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POSITIVE SOLUTIONS FOR A NONLINEAR n-TH ORDER
m-POINT BOUNDARY-VALUE PROBLEM

JIEHUA ZHANG, YANPING GUO, YUDE JI

ABSTRACT. Using the Leggett-Williams fixed point theorem in cones, we prove
the existence of at least three positive solutions to the nonlinear n-th order
m-point boundary-value problem

AMu(k) + a(k)f(k,u) =0, ke {0,N},

w(0) =0, Au(0) =0,...,A" 24(0) =0, u(N+n)= a;u(&;).

1. INTRODUCTION

Multi-point boundary value problems arise in a variety of areas of applied math-
ematics and physics. The solvability of two-point difference and multi-point dif-
ferential boundary value problems has been studied extensively in the literature
in recent years; see [1 [2, [3] @, Bl [6, [8 @, 10, 12] and their references. Guo [§]
used Leggett-Williams fixed point theorem to obtain the existence of at least three
positive solutions for the second-order m-point boundary value problem

o' () + f(t,u) =0, 0<t<1,
m—2
u(0) =0, u(l)= Y ku(&) =0,
i=1

where k; >0 (i =1,2,...,m—2),0<& <€ < - <&no<1,0< ki <
1 are given, and f : [0,1] x [0,00) — [0, 00) is continuous.

Recently, Eloe and Ahmad [7] discussed the existence of at least one positive
solution for the nonlinear n-th order three-point boundary value problem

u(”)(t) +a(t)f(u)=0, te(0,1),
u(0) =0, v'(0) = =u""2(0) =0, wu(l)=au(n),
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where n > 2,0 <n < 1,0 <an™ ! <1, f(t) € C([0,1],]0,00)) is either superlinear
or sublinear. The method they used is the Krasnoselskii’s fixed point theorem in
cones.

Motivated by the results [7, [I1], in this paper, we investigate the existence of
positive solutions for the following nonlinear n-th order m-point boundary value
problem

A"u(k) +a(k)f(k,u) =0, ke {0,N}, (1.1)
m—2
u(0) =0, Au(0)=0,...,A" 24(0) =0, u(N+n)= Z ou(&),  (1.2)

wheren > 2, o; > 0fori=1,2,...,m—3, and a,,_2 > 0, & is an integer, satisfying
n==%§ <& << <Eme2 <E&m-1=N+mn,

n—1 7J
(&i—n+1)+1) ZH N+1)+

We denote {i,j} = {k € N:i <k <j} and assume that:
(A1) f:{0,N} x[0,00) — [0,00) is continuous;
(A2) a(k) >0, for k € {0, N} and there exists kg € {{m—2, N} such that a(ko) >
0.
This article is organized as follows. In Section 2, we present some preliminaries that

will be used to prove our main results. In Section 3, using the Leggett-Williams
fixed point theorem, we show that ((1.1)—(1.2) has at least three positive solutions.

m—2 n—1
0< a;(
=1

Em

j=11

.
Il
-

2. PRELIMINARIES

In this section, we present some notation and lemmas, which are fundamental in
the proof of our main results.

Let E be a Banach space over R. A nonempty convex closed set K C FE is said
to be a cone provided that

(i) au € K for all u € K and all a > 0;
(ii) w,—u € K implies u = 0.

A map « is said to be a nonnegative continuous concave functional on K provided
that o : K — [0, 00) is continuous and

a(te + (1 = t)y) > ta(z) + (1 = t)aly)

for all z,y € K and 0 < ¢t < 1. Similarly, we say a map [ is a nonnegative
continuous convex functional on K provided that 8 : K — [0, 00) is continuous and

Btz + (1 —t)y) < tB(z) + (1 —1)B(y)
forall z,y € K and 0 <t < 1.

Let a be a nonnegative continuous concave functional on K. Then, for nonneg-
ative real numbers 0 < b < d and ¢, we define the convex sets
Po={z € Klllz]| < ¢},
P(a,b,d) = {z € K|b < a(z), [lz| < d}.
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Theorem 2.1 (Leggett-Williams fixed point theorem). Let A : P. — P, be a com-
pletely continuous operator and let o be a nonnegative continuous concave functional
on K such that o(z) < ||z| for all x € P,. Suppose there exist 0 < a <b<d<c
such that

(C1) {z € P(a,b,d)|a(z) > b} # 0, and a(Azx) > b for z € P(«a,b,d),

(C2) |4z < d for |lal| < a, and

(C3) a(Ax) > b for x € P(a,b,c), with ||Az| > d.
Then A has at least three fized point x1,x2 and x3 such that ||z1]] < a, b < az2)
and ||zs|| > a with a(zz) < b.

Lemma 2.2 ([12]). Assume that u satisfies the difference inequality A™u(k) < 0,
k € {0,N}, and the homogeneous boundary conditions, u(0) = --- =u(n —2) =0,
w(N +n)=0. Then, uw(k) >0, k € {0, N +n}.

