result for any a ≥ 0.

Lemma 2.2. Assume that φ : [−τ, 0] → X+ is continuous. Then (2.1) has a
unique mild solution u : [−τ,∞) → X satisfying

u(t) ∈ X+ for each t ∈ [−τ,∞).

Moreover, if φ : [−τ, 0] → X[0,1], then

u(t) ∈ X[0,1] for each t ∈ [−τ,∞).

Note that the proof of Wang et al. [15, Proposition 4.3] only depends on the
boundedness of solutions, so we have the following conclusion by Lemma 2.2.

Lemma 2.3. Assume that φ : [−τ, 0] → X[0,1] is continuous. Then there exists
a constant C independent of τ such that |∂u(x,t)

∂t | < C and |∂u(x,t)
∂x | < C for all

t ≥ 3τ + 2.

Before ending this section, we state some results on the classical Fisher equation
(we refer to Aronson and Weinberger [1], Smith and Zhao [13], Ye and Li [17]).

Lemma 2.4. Assume that d1, r1 and M are positive constants. Consider the initial
value problem

∂w(x, t)
∂t

= d1∆w(x, t) + r1w(x, t) [1−Mw(x, t)] , x ∈ R, t > 0,

w(x, 0) = ϕ(x) ∈ X+, x ∈ R.
(2.3)
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(A1) For all t > 0, (2.3) has a classical solution w(·, t) ∈ X+. If ϕ(x) admits
nonempty support, then w(x, t) > 0 for all x ∈ R, t > 0.

(A2) If z(·, t) ∈ X+ with t ∈ (0, b) satisfies

∂z(x, t)
∂t

≥ (≤)d1∆z(x, t) + r1z(x, t) [1−Mz(x, t)] ,

z(x, 0) ≥ (≤)ϕ(x),

then z(x, t) ≥ (≤)w(x, t) for all x ∈ R, t ∈ (0, b).
(A3) Assume that z(t) ∈ X+ with t ∈ [0, b) satisfies

z(t) ≥ (≤)T (t− s)z(s) +
∫ t

s

T (t− θ)[r1z(θ)(1−Mz(θ))]dθ

for all 0 ≤ s ≤ t < b. Then z(x, t) ≥ (≤)w(x, t) for all x ∈ R, t ∈ [0, b).
(A4) If ϕ(x) admits nonempty support, then

lim inf
t→∞

inf
|c|<ct

w(x, t) = lim sup
t→∞

sup
|c|<ct

w(x, t) = 1/M

for each c < 2
√

d1r1. Moreover, if ϕ(x) admits nonempty compact support,
then

lim sup
t→∞

sup
|x|>ct

w(x, t) = 0

for each c > 2
√

d1r1.

Remark 2.5. (A2)–(A3) remain true if M = 0 or r1 < 0.

3. Main Results

Theorem 3.1. Assume that u(x, t) is the mild solution of (2.1) and φ(0) ∈ X+

admits nonempty support. If τ > 0 such that aCτ < 1, then

lim inf
t→∞

inf
|x|<ct

u(x, t) ≥ 1− aCτ

1 + a

for each c < 2
√

dr(1− aCτ), hereafter C is given by Lemma 2.3.

Proof. If t ≥ 4τ + 3, then Lemma 2.3 implies that

|u(x, t)− u(x, t− τ)| < Cτ.

Thus, we obtain

∂u(x, t)
∂t

≥ d∆u(x, t) + ru(x, t) [1− (1 + a)u(x, t)− aCτ ] . (3.1)

On the other hand, Lemma 2.2 and the positivity of semigroup indicate that

u(t) = T (t− s)u(s) +
∫ t

s

T (t− θ) {ru(θ)[1− u(θ)− au(θ − τ)]} dθ

≥ T (t− s)u(s) +
∫ t

s

T (t− θ)[−rau(θ)]dθ

(3.2)

for any 0 ≤ s ≤ t < ∞. Let v(x, t) be defined by

∂v(x, t)
∂t

= d∆v(x, t)− rav(x, t),

v(x, 0) = ϕ(x) ∈ X[0,1].
(3.3)
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By Remark 2.5, we see that

v(x, t) > 0, x ∈ R, t > 0

if ϕ(x) admits nonempty compact support. From Lemma 2.4, we also have

u(x, t) > v(x, t) > 0

for any t > 0. Therefore, u(x, 4τ + 3) > 0 admits nonempty support. Again by
Lemma 2.4, the result is evident by (3.1). The proof is complete. �

From the above proof and Lemma 2.4, we also have the following result.

