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MULTIPLE PERIODIC SOLUTIONS FOR IMPULSIVE
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH FEEDBACK

CONTROL

PEILIAN GUO, YANSHENG LIU

Abstract. Using the well known Leggett-Williams fixed point theorem, we
study the existence of periodic solutions for a class of impulsive functional
equations with feedback control. The main results are illustrated with two
examples.

1. Introduction

Consider the impulsive functional differential equation with feedback control

x′(t) = −r(t)x(t) + F (t, x(t− τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t)), u(t− ζ(t)));

u′(t) = −η(t)u(t) + h(t)x(t− σ(t));

Ik(x(tk)) = ∆x|t=tk
, k = 1, 2, . . . ,m,

(1.1)
where ∆x

∣∣
t=tk

= x(tk + 0) − x(tk − 0), 0 ≤ t1 < t2 < · · · < tm < ω, and F ∈
C(Rn+2, [0,∞)), r, η, h ∈ C(R, (0,∞)), σ, ζ, τi ∈ C(R, R), i = 1, 2, . . . , n, Ik ∈
C(R, [0,+∞)), k = 1, 2, . . . ,m. All of the above functions are ω-periodic in t,
ω > 0 is a constant.

The existence of periodic solutions of functional differential equations with feed
back has been studied extensively by many authors and the methods used are co-
incidence degree theory, Schauder fixed point theorems, Krasnoselskii’s fixed point
theorem, and upper-lower solutions method (see [1, 4, 5, 6, 9, 8, 11, 14], and the
references therein).

Using the Krasnoselskii’s fixed point theorem, Li and Wang [4] investigated the
existence of positive periodic solutions of the delay differential system with feedback
control

dx

dt
= −b(t)x(t) + F (t, x(t− τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t)), u(t− δ(t)));

du

dt
= −η(t)u(t) + a(t)x(t− σ(t)).

(1.2)
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They obtained the existence of at least one positive ω-periodic solution.
Liu and Li [9] employed Avery-Henderson fixed point theorem to study the ex-

istence of positive periodic solutions to the following nonlinear nonautonomous
functional differential system with feed back

dx

dt
= −r(t)x(t) + F (t, xt, u(t− δ(t)));

du

dt
= −h(t)u(t) + g(t)x(t− σ(t)).

(1.3)

They obtained the existence of at least two positive solutions under some compli-
cated assumptions such as

(A) F (t, φt, (Φφ)(t − δ(t))) > c
λη

for βce−
R ω
0 r(s)ds ≤ φt(θ) ≤ c

β e−
R η
0 r(s)ds,

nβωg∗ce
−

R ω
0 r(s)ds ≤ (Φφ)(t− δ(t))) ≤ mωg∗c

β e−
R η
0 r(s)ds, t ∈ [η, ω], θ ∈ R;

(B) F (t, φt, (Φφ)(t − δ(t))) > b
ξη

for βbe−
R η
0 r(s)ds ≤ φt(θ) ≤ b

β e−
R η
0 r(s)ds,

nβωg∗ce
−

R η
0 r(s)ds ≤ (Φφ)(t− δ(t))) ≤ mωg∗b

β e−
R η
0 r(s)ds, t ∈ [0, ω], θ ∈ R;

(C) F (t, φt, (Φφ)(t − δ(t))) > a
λl

for βae−
R ω
0 r(s)ds ≤ φt(θ) ≤ a

β e−
R l
0 r(s)ds,

nβωg∗ae−
R ω
0 r(s)ds ≤ (Φφ)(t− δ(t))) ≤ mωg∗a

β e−
R l
0 r(s)ds, t ∈ [l, ω], θ ∈ R.

We notice that the above conditions are not applicable since they are too compli-
cated to confirm, and there was no example in [8] to demonstrate their conclusions.

On the other hand, many physical systems undergo abrupt changes at certain
moments due to instantaneous perturbations which lead to impulse effects, and a
lot of such equations arise in many mathematical models of real processes and phe-
nomena, for example, physics, population dynamics, biotechnology, and economics
(see [2, 3, 7, 10, 13], and the references therein). So, in recent years, impulsive dif-
ferential equations have received a lot of attention. As far as we know, there is no
paper to study the existence of triple solutions for impulsive functional equations
with feedback control. The goal of present paper is to attempt to fill this gap. And
we shall show the impulsive effect plays a crucial role in some cases (see Remark
3.1).

