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EXISTENCE AND ASYMPTOTIC BEHAVIOUR OF POSITIVE
SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS IN THE

EUCLIDEAN PLANE

ABDELJABBAR GHANMI, FATEN TOUMI

Abstract. We study the semilinear elliptic system

∆u = λp(x)f(v), ∆v = λq(x)g(u),

in an unbounded domain D in R2 with compact boundary subject to some
Dirichlet conditions. We give existence results according to the monotonicity
of the nonnegative continuous functions f and g. The potentials p and q are
nonnegative and required to satisfy some hypotheses related on a Kato class.

1. Introduction

Semilinear elliptic systems of the form

∆u = F (u, v),

∆v = G(u, v),
(1.1)

in Rn have been extensively treated recently. Lair and Wood [9] studied the
semiliniar elliptic system

∆u = p(|x|)vα,

∆v = q(|x|)uβ ,
(1.2)

in Rn (n ≥ 3). They showed the existence of entire positive radial solutions. More
precisely, for the sublinear case where α, β ∈ (0, 1), they proved the existence of
bounded solutions of (1.2) if p and q satisfy the decay conditions∫ ∞

0

tp(t)dt <∞,

∫ ∞

0

tq(t)dt <∞, (1.3)

and the existence of large solutions if∫ ∞

0

tp(t)dt = ∞,

∫ ∞

0

tq(t)dt = ∞. (1.4)

For the superlinear case, where α, β ∈ (1,+∞). The authors proved the existence
of an entire large positive solution of problem (1.2), provided that the functions p
and q satisfy (1.3).
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Peng and Song [13] considered the semilinear elliptic system

∆u = p(|x|)f(v),

∆v = q(|x|)g(u),
(1.5)

in Rn (n ≥ 3), under the assumptions:

(A1) The functions p and q satisfy condition (1.3).
(A2) The functions f and g are positive nondecreasing, satisfying the Keller-

Osserman condition [8, 12]∫ ∞

1

1√∫ s
0
f(t)dt

ds <∞,

∫ ∞

1

1√∫ s
0
g(t)dt

ds <∞. (1.6)

(A3) The functions f and g are convex on [0,+∞).

The authors proved the existence of an entire large positive solution of problem
(1.5). We remark that Peng and Song extended their results to the superlinear case
in [9].

Cirstea and Radulescu [5] gave existence results for system (1.5). They adopted
the assumptions (A1)-(A2) and the assumption

(A3’) f, g ∈ C1[0,+∞), f(0) = g(0) = 0, limt→+∞ inf f(t)
g(t) > 0,

to prove the existence of entire large positive solutions.
Recently, Ghanmi et al [7] considered the semilinear elliptic system

∆u = λp(x)f(v),

∆v = µq(x)g(u),

in a domain D of Rn (n ≥ 3) with compact boundary subject to some Dirich-
let conditions. They assumed that the functions f , g are nonnegative continuous
monotone on (0,∞), the nonnegative potentials p and q are required to satisfy some
hypotheses related to a Kato class [3, 10]. In particular, in the case where f and
g are nondecreasing and for given positive constants λ0, µ0, they showed that for
each λ ∈ [0, λ0) and µ ∈ [0, µ0), there exists a positive bounded solution (u, v)
satisfying the boundary conditions

u
∣∣
∂∞D

= ϕ1∂D + a1{∞}, v
∣∣
∂∞D

= ψ1∂D + b1{∞}

where ϕ and ψ are nontrivial nonnegative continuous functions on ∂D.
In this article, we consider an unbounded domain D in R2 with compact non-

empty boundary ∂D consisting of finitely many Jordan curves. We are concerned
with the semilinear elliptic system

∆u = λp(x)f(v), in D

∆v = µq(x)g(u), in D

u
∣∣
∂D

= aϕ, v
∣∣
∂D

= bψ,

lim
|x|→+∞

u(x)
ln |x|

= α, lim
|x|→+∞

v(x)
ln |x|

= β,

(1.7)

where a, b, α and β are nonnegative constants such that a+ α > 0, b+ β > 0. The
functions ϕ and ψ are nontrivial nonnegative and continuous on ∂D. We will give
two existence results according to the monotoniciy of the functions f and g.
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Throughout this paper, we denote by HDϕ the bounded continuous solution of
the Dirichlet problem

