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EXISTENCE AND ASYMPTOTIC BEHAVIOUR OF POSITIVE
SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS IN THE
EUCLIDEAN PLANE

ABDELJABBAR GHANMI, FATEN TOUMI

ABSTRACT. We study the semilinear elliptic system
Au = Ap(z) f(v), Av = Aqg(2)g(u),

in an unbounded domain D in R2? with compact boundary subject to some
Dirichlet conditions. We give existence results according to the monotonicity
of the nonnegative continuous functions f and g. The potentials p and ¢ are
nonnegative and required to satisfy some hypotheses related on a Kato class.

1. INTRODUCTION

Semilinear elliptic systems of the form
Au = F(u,v),
(1.1)
Av = G(u,v),
in R™ have been extensively treated recently. Lair and Wood [9] studied the
semiliniar elliptic system
Au = p(|z|)o*
Av = q(|a])u”,
in R™ (n > 3). They showed the existence of entire positive radial solutions. More

precisely, for the sublinear case where o, 8 € (0,1), they proved the existence of
bounded solutions of ) if p and ¢ satisfy the decay conditions

/O £)dt < oo, / t)dt < oo, (1.3)

and the existence of large solutions if

/0 )t = oo, / (1.4)

For the superlinear case, where «, 5 € (1,400). The authors proved the existence
of an entire large positive solution of problem , provided that the functions p
and ¢ satisfy (1.3).

(1.2)
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Peng and Song [I3] considered the semilinear elliptic system

Au = p(|z[) f(v),
Av = g(|z[)g(u),
in R” (n > 3), under the assumptions:

(A1) The functions p and ¢ satisfy condition (|1.3)).
(A2) The functions f and g are positive nondecreasing, satisfying the Keller-
Osserman condition [8], 12]

° 1 = 1
J VRO J NI

(A3) The functions f and g are convex on [0, +00).

ds < o0. (1.6)

The authors proved the existence of an entire large positive solution of problem
(1.5). We remark that Peng and Song extended their results to the superlinear case
in [9].

Cirstea and Radulescu [5] gave existence results for system (1.5)). They adopted
the assumptions (A1)-(A2) and the assumption

(A3) f,g € CY[0,400), £(0) = g(0) = 0, lim, .y inf L& > 0,

to prove the existence of entire large positive solutions.

Recently, Ghanmi et al [7] considered the semilinear elliptic system

Au = Ap(z) f(v),
Av = pg(x)g(u),

in a domain D of R™ (n > 3) with compact boundary subject to some Dirich-
let conditions. They assumed that the functions f, g are nonnegative continuous
monotone on (0, 00), the nonnegative potentials p and ¢ are required to satisfy some
hypotheses related to a Kato class [3, [10]. In particular, in the case where f and
g are nondecreasing and for given positive constants \g, po, they showed that for
each A € [0,\) and p € [0, o), there exists a positive bounded solution (u,v)
satisfying the boundary conditions

u’E?OQD = <‘018D + Cl].{oo}, v|aooD = ¢18D + b].{oo}

where ¢ and v are nontrivial nonnegative continuous functions on 9D.

In this article, we consider an unbounded domain D in R? with compact non-
empty boundary 9D consisting of finitely many Jordan curves. We are concerned
with the semilinear elliptic system

Au = Ap(z)f(v), in D
Av = pug(z)g(u), in D

ulgp =ap, vy, = b0, (L.7)
I B N
|z|—+oo In || |z|—+oo In |z

where a,b, « and § are nonnegative constants such that a +« > 0, b+ 8 > 0. The
functions ¢ and 1 are nontrivial nonnegative and continuous on 0D. We will give
two existence results according to the monotoniciy of the functions f and g.
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Throughout this paper, we denote by Hp¢ the bounded continuous solution of
the Dirichlet problem

Aw =0 1in D,
B w(z) (1.8)
w|0D = |x|i>nioo In |$| o 0’

where ¢ is a nonnegative continuous function on 0D.

We remark that the solution Hpe of belongs to C(D U {oo}) and satisfies
lim| |~ 400 Hpp(z) = C > 0 (See [6, p. 427]).

For the sake of simplicity we denote

¢ :=aHpp+ ah, 1Z :=bHpvy + Bh, (1.9)

where h is the harmonic function defined by , below.