Comparing with (1.2) and (1.3), we note that (1.1) has the impulsive effects.
The following are the main features of present paper. First, the result we obtain is
the existence of three nonnegative ω-periodic solutions. Second, the method used
here is Leggett-Williams fixed point theorem. Furthermore, the assumptions here
are easily checked. Finally, two examples illustrate the applications of the main
result.

The organization of this paper is as follows. In the next section, some lemmas
are presented. In section 3, we state and prove our main result about the existence
of triple periodic solutions of (1.1). At last, two examples are given to show the
applications of our main result in section 4.

At the end of this section, we state the Leggett-Williams fixed point theorem
which will be used in section 3.

Let E be a real Banach space with norm ‖ · ‖ and P ⊂ E be a cone of E,
Pr = {x ∈ P : ‖x‖ < r}(r > 0). Consider a nonnnegative continuous and concave
functional α(x) defined on P , i.e. α : P → R+ = [0,∞) is continuous and satisfies
α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y), for x, y ∈ P and t ∈ [0, ω].

Let
P (α; a, b) = {x ∈ P : a ≤ α(x), ‖x‖ ≤ b},



EJDE-2011/97 MULTIPLE PERIODIC SOLUTIONS 3

where 0 < a < b. It is not difficult to see that P (α; a, b) is a bounded closed convex
subset of P .

Lemma 1.1 (Leggett-Williams Fixed Point Theorem). Let operator A : Pc → Pc

be completely continuous and let α be a nonnegative concave functional on P such
that α(x) ≤ ‖x‖ for every x ∈ Pc. Suppose that there exist 0 < d < a < b ≤ c such
that

(A1) {x : x ∈ P (α; a, b), α(x) > a} 6= ∅ and α(Ax) > a for each x ∈ P (α, a, b);
(A2) ‖Ax‖ < d for x ∈ Pd;
(A3) α(Ax) > a for x ∈ P (α; a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 satisfying x1 ∈ Pd, x2 ∈ U , x3 ∈
Pc\(Pd ∪ U), where U = {x : x ∈ P (α; a, c), α(x) > a}.

2. Preliminaries

Let PC(R) = {x : x is a map from [0, ω] into R such that x(t) is continuous
at t 6= tk, left continuous at t = tk, and the right limit x(tk + 0) exists for k =
1, 2, . . . ,m}.

Evidently, PCω(R) = {x ∈ PC(R) : x(t) = x(t + ω),∀t ∈ R} is a Banach space
with the norm ‖x‖ = supt∈[0,ω] |x(t)|,∀x ∈ PCω(R).

Let P := {x ∈ PCω(R) : x(t) ≥ λ‖x‖, t ∈ [0, ω]}, where λ = exp{−
∫ ω

0
r(υ)dυ}.

Obviously, P is a cone of Banach space PCω(R).
First, we transform (1.1) into another form. Suppose (x, u) is a solution of (1.1)

and x is ω-periodic. By integrating the second equation of (1.1) from t to t + ω,
we obtain that

u(t) =
∫ t+ω

t

g(t, s)h(s)x(s− σ(s))ds := (Φx)(t), (2.1)

where

g(t, s) =
exp{

∫ s

t
η(ξ)dξ}

exp{
∫ ω

0
η(ξ)dξ} − 1

.

From this, we know

u(t + ω) =
∫ t+2ω

t+ω

g(t + ω, s)h(s)x(s− σ(s))ds

=
∫ t+ω

t

g(t + ω, υ + ω)h(υ + ω)x(υ + ω − σ(υ + ω))dν

=
∫ t+ω

t

g(t + ω, υ + ω)h(υ)x(υ − σ(υ))dν

=
∫ t+ω

t

g(t, υ)h(υ)x(υ − σ(υ))dν

= u(t).

Therefore, the existence of ω-periodic solution of (1.1) is equivalent to that of the
equation

dx

dt
= −r(t)x(t) + F (t, x(t− τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t)), (Φx)(t− ζ(t)))

= −r(t)x(t) + F (t, Ux(t)),
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where

Ux(t) = (x(t− τ1(t)), x(t− τ2(t)), . . . , x(t− τn(t)), (Φx)(t− ζ(t))). (2.2)

To solve the above equation, we transform it into

(
dx

dt
+ r(t)x(t))e

R t
0 r(ν)dν = (F (t, Ux(t))e

R t
0 r(ν)dν ;

that is,
(x(t)e

R t
0 r(ν)dν)′ = (F (t, Ux(t))e

R t
0 r(ν)dν .