Corollary 3.2. Let u(x, t) be the mild solution of (2.1) and δ1 > 0, δ2 > 0 be
constants such that

u(x, 0) > δ1, |x| ≤ δ2.

Then for any ε < 1−aCτ
1+a , there exists T = T (ε, δ1, δ2) such that

u(0, t) > ε, t > T.

Theorem 3.3. Assume that φ(0) ∈ X+ admits nonempty support and τ < τ0. If
u(x, t) is the mild solution of (2.1), then

lim inf
t→∞

inf
|x|<ct

u(x, t) ≥ 1− aCτ

1 + a

for each fixed c < 2
√

dr.

Proof. In the subsequent proof, we assume that c < 2
√

dr is a fixed constant. It
suffices to consider t ≥ 4τ + 3 such that u(x, t) satisfies (2.1) and∣∣∂u(x, t− τ)

∂t

∣∣ < C,
∣∣∂u(x, t− τ)

∂x

∣∣ < C.

Since c < 2
√

dr, there exists ε′ > 0 such that

8
√

dr(1− aε′) = c + 6
√

dr.

If u(x, t− τ) ≤ ε′, then

∂u(x, t)
∂t

≥ d∆u(x, t) + ru(x, t) [1− u(x, t)− aε′] . (3.4)

If u(x, t − τ) > ε′, then Lemma 2.3 and Corollary 3.2 indicate that there exists
T1 > 0 such that

u(x, t− τ + T ′) >
1− aCτ

2(1 + a)
for any T ′ > T1.

Note that u(x, s), s ∈ [t− τ, t] also satisfies (3.2), then Lemma 2.4 leads to

u(x, t) > δε′ (3.5)

with some fixed δ > 0. In particular, the comparison principle (Lemma 2.4) also
confirms that both δ and T1 are uniform for all x, t satisfying

u(x, t− τ) > ε′, t ≥ 4τ + 3.

From (3.5) and ε′ < u(x, t− τ) ≤ 1, it is evident that

u(x, t− τ)
u(x, t)

<
1

δε′
, t > 4τ + 3. (3.6)
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Combining (3.4) with (3.6), we obtain

∂u(x, t)
∂t

≥ d∆u(x, t) + ru(x, t) [1− aε′ −Mu(x, t)]

with M = (1 + a/(δε′)), x ∈ R, t > 4τ + 3.
Using Lemma 2.4, there exists T2 > 0 such that

inf
|x|≤c1t

u(x, t) >
1− aε′

2M
, t > T2, 2c1 = c + 2

√
dr(1− aε′). (3.7)

From Theorem 3.1 and c < c1, we further have

lim inf
t→∞

inf
|x|≤ct

u(x, t) ≥ 1− aCτ

1 + a
. (3.8)

In fact, u(x, t) also satisfies

∂u(x, t)
∂t

≥ d∆u(x, t) + ru(x, t) [1− (1 + a)u(x, t)− aCτ ] ,

then for any ε ∈ (0, 1), (3.7) implies that there exists T3 > 0 such that

inf
|x|≤c1t

u(x, t + T4) ≥
ε(1− aCτ)

1 + a

for any t > T2 and T4 > T3. Moreover, if |x| < c1t with large t, then there exists
s = c1t/c such that |x| < cs and t + T3 < s, which further implies that

inf
|x|≤cs

u(x, s) ≥ ε(1− aCτ)
1 + a

.

Furthermore, t →∞ if and only if s →∞, and we have

lim inf
s→∞

inf
|x|≤cs

u(x, s) ≥ ε(1− aCτ)
1 + a

.

By the arbitrary nature of ε, (3.8) holds and the proof is complete. �

Theorem 3.4. Assume that φ(0) ∈ X+ admits nonempty compact support. Then

lim sup
t→∞

sup
|x|>ct

u(x, t) = 0

for each c > 2
√

dr.

Proof. Lemma 2.2 and the positivity of semigroup indicate that

u(t) ≤ T (t− s)u(s) +
∫ t

s

T (t− θ)[ru(θ)[1− u(θ)]]dθ

for any 0 ≤ s ≤ t < ∞. By Lemma 2.4, the result is clear. �

Before ending this article, we make the following remark.

Remark 3.5. In the proof of this paper and that of Lin [9], the existence of the
instantaneous self-limitation effect plays an important role. If the effect does not
exist, then the discussion will be very difficult even if the time delay is small enough.
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