The outline of this paper is as follows. In section 2, we will give some notions
related to the Green function Gp of the domain D associated to the Laplace oper-
ator A and properties of the functions belonging to a some Kato class K (D) (See
[10, 14]). In section 3, we will first give an example and then we give the proof of
the existence result for the problem . More precisely, we adopt in section 3 the
following hypotheses

(H1) The functions f, g : [0,00) — [0, 00) are nondecreasing and continuous.
(H2) The functions p := pf(¢) and ¢ := gg(p) belong to the Kato class K(D).
(H3) X\ := infuep % > 0 and po := inf.ep % > 0, where V is the
Green kernel defined by (2.1)) below.
We prove the following result.
Theorem 1.1. Assume (H1)-(H3), then for each A € [0,X0) and p € [0, o),
problem (L.7)) has a positive continuous solution (u,v) satisfying, on D,

(1- %)[aHDgo—i—ah] <wu<aHpy+ ah,
0

(1- f)[wa +8h] < v < bHpt + fh.
0

In the last section, we fix A = ¢ = 1 and a nontrivial nonnegative continuous
function ® on 0D and we note hy = Hp®. Then we give an existence result for
problem (1.7)) with @ = 1 and b = 1, under the following hypotheses:

(H4) The functions f,g : [0,00) — [0,00) are nonincreasing and continuous.
(H5) The functions pg := p%}?) and qq := q%}?) belong to the Kato class K (D).
More precisely, we obtain the following result.
Theorem 1.2. Assume (H4)-(H5), then there exists a constant ¢ > 1 such that if
©>c® and p > c® on dD, then problem (1.7) with a =1 and b =1 has a positive
continuous solution (u,v) satisfying, on D,
ho + ah <u < Hpy + ah,
ho + Bh < v < Hpy + Sh.

Note that this result generalizes those by Athreya [2] and Toumi and Zeddini
[14], stated for semilinear elliptic equations.
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2. PRELIMINARIES

In the reminder of this paper, we will adopt the following notation.

C(D U {oo}) = {f € C(D) : lim|y|_ 4o f(2) exists}. We note that C(D U {oo})
is a Banach space endowed with the uniform norm || f|lec = sup,cp |f(2)|.

For x € D, we denote by dp(x) the distance from z to 9D, by pp(z) =
min(1,6p(x)) and by Ap(z) := dp(x)(1 + dp(x)).

Let f and g be two positive functions on a set S. We denote f ~ g if there exists
a constant ¢ > 0 such that

%g(x) < f(z) <cg(x) forall z e S.

For a Borel measurable and nonnegative function f on D, we denote by V f the
Green kernel of f defined on D by

Vi@ = [ Gl s (2.1)
We recall that if f € L (D) and V f € L (D), then we have A(Vf) = —f in D,

loc

in the distributional sense (See [, p 52]).
We note that the Green function satisfies

Ap(z)Ap(y)

Gp(x,y) ~In(1 +
(:9) ~In( |z —yl?

)
on D? (See [11]).

Definition 2.1. A Borel measurable function ¢ in D belongs to the Kato class
K (D) if g satisfies

. pp(y)
lim sup/ Gp(z,y)|q(y)|dy) =0,
a—0 <m€D DNB(z,x) pD(x) D( y)| (y)| y)

and

. PD(y)
lim sup/ Gp(x,y)lq(y)|ldy | = 0.
M%m(zeD s o) G @l )

Example 2.2. Let p > 1 and ~,0 € R such that v < 2 — % < 6. Then using

the Holder inequality and the same arguments as in [14] Proposition 3.4] it follows
that for each f € LP(D), the function defined in D by % belongs to
K (D).

Throughout this article, h will be the function defined on D by

h(z) =27 lim Gp(z,y) (2.2)
ly|—+o0

Proposition 2.3 ([I5]). The function h defined by (2.2)) is harmonic positive in

D and satisfies

h
lim h(z) =0, im (z) =1.
r—2€0D |z|— o0 In |$‘
In the sequel, we use the notation

Y
lallo = sup [ L2 G (s, ) la(w) (23)

zeDJp pp(T)
ag = sup / Go@,2)Gp(2:9) g, (2.4)

zweD JD Gp(z,y)
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It is shown in [I4], that if ¢ € K (D), then ||q||p < oo, and a4 ~ ||g||p. For stating
our results we need the following result.
Proposition 2.4 ([14]). Let q in K(D), then the following assertions hold

(i) For any nonnegative superharmonic function w in D, we have

V(wg)(z) = /D G (. y)w()la(y)|dy < agu(z), ¥z € D, (2.5)

(ii) The potential Vq € C(D U o) and lim,_..cop Vq(z) = 0.
(i) Let Ay ={p € K(D) :|p| < q}. Then the family of functions

5= 1 /D G () ho(w)p(y)dy < p € Ag)

s uniformly bounded and equicontinuous in DU {oo}. Consequently, it is
relatively compact in C(D U {oc}).