∆w = 0 in D,

w
∣∣
∂D

= ϕ, lim
|x|→+∞

w(x)
ln |x|

= 0,
(1.8)

where ϕ is a nonnegative continuous function on ∂D.
We remark that the solution HDϕ of (1.8) belongs to C(D ∪ {∞}) and satisfies

lim|x|→+∞HDϕ(x) = C > 0 (See [6, p. 427]).
For the sake of simplicity we denote

ϕ̃ := aHDϕ+ αh, ψ̃ := bHDψ + βh, (1.9)

where h is the harmonic function defined by (2.2), below.
The outline of this paper is as follows. In section 2, we will give some notions

related to the Green function GD of the domain D associated to the Laplace oper-
ator ∆ and properties of the functions belonging to a some Kato class K(D) (See
[10, 14]). In section 3, we will first give an example and then we give the proof of
the existence result for the problem (1.7). More precisely, we adopt in section 3 the
following hypotheses

(H1) The functions f , g : [0,∞) → [0,∞) are nondecreasing and continuous.
(H2) The functions p̃ := pf(ψ̃) and q̃ := qg(ϕ̃) belong to the Kato class K(D).

(H3) λ0 := infx∈D
eϕ(x)

V (ep)(x) > 0 and µ0 := infx∈D
eψ(x)

V (eq)(x) > 0, where V is the
Green kernel defined by (2.1) below.

We prove the following result.

Theorem 1.1. Assume (H1)–(H3), then for each λ ∈ [0, λ0) and µ ∈ [0, µ0),
problem (1.7) has a positive continuous solution (u, v) satisfying, on D,

(1− λ

λ0
)[aHDϕ+ αh] ≤ u ≤ aHDϕ+ αh,

(1− µ

µ0
)[bHDψ + βh] ≤ v ≤ bHDψ + βh.

In the last section, we fix λ = µ = 1 and a nontrivial nonnegative continuous
function Φ on ∂D and we note h0 = HDΦ. Then we give an existence result for
problem (1.7) with a = 1 and b = 1, under the following hypotheses:

(H4) The functions f, g : [0,∞) → [0,∞) are nonincreasing and continuous.
(H5) The functions p0 := p f(h0)

h0
and q0 := q g(h0)

h0
belong to the Kato class K(D).

More precisely, we obtain the following result.

Theorem 1.2. Assume (H4)–(H5), then there exists a constant c > 1 such that if
ϕ ≥ cΦ and ψ ≥ cΦ on ∂D, then problem (1.7) with a = 1 and b = 1 has a positive
continuous solution (u, v) satisfying, on D,

h0 + αh ≤ u ≤ HDϕ+ αh,

h0 + βh ≤ v ≤ HDψ + βh.

Note that this result generalizes those by Athreya [2] and Toumi and Zeddini
[14], stated for semilinear elliptic equations.
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2. Preliminaries

In the reminder of this paper, we will adopt the following notation.
C(D ∪ {∞}) = {f ∈ C(D) : lim|x|→+∞ f(x) exists}. We note that C(D ∪ {∞})

is a Banach space endowed with the uniform norm ‖f‖∞ = supx∈D |f(x)|.
For x ∈ D, we denote by δD(x) the distance from x to ∂D, by ρD(x) :=

min(1, δD(x)) and by λD(x) := δD(x)(1 + δD(x)).
Let f and g be two positive functions on a set S. We denote f ∼ g if there exists

a constant c > 0 such that
1
c
g(x) ≤ f(x) ≤ cg(x) for all x ∈ S.

For a Borel measurable and nonnegative function f on D, we denote by V f the
Green kernel of f defined on D by

V f(x) =
∫
D

GD(x, y)f(y)dy. (2.1)

We recall that if f ∈ L1
loc(D) and V f ∈ L1

loc(D), then we have ∆(V f) = −f in D,
in the distributional sense (See [4, p 52]).

We note that the Green function satisfies

GD(x, y) ∼ ln(1 +
λD(x)λD(y)
|x− y|2

)

on D2 (See [11]).

Definition 2.1. A Borel measurable function q in D belongs to the Kato class
K(D) if q satisfies

lim
α→0

(
sup
x∈D

∫
D∩B(x,α)

ρD(y)
ρD(x)

GD(x, y)|q(y)|dy
)

= 0,

and

lim
M→+∞

(
sup
x∈D

∫
D∩(|y|≥M)

ρD(y)
ρD(x)

GD(x, y)|q(y)|dy
)

= 0.