So, integrating the above equality from t to t+ω, and noticing that x(t) = x(t+ω),
we have

x(t) =
∫ t+ω

t

G(t, s)F (s, Ux(s))ds +
m∑

j=1

G(t, tkj )Ij(x(tj)),

where

G(t, s) =
exp{

∫ s

t
r(ν)dν}

exp{
∫ ω

0
r(ν)dν} − 1

for (t, s) ∈ R2 and tkj satisfies tkj = tj +kω, tkj ∈ [t, t+ω], Ikj (x(tkj )) = Ij(x(tj)),
j = 1, 2, . . . ,m. It is clear that G(t, s) > 0 and G(t, s) = G(t + ω, s + ω) for all
(t, s) ∈ R2.

Now we define an operator Ψ on P as
(Ψx)(t)

=
∫ t+ω

t

G(t, s)F (s, x(s− τ1(s)), . . . , x(s− τn(s)), (Φx)(s− ζ(s)))ds

+
m∑

j=1

G(t, tkj )Ij(x(tj)), ∀x ∈ P, t ∈ R.

(2.3)

It is obvious that x is an ω-periodic solution for (1.1) if and only if x is a fixed
point of the operator Ψ.

Lemma 2.1. Ψ : P → P is well defined.

Proof. First, it is easy to see Ψ : PC(R) → PC(R). Next, since

(Ψx)(t + ω)

=
∫ t+2ω

t+ω

G(t + ω, s)F (s, Ux(s))ds +
m∑

j=1

G(t + ω, tkj + ω)Ij(x(tj))

=
∫ t+ω

t

G(t + ω, υ + ω)F (υ + ω, Ux(υ + ω))dυ +
m∑

j=1

G(t, tkj
)Ij(x(tj))

=
∫ t+ω

t

G(t, υ)F (υ, Ux(υ))dυ +
m∑

j=1

G(t, tkj
)Ij(x(tj)) = (Ψx)(t),

we have Ψ ∈ PCω(R). Observe that

p :=
1

exp{
∫ ω

0
r(ν)dν} − 1

≤ G(t, s) =
exp{

∫ s

t
r(ν)dν}

exp{
∫ ω

0
r(ν)dν} − 1

≤
exp{

∫ ω

0
r(ν)dν}

exp{
∫ ω

0
r(ν)dν} − 1

:= q

(2.4)
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for all s ∈ [t, t + ω]. Hence, we obtain that, for x ∈ P ,

‖Ψx‖ ≤ q

∫ ω

0

F (s, Ux(s))ds + q

m∑
j=1

Ij(x(tj)) (2.5)

and

(Ψx)(t) ≥ p

∫ ω

0

F (s, Ux(s))ds + p

m∑
j=1

Ij(x(tj)) ≥
p

q
‖Ψx‖ = λ‖Ψx‖.

Thus, Ψx ∈ P . �

Lemma 2.2. Ψ : P → P is completely continuous.

Proof. First we show that Ψ is continuous. According to our assumptions and (2.1),
we know that for any ε > 0, there exists δ > 0 such that for x, y ∈ PCω(R) with
‖x− y‖ < δ,

sup
0≤s≤ω

|F (s, Ux(s))− F (s, Uy(s))| < ε

2qω
,

max
0≤t≤ω

|Ik(x(tk))− Ik(y(tk))| < ε

2qm
, k = 1, 2, . . . ,m,

where q is defined in (2.4). So for each t ∈ R, we have

|(Ψx)(t)− (Ψy)(t)|

≤ q

∫ t+ω

t

|F (s, Ux(s))− F (s, Uy(s))|ds + q

m∑
k=1

|Ik(x(tk))− Ik(y(tk))|

≤ q
ε

2qω
ω + q

m∑
k=1

ε

2qm
=

ε

2
+

ε

2
= ε.