For a finite or infinite sequence u(0),u(1),..., the value k = 0 is a node for the
sequence if u(0) = 0, and a value k& > 0 is a node for w if u(k) = 0 or u(k—1)u(k) < 0.
The following lemma, obtained in [12], is a discrete analogue of Rolle’s Theorem.

Lemma 2.3. Suppose that the finite sequence u(0),...,u(j) has N; nodes and the
sequence Au(0),...,Au(j — 1) has M; nodes. Then, M; > N; — 1.

Theorem 2.4. Assumen <& <& <+ <&n_2 <N +n,

m—2 n—l 7 n—1 7
<> O [[G-n++1) <> TV +1)+
i=1 3:1 =1 j=11=1

and y(k) > 0, k € {0, N}. Then, the difference equation
A"u(k) +y(k) =0, ke{0,N}, (2.1)

coupled with the boundary conditions (L.2)), has a unique solution

0, for k € {0,n — 2},
)
u(k) = 4 MY o . fork=n-1 (2.2)
CE 1)| Zs 0 y( )Hj:1(k7—n+] _3)
+ma, for k € {n, N +n},
where
n—1 m—2 n—1
M= TIv+0+1) =Y el Y[ —n+1)+1),
j=11=1 i=1 j=11=1
N n—1 m—2 &i—n n—1
5= ys) [[(N+i=5) =D aid yls) [[&—n+i-s),
s=0 Jj=1 i=1 s=0 j=1
n—1 7
o=> [[tk—n+1)+1
j=11=1

Proof. Let A" 1u(0) = A, since u(0) = 0, Au(0) =0,..., A" 24(0) = 0, it follows
that A" *u(z—1) = A, forz € {I,n—1},u(0) =--- =u(n—2) =0, u(n—1) = A.
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Summing (2.1) from 0 to k — 1, one gets A" u(k) = — YF "1 y(s) + A. Again
summing the equality above, from 1 to k — 1, it follows that

k—2 s1

A" Pu(k) == y(s) + (k—1)A+ A

51050

Repeat the summing in this way in proper order, we get

Z Zy ) + Ao.

Sn—1=0
It can be expressed that
k—2 S1 0 1 52
DD yls) =D yls)+ ) yls) +-+ Y yls)
s1=0 s=0 =0 s=0 s=0

~—~~

s34+ 1)y(0) + soy(LI) +--- + y(s2)
S2

=D (s2+1—=s5)y(s),
s=0

by repeating this process coupled with the mathematical induction, we have

k—n s1 - n—1
Z Zy( (k—n+j—s).
Spn—1=0 s=0 s=0 _]71
From u(N +n) = 231712 a;u(&;), we have A =§/(M(n — 1)!). Hence, (2.2)) is the
unique solution. ([l
Theorem 2.5. Assume that n < & < & < -+ < €n_a < N +n and that

0< M a; (3255, T G —n+D)+1) < Z;:ll J_ (N +1)+1. Then, the
Green’s function for the boundary value problem

—A"u(k) =0, ke{0,N},
u(0) =0, Au(0)=0,...,A"2u(0) =0, u(N +n) Z (&),

is given by

0, for ke {0,n — 2},
gy — | fork=n =1,
G(k,s) =< _qpn-1 4
1_[ (k ""'E.Zl 31))+h(£7‘ 1,€r35) , fOT’ 0 S s S k—n S _Z\]'7
W7 for0<k—m+1<s<N,

where
T (N+j—s) = o TT52) (Gi—nti—s)
M )
for0<s <& —n,
1o (N4 =) =301, % o [T (i —nti—s)
M
forse{&_1—n+1,¢ —n}tre{2,m—1}.

h(grfla&"; S) =
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Proof. Make the assumption that Z f(@) =0 for my < my. Forn < k < &,
the unique solution of . can be expressed as
1 k—n n—1
ulk) = 57 1)!{82230[—Mjr:[1<k—n+y ~5)
n—1 m—2 n—1
(TN +i=9) =D i [[ (& —n+3—9)oly(s)
Jj=1 i=1 j=1
§&1—n n—1 m—2 n-—1
+ Y (JIWN+i=9) =D i [[G—n+i—s)ouls)
s=k—n+1 j=1 =1 7j=1
m—1 Er—n n—1 m—2 n—1
3 > (JIW+i=-9=> ai[[&—-n+i—s)oy(s)}
r=2 s=&._1—n+1 j=1 i=r j=1

Ifé& 1+1 < k<&, 2<t<m-—2, the unique solution of (2.1 (1.2) can be
expressed as

&1—n n—1
k) = g (O M [[h=n+i =)
Tos=0 j=1
n—1 m—2 n—1
(I +i=9)=> ai][&—n+j—s9)aly(s)
j=1 i=1 j=1
t—1 Er—n n—1
+3 Y MJ[(E-n+i-s)
r=2s=£._1—n+1 J=1
n—1 m—2 n—1