3. PROOF OF THEOREM [L.1]

Before stating the proof, we give an example where (H2) and (H3) are satisfied.

Example 3.1. Let D = B(0, 1)C be the exterior of the unit closed disk. Let
a=b=1and 8 = a = 0. Assume that ¢» > ¢; > 0 on 0D. Let py,q be
nonnegative functions in K (D) such that the function p := pih is in K (D). Then
using the fact that the function f is continuous and Hpv is bounded on D we
obtain that p := pf(Hpwy) € K(D) and so the hypothesis (H2) is satisfied. Now,
since p1 := p1 f(Hpv) € K(D) then by Proposition (i) we obtain
V(p) < agrh.
Therefore, for each z € D
h(zx) 1

>

V(p)(z) — ap,
that is, A\g > 0. On the other hand we have

Hpi(z) >,

V(g)(z) ~ ag
which yields po > 0. Thus the hypothesis (H3) is satisfied.
Proof of Theorem[I1. Let A € [0,Ao) and p € [0, p0). We intend to prove that
the problem (|1.7) has a positive continuous solution. To this aim we define the
sequences (ug)ren and (vg)ken as follows:

Vo = ’J?
up =@ — AV (pf(vk)),
ve1 =¥ — pV(gg(ur)),

where ¢ and @Z are defined by (1.9). We shall prove by induction that for each
keN,

> 0;

O<(1*i)@ﬁukéuk+1§§5a
Ao

0<(1_£)JSUI€+1§UI€§7Z-
Ho
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First, using hypothesis (H3) we obtain, on D,

MV (pf(¥)) < ¢.
Then by the monotonicity of f, it follows that

F2u =5 WD) > (1-2)5>0
So
v1 —vo =~V (qg(uo)) < 0
and consequently
ur —ug = AV (p[f(vo) — f(v1)]) = 0.
Moreover, the hypothesis (H3) yields

1oV (q9(@)) < .

Then using the fact that the function g is nondecreasing we have
v > 9 —pVigg(@) > (1- %)IZ > 0.
In addition, we have u; < @, then it follows that
up <up <@ and vy < vy < P

Suppose that
up <Uupyr <@ and (1 — ﬂ)d) < Vg1 < v
Ho

Therefore,

Ukt2 — Vi1 = 1V (qlg(ur) — g(ur+1)]) <0,
Upt2 — U1 = AV (p[f (Vr41) — f(vr42)]) = 0.
Furthermore, since u;+1 < @ the monotonicity of the function g yields
~ — /’L ~
Ukt2 2 ¢ = AV(gg(p)) = (1 - %)df > 0.
Thus, we obtain
U1 S upy2 <@ and (11— Hﬁ)i < Vg2 < Vgt
0
Hence, the sequences (uy) and (vy) converge respectively to two functions u and v
satisfying
A _ ~ ~
0<(1-2)g<u<y, 0<(1-)p<v<y
)\0 Ho
Furthermore, for each k € N, we have

flor) < (@), glur) < g(9). (3.1)
Therefore, using hypothesis (H2) and Proposition (ii) we deduce by Lebesgue’s
theorem that V(pf(vg)) and V(gg(uy)) converge respectively to V(pf(v)) and
V(gg(u)) as k tends to infinity. Then, on D, (u,v) satisfies

u=¢—=AV(pf(v))
v =1 —puV(qg(u)).
Moreover, by (3.2) and the monotonicity of the functions f and g we obtain

pf(v) < p and qg(u) < q. So pf(v),qg(u) € K(D) and consequently by Propo-
sition (ii) we have V(pf(v)),V(qg(u)) € C(D U {oo}). Now using the fact

(3.2)
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that the functions @ and {/)v are continuous we conclude that v and v are contin-
uous and satisfy in the distributional sense Au = Apf(v) and Av = pugg(u) in
D. Now, since Hpp = ¢ on 9D, lim,_,,cop h(z) = 0, and lim,_.cop V(p)(z) =
0, we conclude that lim, ,.cop u(z) = ap(z). By similar arguments we have
lim,_.,cop v(x) = by(z). Furthermore, by Proposition (ii) and Proposition
2.3} we have lim|;— 1 ﬁx)V(pf(v)) =0 and lim|z|— 4 h—w)V(qg(u)) = 0. Hence
u,v) is a continuous positive solution of the problem , which completes the
proof. (Il

4. PROOF OF THEOREM

In the sequel, we recall that hg = Hp® is a fixed positive harmonic function in
D and h is the function defined by (2.2)).