This yields ‖Ψx−Ψy‖ < ε when ‖x− y‖ < δ. Hence Ψ is continuous.
Next, we show that Ψ is compact. Let S ⊂ PCω(R) be a bounded subset, that

is, there exists M > 0 such that ‖x‖ ≤ M for ∀x ∈ S. Therefore,

|(Φx)(t− ζ(t))| = |
∫ t−ζ(t)+ω

t−ζ(t)

g(t− ζ(t), s)h(s)x(s− σ(s))ds|

≤ M
exp(

∫ ω

0
η(ξ)dξ)

exp(
∫ ω

0
η(ξ)dξ)− 1

∫ t+ω

t

h(s)ds < ∞

and
|x(t− τi(t))| ≤ ‖x‖ ≤ M, i = 1, 2, . . . ,m, ∀t ∈ R.

From the continuity of F and Ik, there exist M1 > 0 and M2 > 0 such that

|F (s, Ux(s))| ≤ M1, s ∈ [0, ω], ∀x ∈ S,

|Ik(x(tk))| ≤ M2, ∀x ∈ S.

Then,

‖Ψx‖ ≤ q

∫ ω

0

|F (s, Ux(s))|ds + q

m∑
j=1

Ij(x(tj)) ≤ qωM1 + qmM2,
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which implies Ψ(S) is uniformly bounded. Finally, notice that

d

dt
(Ψx)(t) = −r(t)(Ψx)(t) + G(t, t + ω)F (t + ω, Ux(t + ω))−G(t, t)F (t, Ux(t))

= −r(t)(Ψx)(t) + [G(t, t + ω)−G(t, t)]F (t, Ux(t))

= −r(t)(Ψx)(t) + F (t, Ux(t)).

This guarantees that, for each x ∈ S, we have

| d

dt
(Ψx)(t)| ≤ ‖r(t)‖(q

∫ ω

0

|F (s, Ux(s))|ds + q

m∑
j=1

Ij(x(tj))) + |F (t, Ux(t))|

≤ ‖r(t)‖(qωM1 + qmM2) + M1 < ∞.

Consequently, Ψ(S) is equi-continuous. By Ascoli-Arzela theorem, the function Ψ
is completely continuous from P to P . �

3. Main Results

For convenience, first let us list the following assumptions.

(H1) lim|v|→+∞max0≤t≤ω
F (t,v)
|v| = 0, limx→+∞

Ii(x)
x = 0, i = 1, 2, . . . ,m, where

v = (v1, v2, . . . , vn+1) ∈ Rn+1, |v| = max1≤j≤n+1 |vj |;
(H2) There exist two positive numbers a and b with ab−1 < λ such that one of

the following two conditions holds:
(i) for some j (j = 1, 2, . . . , n), F (t, v) > 1

pω vj as a ≤ min1≤i≤n{vi} ≤
max1≤i≤n{vi} ≤ b and ap1h ≤ vn+1 ≤ bq1h, where

q1 =
exp(

∫ ω

0
η(ξ)dξ)

exp(
∫ ω

0
η(ξ)dξ)− 1

, p1 =
1

exp(
∫ ω

0
η(ξ)dξ)− 1

, h =
∫ ω

0

h(s)ds;

(ii) there exists 1 ≤ j ≤ m such that Ij(x) > lx for x ∈ [a, b], where
l = 1/p;

(H3) lim|v|→0 max0≤t≤ω F (t, v)/|v| = 0, limx→0 Ii(x)/x = 0, i = 1, 2, . . . ,m.
Now we state our main result on the existence of three nonnegative ω-periodic
solutions for (1.1).

Theorem 3.1. Suppose (H1)–(H3) hold. Then (1.1) has at least three nonnegative
periodic solutions.

Proof. Define a functional α(x) on cone P by

α(x) = min{x(t) : t ∈ [0, ω]}, ∀x ∈ P. (3.1)

Evidently, α : P → R+ = [0,∞) is nonnegative continuous and concave. Moreover,
α(x) ≤ ‖x‖ for each x ∈ P . Notice that

P (α; a, b) = {x ∈ P : a ≤ α(x), ‖x‖ ≤ b} = {x ∈ P : a ≤ x(t) ≤ b, ∀t ∈ [0, ω]}.
(3.2)

For using Lemma 1.1, we first prove that there exists a positive number c with
c ≥ b such that Ψ : P c → Pc. By (H1), we know there exist ε with 0 < ε <
(qω + qm + qq1ω

∫ ω

0
h(s)ds)−1 and L > 0 such that

F (t, v)
|v|

< ε and
Ik(x)

x
< ε for |v| > L, x > L, ∀t ∈ [0, ω].
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Notice that F is continuous on [0, ω] × R+ and Ik(x) is also continuous on R+.
Thus, there exists M > 0 such that

F (t, v) < ε|v|+ M,

Ik(x) < εx + M, k = 1, 2, . . . ,m, ∀t ∈ [0, ω].