Jj=1 i=r j=1
k—n n—1
- M J[k=n+j—s)
s=§t—1—n+l Jj=1
n—1 m—2 n—1
+(JIV+5-9 =D ai [[(& —n+i—9)oly(s)
j=1 i=t j=1
&—n n—1 m—2 n—1
+ Y (JIWN+i=9) =D e [[G—n+i—s)ouls)
s=k—n+1 j=1 i=t j=1

m—1 &r—n n—1 —2

+ > (H(N+j—s)—§_:

r=t4+1s=£,_1—nt1 j=1 -
For &,,—2 + 1 < k < N + n, the unique solution of (2.1]) (1.2)) can be expressed as

o [[(& —nti—9)ou(s)}
j=1

&1—n n—1
1
u(/{)—M(ni1 ; Mjl_[1 —n+j—s)
n—1 m— n—1
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&r—n n—1
+Z > FM][(k-n+j-s)
r=2 s={r_1—n+1 j=1
+(H(N+jfs H i —n+j—s))oly(s)
]7143—11 nZ—; B n—1
+ (—MH(k:—n—i—j—s)+UH(N+j—s))y(s)
s=&m—_2—n+1 j=1 j=1

Therefore, the unique solution of [2.1)) (1.2 is u(k ZS 0 G(k,s)y(s). By the
method which Eloe has recently used to obtain the 51gn of Green’s function and
related inequalities in [0], it can be verified directly that G(k,s) > 0 on {0, N +

n} x {0, N}. So, u(k) >0, k € {0, N + n}. The proof is complete. O
Theorem 2.6. Assume that n < & < & < --- < ém—2 < N 4+ n, and that
0< i (3552 (G =n+l)+1) <0 (N+l)—|—1. If u satisfies
A"u(k) <0, ke {0 N}, with the nonlocal condztwns (L2), then
i > llul, 2.3
reqemim L ulR) =] (2:3)
where

am—Q(N +n— 5m—2) Qo —2 ]__L, 0 (gm 2 = Z) aq H?:_OQ(gl - Z)
Ntn—amobno’  J[Z(N+n—i)  TIZ5(N+n—i)

n—2 .
Hi:o (Em—2 — 1) }
H?:_(? (N +n—1)
Proof. We will show the details in the case that w satisfies the strict difference
inequality A™u(k) < 0, k € {0, N}. Once (2.3)) is obtained for functions satisfying
the strict inequality, one assumes that u satisfies the difference inequality and sets

n—2
u(e, k) = u(k) + ¢( H(k - 7))
§=0
. <<N +n) [0 (N +n—j) = X2 & 1720 (& — 5) )
n—2 . m—2 n—2 . - :

Then for each € > 0, u(e, k) satisfies the strict difference inequality and the nonlocal
conditions ([1.2)). Thus, (2.3)) holds for each € > 0 and by limiting, it holds for e = 0.

Under the assumption A"u(k) <0, k € {0, N}, we have to distinguish two cases.

Case (1): 0 < 3 % < 1. Suppose u(&,) = max;e(1,m—23 u(&), then u(N +
n) = Zz:_l au(&) < S 2 aiu(&) < u(&,). Tt follows by repeated applications
of Lemma that for each j € {1,n — 1}, AJu has precisely one node, k; €
{n-1 —j,N—|—n —j}and kji1 < kj, j € {1,n —2}. Assume that |ju = u(k), if
Aw vanishes and ||u| is attained at more than one point, choose k to be the largest

value producing ||ul|, then that node occurs at k; = k — 1. Otherwise, k1 = k.
Moreover, with the strict difference inequality A™u(k) < 0, k € {0, N}, we know

'y:min{
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that u is increasing on {n —2, k} and decreasing, concave down on {k, N +n}. And,
ifk#kj, ke{n—1-jN+n—j}, Aludoes not have a node at k. So, it is easy
to see that mingcyre,  , Nyn) u(k) = u(N +n).