Example 2.2. Let p > 1 and γ, θ ∈ R such that γ < 2 − 2
p < θ. Then using

the Hölder inequality and the same arguments as in [14, Proposition 3.4] it follows
that for each f ∈ Lp(D), the function defined in D by f(x)

(1+|x|)θ−γ(δD(x))γ belongs to
K(D).

Throughout this article, h will be the function defined on D by

h(x) = 2π lim
|y|→+∞

GD(x, y) (2.2)

Proposition 2.3 ([15]). The function h defined by (2.2) is harmonic positive in
D and satisfies

lim
x→z∈∂D

h(x) = 0, lim
|x|→+∞

h(x)
ln |x|

= 1.

In the sequel, we use the notation

‖q‖D = sup
x∈D

∫
D

ρD(y)
ρD(x)

GD(x, y)|q(y)|dy, (2.3)

αq = sup
x,y∈D

∫
D

GD(x, z)GD(z, y)
GD(x, y)

|q(z)|dz. (2.4)
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It is shown in [14], that if q ∈ K(D), then ‖q‖D <∞, and αq ∼ ‖q‖D. For stating
our results we need the following result.

Proposition 2.4 ([14]). Let q in K(D), then the following assertions hold
(i) For any nonnegative superharmonic function w in D, we have

V (wq)(x) =
∫
D

GD(x, y)w(y)|q(y)|dy ≤ αqw(x),∀x ∈ D. (2.5)

(ii) The potential V q ∈ C(D ∪∞) and limx→z∈∂D V q(x) = 0.
(iii) Let Λq = {p ∈ K(D) : |p| ≤ q}. Then the family of functions

Fq = {
∫
D

GD(., y)h0(y)p(y)dy : p ∈ Λq}

is uniformly bounded and equicontinuous in D ∪ {∞}. Consequently, it is
relatively compact in C(D ∪ {∞}).

3. Proof of Theorem 1.1

Before stating the proof, we give an example where (H2) and (H3) are satisfied.

Example 3.1. Let D = B(0, 1)
c

be the exterior of the unit closed disk. Let
α = b = 1 and β = a = 0. Assume that ψ ≥ c1 > 0 on ∂D. Let p1, q̃ be
nonnegative functions in K(D) such that the function p := p1h is in K(D). Then
using the fact that the function f is continuous and HDψ is bounded on D we
obtain that p̃ := pf(HDψ) ∈ K(D) and so the hypothesis (H2) is satisfied. Now,
since p̃1 := p1f(HDψ) ∈ K(D) then by Proposition 2.4 (i) we obtain

V (p̃) ≤ αfp1h.
Therefore, for each x ∈ D

h(x)
V (p̃)(x)

≥ 1
αp1

> 0;

that is, λ0 > 0. On the other hand we have
HDψ(x)
V (q̃)(x)

≥ c1
αeq > 0,

which yields µ0 > 0. Thus the hypothesis (H3) is satisfied.

Proof of Theorem 1.1. Let λ ∈ [0, λ0) and µ ∈ [0, µ0). We intend to prove that
the problem (1.7) has a positive continuous solution. To this aim we define the
sequences (uk)k∈N and (vk)k∈N as follows:

v0 = ψ̃,

uk = ϕ̃− λV (pf(vk)),

vk+1 = ψ̃ − µV (qg(uk)),

where ϕ̃ and ψ̃ are defined by (1.9). We shall prove by induction that for each
k ∈ N,

0 <
(
1− λ

λ0

)
ϕ̃ ≤ uk ≤ uk+1 ≤ ϕ̃,

0 <
(
1− µ

µ0

)
ψ̃ ≤ vk+1 ≤ vk ≤ ψ̃.
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First, using hypothesis (H3) we obtain, on D,

λ0V (pf(ψ̃)) ≤ ϕ̃.

Then by the monotonicity of f , it follows that

ϕ̃ ≥ u0 = ϕ̃− λV (pf(ψ̃)) ≥
(
1− λ

λ0

)
ϕ̃ > 0.

So
v1 − v0 = −µV (qg(u0)) ≤ 0

and consequently
u1 − u0 = λV (p[f(v0)− f(v1)]) ≥ 0.