Choose

c = max{b, qMω + qmM

1− qε(ω + m + q1ω
∫ ω

0
h(s)ds)

}.

So for each x ∈ P c, t ∈ [0, ω], we have

|Φx(t− ζ(t))| ≤ c
exp(

∫ ω

0
η(ξ)dξ)

exp(
∫ ω

0
η(ξ)dξ)− 1

∫ t−ζ(t)+ω

t−ζ(t)

h(s)ds = cq1

∫ ω

0

h(s)ds,

where

q1 =
exp(

∫ ω

0
η(ξ)dξ)

exp(
∫ ω

0
η(ξ)dξ)− 1

.

Then,

|Ux(t)| = max{ max
1≤i≤n

|x(t− τi(t)|, |Φx(t− ζ(t))|} ≤ c + cq1

∫ ω

0

h(s)ds. (3.3)

This together with (2.3) guarantees that

|(Ψx)(t)| ≤ q

∫ t+ω

t

|F (s, Ux(s))|ds + q

m∑
k=1

Ik(x(tk))

≤ qω(εc + εcq1

∫ ω

0

h(s)ds + M) + qm(εc + M) < c, ∀t ∈ [0, ω].

Combining this inequality with Lemma 2.2, we obtain that Ψ : P c → Pc is com-
pletely continuous.

Next we show that the condition (A1) of Lemma 1.1 holds. From (3.1), (3.2),
(H2), we know that b ∈ {x : x ∈ P (α; a, b), α(x) > a}. Suppose first (i) of (H2)
holds. Then, for each x ∈ P (α; a, b) = {x ∈ P : a ≤ x(t) ≤ b, ∀t ∈ [0, ω]}, we have

(Ψx)(t) ≥ p

∫ t+ω

t

F (s, Ux(s))ds + p

m∑
k=1

Ik(x(tk))

≥ p

∫ t+ω

t

F (s, Ux(s))ds > p
1
pω

∫ t+ω

t

x(t− τj(t))ds

≥ p
1
pω

aω = a, ∀t ∈ [0, ω].

It is easy to see that (A1) of Lemma 1.1 holds.
Next, assume (ii) of (H2) is satisfied. It follows that

(Ψx)(t) ≥ p

∫ t+ω

t

F (s, Ux(s))ds + p

m∑
k=1

Ik(x(tk))

≥ pIj(x(tj)) > plx(tj)

≥ pla = a, ∀t ∈ [0, ω],

which also means that (A1) of Lemma 1.1 holds.
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In addition, for each x ∈ P (α; a, c) with ‖Ψx‖ ≥ b, by (2.3) and (H2), we know
that

(Ψx)(t) ≥ λ‖Ψx‖ ≥ λb > a, ∀t ∈ [0, ω]. (3.4)

This guarantees that (A3) of Lemma 1.1 is satisfied.
Finally, from (H3), there exist ε satisfying 0 < ε < (qω+qm+qq1ω

∫ ω

0
h(s)ds)−1

and δ < a such that

F (t, v)
|v|

< ε and
Ik(x)

x
< ε for |v| < δ, 0 < x < δ, k = 1, 2, . . . ,m, ∀t ∈ [0, ω].

Choose d = min{a, δ, δ/(1 + q1

∫ ω

0
h(s)ds)}. This together with (2.2) guarantees

that, for each x ∈ P d,

|Ux(t)| ≤ d + dq1

∫ ω

0

h(s)ds < δ.

Thus,

|(Ψx)(t)| ≤ q

∫ t+ω

t

|F (s, Ux(s))|ds + q

m∑
j=1

Ik(x(tk))

≤ qωε
(
d + dq1

∫ ω

0

h(s)ds
)

+ qmεd

= εd
(
qω + qq1ω

∫ ω

0

h(s)ds + qm
)

< d,

which implies ‖Ψx‖ ≤ d, that is, (A2) of Lemma 1.1 holds.
In conclusion, by Lemma 1.1, the operator Ψ has at least three fixed points

x1, x2 and x3, that is, (1.1) has at least three nonnegative periodic solutions x1, x2

and x3 satisfying x1 ∈ Pd, x2 ∈ U = {x : x ∈ P (α; a, c), α(x) > a}, and x3 ∈
Pc\(Pd ∪ U). �

We remark that Condition (H2) indicates that the impulse plays an important
role.