First assume that k < &,,_2 < N +n. Since u(N +n) = Z:’;}z au(§;) >
m—2u(§m—2), and by the decreasing, negative concavity nature of u, we have

u(N +n) —u(mn_2)
N +n— £m72

N +n
N —u(N _—
Otm—zu( +n) —u( +n))N+n75m_2

u(k) < u(N +n)+

(k= (N +n))

<u(N+n)+ (

N +n— O‘m—2€m—2
= u(N +n);
am72(N +n— §m72) ( )

ie.,
> am—Z(N +n— §m—2)

ke{&fir,lN+n} B Yy Qm—2&m—2 el
Second, if &,_2 < k < N +n, let
n—2 .
. k — _
h(k) = k) — LA k=D =g 7y
[Ii= (k=)
We can prove directly that A"h(k) <0, k € {0,k —n}, h(0)=---=h(n—2) =0,
h(k) = 0. Apply Lemma it follows that h(k) > 0; i.e.,
u i _
> VUL €0 gy
H’L =0 (k - )
So, in particular,
i fm u i— gm —1
P 1S 10t S SO
[Lizo (k —4) IL= o(N‘f'n_Z)

which implies

m—2 Qm HZ (é-m )
N"'n Z ;U >O¢m 2u(§m 2) > Hj . (]\(])+ 2 ) H ”

Case (ii): Z:’;Z a; > 1. Again, using the argument given in the first case, we
obtain the similar nature of w.

Firstly, suppose u(§y,—2) > w(N + n), then mingege,,_, N4ny u(k) = u(N + n),
which implies ¢&; < k < N 4+ n. In fact, if n — 2 < k < &, then u(&;) > u(&) >

- > u(§m—2) > u(N 4+ n), and

m—2

u(N +n) = Zal (&) > Zaiu(N—&—n)Zu(N—&—n).

i=1
Which is a contradiction. Thus (2.4)) is readily modified to obtain

ull T (6x —4)
- Hl 0(N+n—z)

u(é) >
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which implies

ai Hz 0 ( — i)
TS (N A —i)
Secondly, if u(§,—2) < u(N + n), then mingege, ., N+n} u(kj) = u(§m—2); thus,
€m—o <k < N 4 n. Hence, we have . The proof is complete. O

w(N +n) = Z au(&) > aru(ér) > ]l

3. MAIN RESULTS

In this section, we will impose suitable growth conditions on f, which enable us
to apply Theorem to obtain three positive solutions for (1.1])) (1.2).
Let £ = {u :{0,N +n} — R}, and choose the cone K C F,
K={ueF:u(lk)>0, ke {O,N +n}, and min u(k) > v||ul f.
{ ()20, ke {0.N +n}, and | min  u(k) =]}

Define an operator A by

N
k)= G(k,s)a(s)f (s, u(s)).
s=0

Obviously, u is a solution of (|1.1)) (1.2) if and only if u is a fixed point of operator
A.

Finally, we define the nonnegative continuous concave functional o on K by

= i k).
alu) = e min k)

Note that, for each u € K, a(u) < |Jul|.
For of convenience, we denote
N

A = G(k, Ay = i Gk )
ke{%l%)in}z ) ? ke{fmr,r_uar,llv+n}s=;4 (o)

Then 0 < A2 < A;. To present our main result, we assume there exist constants
0 < a < b < min{y, ’A\—f}c such that

(H1) f(k,u) <c¢/A\, for (k,u) € {0,N +n} x [0,c];

(H2) f(k,u) < a/\, for (k,u) € {0,N +n} x [0,q];

(H3) f(k,u) >b/Aa, for (k,u) € {{m—2, N +n} x [b,b/7].

Theorem 3.1. Under assumptions (H1)—(H3), the boundary value problem (1.1)
(1.2) has at least three positive solutions uy, us and us satisfying

ulll <a, b< min ug(k), |us|| > a, min us(k) <b. (3.1
s min ua), ul>a min o u(k) <b (3
Proof. First, We note that A : P. — P. is completely continuous. If u € P,, then
lu]] < ¢, and by condition (H1), we have

|Au|| = max ZGks ())<— max ZGks

ke{0,N+n} £ A1 kefo, N-+n}

Hence, A : P, — P,.. Standard applications of Arzela-Ascoli theorem imply that
A is completely continuous. In an analogous argument, the condition (H2) implies
the condition (C2) of Theorem
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We now show that condition (C1) of Theorem [.1]is satisfied. Obviously,
b
{u € P(a,b, ;) ca(u) > b} # 0.

If u € P(a, b, %), then b < u(k) < %, for k € {{m—2, N +n}. By condition (H3),
we obtain

N
a(Au) = ke{gﬁi{lN+n} SZ:;) G(k, s)a(s)f (s, u(s))
N

> min Z G(k, s)a(s)f (s, u(s))

T ke{&m_2,N+n}

s=&m—2
b N
” N . G(k, =b.
Na kE{Em s N-4n} s:;,z (k,s)a(s)

Therefore, condition (C1) of Theorem [2.1is satisfied.
Finally, we show that condition (C3) of Theorem [2.1]also holds. If u € P(a,b,c)
and ||Aul| > %, then

Au) = i Au(k) > ~||A b.
a(Au) e u(k) > || Aul| >

So, condition (C3) of Theorem is satisfied.

Applying Theorem we know that the boundary value problem (1.2)
has at least three positive solutions ui, us and ug satisfying . The proof is
complete. O
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