Moreover, the hypothesis (H3) yields

µ0V (qg(ϕ̃)) ≤ ψ̃.

Then using the fact that the function g is nondecreasing we have

v1 ≥ ψ̃ − µV (qg(ϕ̃)) ≥
(
1− µ

µ0

)
ψ̃ > 0.

In addition, we have u1 ≤ ϕ̃, then it follows that

u0 ≤ u1 ≤ ϕ̃ and v1 ≤ v0 ≤ ψ̃.

Suppose that
uk ≤ uk+1 ≤ ϕ̃ and (1− µ

µ0
)ψ̃ ≤ vk+1 ≤ vk.

Therefore,

vk+2 − vk+1 = µV (q[g(uk)− g(uk+1)]) ≤ 0,

uk+2 − uk+1 = λV (p[f(vk+1)− f(vk+2)]) ≥ 0.

Furthermore, since uk+1 ≤ ϕ̃ the monotonicity of the function g yields

vk+2 ≥ ψ̃ − λV (qg(ϕ̃)) ≥ (1− µ

µ0
)ψ̃ > 0.

Thus, we obtain

uk+1 ≤ uk+2 ≤ ϕ̃ and
(
1− µ

µ0

)
ψ̃ ≤ vk+2 ≤ vk+1.

Hence, the sequences (uk) and (vk) converge respectively to two functions u and v
satisfying

0 <
(
1− λ

λ0

)
ϕ̃ ≤ u ≤ ϕ̃, 0 <

(
1− µ

µ0

)
ψ̃ ≤ v ≤ ψ̃.

Furthermore, for each k ∈ N, we have

f(vk) ≤ f(ψ̃), g(uk) ≤ g(ϕ̃). (3.1)

Therefore, using hypothesis (H2) and Proposition 2.4 (ii) we deduce by Lebesgue’s
theorem that V (pf(vk)) and V (qg(uk)) converge respectively to V (pf(v)) and
V (qg(u)) as k tends to infinity. Then, on D, (u, v) satisfies

u = ϕ̃− λV (pf(v))

v = ψ̃ − µV (qg(u)).
(3.2)

Moreover, by (3.2) and the monotonicity of the functions f and g we obtain
pf(v) ≤ p̃ and qg(u) ≤ q̃. So pf(v), qg(u) ∈ K(D) and consequently by Propo-
sition 2.4 (ii) we have V (pf(v)), V (qg(u)) ∈ C(D ∪ {∞}). Now using the fact
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that the functions ϕ̃ and ψ̃ are continuous we conclude that u and v are contin-
uous and satisfy in the distributional sense ∆u = λpf(v) and ∆v = µqg(u) in
D. Now, since HDϕ = ϕ on ∂D, limx→z∈∂D h(x) = 0, and limx→z∈∂D V (p̃)(x) =
0, we conclude that limx→z∈∂D u(x) = aϕ(z). By similar arguments we have
limx→z∈∂D v(x) = bψ(z). Furthermore, by Proposition 2.4 (ii) and Proposition
2.3, we have lim|x|→+∞

1
h(x)V (pf(v)) = 0 and lim|x|→+∞

1
h(x)V (qg(u)) = 0. Hence

(u, v) is a continuous positive solution of the problem (1.7), which completes the
proof. �

4. Proof of Theorem 1.2

In the sequel, we recall that h0 = HDΦ is a fixed positive harmonic function in
D and h is the function defined by (2.2).

Proof. Let αp0 and αq0 be the constants defined by (2.4) associated respectively
to the functions p0 and q0 given in the hypothesis (H5). Put c = 1 + αp0 + αq0 .
Suppose that

ϕ(x) ≥ cΦ(x) and ψ(x) ≥ cΦ(x), ∀x ∈ ∂D.

Then by the maximum principle it follows that for each x ∈ D

HDϕ(x) ≥ ch0(x), (4.1)

HDψ(x) ≥ ch0(x). (4.2)

Consider the nonempty convex set Ω given by

Ω := {w ∈ C(D ∪ {∞}) : h0 ≤ w ≤ HDϕ}.

Let T be the operator defined on Ω by

Tw := HDϕ− V (pf [βh+HDψ − V (qg(w + αh))]).