4. Examples

In this section, two examples illustrate the application of our main result ob-
tained in section 3.

Example 4.1. Consider the impulsive functional differential equations with feed-
back control

x′(t) = 9 ln(1 + x2(t− sin(2πt))) + sin(2πt)
√

x(t− sin(2πt))

× ln(1 + u(t− sin(2πt))− (ln(
5
4
e) + cos(2πt))x(t);

u′(t) = −(
3
2

+ cos(2πt))u(t) + (
3
2

+ cos(2πt))x(t− sin(2πt));

∆x|t=1/2 = I1(x(
1
2
)),

(4.1)

where I1(x) = x2e−x, x ∈ [0,+∞). Then, (4.1) has three nonnegative periodic
solutions.
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Proof. Equation (4.1) can be regarded as of the form (1.1), where

F (t, v1, v2, v3) = 9 ln(1 + v2
1) + sin(2πt)

√
v2 ln(1 + v3), (4.2)

τ1(t) = τ2(t) = σ(t) = ζ(t) = sin(2πt), η(t) = h(t) = 3
2 + cos(2πt), r(t) = ln( 5

4e) +
cos(2πt), ω = 1, t1 = 1/2, p = 1/( 5

4e− 1), 1
pω = 5

4e− 1.
Now we prove that (H1)–(H3) hold. From (4.2), we have

|F (t, v1, v2, v3| ≤ 9 ln(1 + |v|2) +
√
|v| ln(1 + 2|v|), ∀t ∈ [0, 1], v ∈ R3, (4.3)

where |v| = max1≤j≤3 |vj |. obviously, (H1) and (H3) are satisfied.
Next, we show that (i) of (H2) holds. Choose a =

√
e2 − 1 and b = e3. Then

a−1b = e3
√

e2−1
> 5

4e. Notice that the function ln(1+x2)
x defined on [

√
e2 − 1, e3]

takes its minimum at x = e3. Therefore, when a ≤ min{v1, v2} ≤ max{v1, v2} ≤ b,
we have

F (t, v1, v2, v3) ≥ 9 ln(1 + v2
1) ≥ 9

ln(1 + e6)
e3

v1 > (
5
4
e− 1)v1 =

1
pω

v1.

This means (i) of (H2) is satisfied. Consequently, by Theorem 3.1, (4.1) has three
nonnegative periodic solutions. �

Example 4.2. Consider the system

x′(t) = 8 sin(2πt)
√

x(t− 2 sin(2πt)) + 2u(t− 2 sin(2πt))

× ln(1 + x(t− 2 sin(2πt)))− (ln(
3
2
e) + cos(2πt))x(t);

u′(t) = −(2 + sin(2πt))u(t) + (2 + sin(2πt))x(t− 2 sin(2πt));

∆x|t=1/2 = I1(x(
1
2
)),

(4.4)

where I1(x) = 150x2e−x, x ∈ [0,+∞). Then, (4.2) has three nonnegative periodic
solutions.

Proof. Equation (4.4) can be regarded as of the form (1.1), where

F (t, v1, v2, v3) = 8 sin(2πt)
√

v1 + 2v3 ln(1 + v2), (4.5)

τ1(t) = τ2(t) = σ(t) = ζ(t) = 2 sin(2πt), η(t) = h(t) = 2 + sin(2πt), r(t) =
ln( 3

2e) + cos(2πt), ω = 1, t1 = 1/2, p = 1/( 3
2e− 1), l = 3

2e− 1.
As in the proof of Example 4.1, it is easy to see that (H1) and (H3) are satisfied.

Now it remains to show that (ii) of (H2) holds. Choose a = 1 and b = 2e. Then
a−1b = 2e > 3

2e. Notice the function xe−x defined on [1, 2e] takes its minimum at
x = 2e. So, it is not difficult to see

I1(x) = 150x2e−x ≥ 150(2e)e−(2e)x =
150(2e)

e2e
x > (

3
2
e− 1)x = lx, ∀x ∈ [1, 2e],

which implies (ii) of (H2) is satisfied. Consequently, by Theorem 3.1, (4.4) has
three nonnegative periodic solutions. �
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