Proof. Let oy, and ag, be the constants defined by (2.4) associated respectively
to the functions pg and go given in the hypothesis (H5). Put ¢ = 1 + ap, + oy, -
Suppose that

o(z) > c®(z) and ¢(z) > cP(x), Ve dD.
Then by the maximum principle it follows that for each z € D
Hpop(z) > cho(z), (4.1)
Hpyp(x) > cho(z).
Consider the nonempty convex set {2 given by
Q:={wel(DU{x}):hy <w< Hpp}.
Let T be the operator defined on €2 by
Tw:= Hpp — V(pf[Bh+ Hpy — V(qg(w + avh))]).

We shall prove that the operator T" has a fixed point. First, let us prove that the
operator T maps € to its self. Let w € . Since w+ ah > hg, then from hypothesis
(H4) we deduce that

V(gg(w + ah)) < V(qg(ho)). (4.3)
Therefore, using (4.2) and (4.3) we obtain
v:=ph+ Hpy — V(gg(w + ah) = Bh+ Hpy — V(qoho)
> 0h+ Hpy — aqoho > Bh+ (C — quo)h().
This yields
v > ho > 0. (4.4)

So, Tw < Hpp. On the other hand, by (4.4), the monotonicity of f and Proposition
(i), we obtain

V(pf(v)) < V(pf(ho)) = V(poho) < apyho. (4.5)
Then, by and , we have

Tw > Hpp — apho > (1 + agy)ho > ho.
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Hence T C Q. Next, let us prove that the set 7Q is relatively compact in C(D U
{o0}). Let w € ©, then by (H4), (H5) and using Proposition [2.4] (iii) it follows that
the family of functions

{ /D G(y)pW) fBh + Hpy — V(gg(w + ah))](y)dy : w € Q}

is relatively compact in C(DU{oo}). Since Hpy € C(DU{oo}) we deduce that TQ
is relatively compact in C(D U {o0}).
Now we prove the continuity of the operator 1" in €2 in the supremum norm. Let

(wg) be a sequence in Q which converges uniformly to a function w in Q. Then
using (4.4) and the monotonocity of f we have, for each z in D,

p(x)|f(Bh + Hpy = V(gg(wk + ah))) (@) — f(Bh + Hpy — V(gg(w + ah)))(z)]
< 2f(ho)p(x) < 2[|hollocpo (@)

Using the fact that Vpg is bounded, we conclude by the continuity of f and the
dominated convergence theorem that for all © € D, Twy(z) — Tw(z) as k — +o0.
Consequently, as T is relatively compact in C(D U {cc}), we deduce that the
pointwise convergence implies the uniform convergence; that is,

|[Twg — Tw||eo as k — +oo

Therefore, T' is a continuous mapping of (2 to itself. So, since T2 is relatively
compact in C(D U {oo}), it follows that 7" is compact mapping on Q. Thus, the
Schauder fixed-point theorem yields the existence of w € €2 such that

w = Hpyp —V(pf[Bh+ Hpy — V(qg(w + ah))].

]
Put u(z) = w(x) + ah(z) and v(z) = Bh(z) + Hpy(x) — V(gg(w))(z) for z € D.
Then (u,v) is a positive continuous solution of (1.7) with a = 1,b = 1, for the same
arguments as in the proof of Theorem (1.1 O

Example 4.1. Let D = B(0, 1)C be the exterior of the unit closed disk, 0 < 0 < 1
and 0 < v < 1. Let p,q be two nonnegative functions such that the functions
(lxlf_ll)lwp(a:) and (lxl‘L_ll)HVq(x) are in K (D). Suppose that the functions ¢ and
1 are nonnegative continuous on dD. Then for a fixed nontrivial nonnegative
continuous function ® in 0D, there exists a constant ¢ > 1 such that if ¢ > ¢® and

1 > ¢® on 0D, the problem

Au=p(z)v™"?, inD
Av=gq(z)u™? inD
ulgp =@ Vpp =1, | lim =a>0, lim =820,

2| —+oo In |z lz|—>+oo In ||

has a positive continuous solution (u,v) satisfying
Hp®(z) + ah(z) <u(z) < Hpp(z) + ah(z),
Hp®(z) + Bh(z) < v(z) < Hpy(z) + Bh(z),
for each z € D. Indeed, from [I] there exists ¢y > 0 such that for each x € D,
|z -1
|z

Co S HD(I)(LL‘)
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(Hp®(z))~’

It follows that po 1= p— 37— € K(D). In a similar way we have qo € K (D).
Thus the hypothesis (H5) is satisfied.
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