We shall prove that the operator T has a fixed point. First, let us prove that the
operator T maps Ω to its self. Let w ∈ Ω. Since w+αh ≥ h0, then from hypothesis
(H4) we deduce that

V (qg(w + αh)) ≤ V (qg(h0)). (4.3)

Therefore, using (4.2) and (4.3) we obtain

v := βh+HDψ − V (qg(w + αh) ≥ βh+HDψ − V (q0h0)

≥ βh+HDψ − αq0h0 ≥ βh+ (c− αq0)h0.

This yields
v ≥ h0 > 0. (4.4)

So, Tw ≤ HDϕ. On the other hand, by (4.4), the monotonicity of f and Proposition
2.4 (i), we obtain

V (pf(v)) ≤ V (pf(h0)) = V (p0h0) ≤ αp0h0. (4.5)

Then, by (4.1) and (4.5), we have

Tw ≥ HDϕ− αp0h0 ≥ (1 + αq0)h0 ≥ h0.
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Hence TΩ ⊆ Ω. Next, let us prove that the set TΩ is relatively compact in C(D ∪
{∞}). Let w ∈ Ω, then by (H4), (H5) and using Proposition 2.4 (iii) it follows that
the family of functions{ ∫

D

G(., y)p(y)f [βh+HDψ − V (qg(w + αh))](y)dy : w ∈ Ω
}

is relatively compact in C(D∪{∞}). Since HDϕ ∈ C(D∪{∞}) we deduce that TΩ
is relatively compact in C(D ∪ {∞}).

Now we prove the continuity of the operator T in Ω in the supremum norm. Let
(wk) be a sequence in Ω which converges uniformly to a function w in Ω. Then
using (4.4) and the monotonocity of f we have, for each x in D,

p(x)|f(βh+HDψ − V (qg(wk + αh)))(x)− f(βh+HDψ − V (qg(w + αh)))(x)|
≤ 2f(h0)p(x) ≤ 2‖h0‖∞p0(x)

Using the fact that V p0 is bounded, we conclude by the continuity of f and the
dominated convergence theorem that for all x ∈ D, Twk(x) → Tw(x) as k → +∞.
Consequently, as TΩ is relatively compact in C(D ∪ {∞}), we deduce that the
pointwise convergence implies the uniform convergence; that is,

‖Twk − Tw‖∞ as k → +∞

Therefore, T is a continuous mapping of Ω to itself. So, since TΩ is relatively
compact in C(D ∪ {∞}), it follows that T is compact mapping on Ω. Thus, the
Schauder fixed-point theorem yields the existence of w ∈ Ω such that

w = HDϕ− V (pf [βh+HDψ − V (qg(w + αh))].

Put u(x) = w(x) + αh(x) and v(x) = βh(x) + HDψ(x) − V (qg(u))(x) for x ∈ D.
Then (u, v) is a positive continuous solution of (1.7) with a = 1, b = 1, for the same
arguments as in the proof of Theorem 1.1. �

Example 4.1. Let D = B(0, 1)
c

be the exterior of the unit closed disk, 0 < θ < 1
and 0 < γ < 1. Let p, q be two nonnegative functions such that the functions
( |x|
|x|−1 )1+θp(x) and ( |x|

|x|−1 )1+γq(x) are in K(D). Suppose that the functions ϕ and
ψ are nonnegative continuous on ∂D. Then for a fixed nontrivial nonnegative
continuous function Φ in ∂D, there exists a constant c > 1 such that if ϕ ≥ cΦ and
ψ ≥ cΦ on ∂D, the problem

∆u = p(x)v−γ , in D

∆v = q(x)u−θ, in D

u
∣∣
∂D

= ϕ, v
∣∣
∂D

= ψ, lim
|x|→+∞

u(x)
ln |x|

= α ≥ 0, lim
|x|→+∞

v(x)
ln |x|

= β ≥ 0,

has a positive continuous solution (u, v) satisfying

HDΦ(x) + αh(x) ≤ u(x) ≤ HDϕ(x) + αh(x),

HDΦ(x) + βh(x) ≤ v(x) ≤ HDψ(x) + βh(x),

for each x ∈ D. Indeed, from [1] there exists c0 > 0 such that for each x ∈ D,

c0
|x| − 1
|x|

≤ HDΦ(x).
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It follows that p0 := p (HDΦ(x))−θ

HDΦ(x) ∈ K(D). In a similar way we have q0 ∈ K(D).
Thus the hypothesis (H5) is satisfied.
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