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ALMOST PERIODIC SOLUTIONS OF NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH STEPANOV-ALMOST

PERIODIC TERMS

MD. MAQBUL

Abstract. In this paper we study the existence of almost periodic solutions of
an autonomous neutral functional differential equation with Stepanov-almost
periodic terms in a Banach space. We use the contraction mapping principle
to show the existence and the uniqueness of an almost periodic solution of the
equation.

1. Introduction

The theory of almost periodic functions was mainly treated and created by Bohr
during 1924-1926. Bohr’s theory was substantially developed by Bochner, Weyl,
Besicovitch, Farvard, von Neumann, Stepanov, Bogolyubov, and others during the
1920s and 1930s. In 1933, Bochner defined and studied the almost periodic func-
tions with values in Banach spaces. Bohr’s theory of almost periodic functions
was restricted to the class of uniformly continuous functions. In 1925, Stepanov
generalized the class of almost periodic functions in the sense of Bohr without us-
ing the hypothesis of continuity. For more details about almost periodic functions
and Stepanov-almost periodic functions, see [2, 5]. In recent years, the theory of
almost periodic functions has been developed in connection with the problems of
differential equations, dynamical systems, stability theory and so on.

Functional differential equations arise as models in several physical phenomena,
for example, reaction-diffusion equations, climate models, population ecology, neu-
ral networks etc. More recently researchers have given special attentions to the
study of equations in which the delay argument occurs in the derivative of the state
variable as well as in the independent variable, so-called neutral differential equa-
tions. Neutral differential equations have many applications. For example, these
equations arises in many phenomena such as in the study of oscillatory systems and
also in modelling of several physical problems. Periodicity of solutions of neutral
differential equations has been studied by many authors; see [3, 4].

Let (X, ‖.‖) be a complex Banach space. In this paper, we study the existence and
the uniqueness of an almost periodic solution to the neutral functional differential
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equation
d

dt
[u(t)− F (t, u(t− g(t)))] = Au(t) +G(t, u(t), u(t− g(t))) (1.1)

for t ∈ R and u ∈ AP (R; X), where AP (R; X) be the set of all almost periodic func-
tions from R to X, A is the infinitesimal generator of a C0-semigroup {T (t)}0≤t<∞,
and F : R× X 7→ X, G : R× X× X 7→ X are Stepanov-almost periodic functions.

The existence of almost periodic solutions of abstract differential equations has
been considered by many authors; see [2, 6, 8, 9, 10]. Zaidman [8] proved the exis-
tence and uniqueness of almost periodic solution to the nonhomogeneous differential
equation

d

dt
u(t) = Au(t) + f(t), (1.2)

where A is a linear unbounded operator in X which is the infinitesimal generator
of a C0-semigroup with exponential decay as t → ∞, and f : R 7→ X is an almost
periodic function. Zaidman [9] considered the same equation (1.2) in a Hilbert
space H and proved the existence and the uniqueness of almost periodic solution
provided that A is a bounded linear operator in H such that ‖e−tA‖ ≤ e−ωt, for
all t > 0 and for some ω > 0, and f : R 7→ H is a continuous function which is
in S2

ap(R; H), Rao [6] also considered the same equation (1.2) in a Banach space X
and proved the existence and the uniqueness of almost periodic solution provided
that A is the infinitesimal generator of a continuous semigroup {T (t) : 0 ≤ t <∞},
with T (t) satisfying ‖T (t)‖ ≤Me−βt for some M > 0, for some β > 0 and all t ≥ 0,
and f : R 7→ X is an S1-almost periodic continuously differentiable function, with
f ′ being S1-bounded on R.

In this paper, we extend the previous-mentioned results to the equation (1.1).
We use the contraction mapping principle to prove the existence and uniqueness of
an almost periodic solution of the equation (1.1).

2. Preliminaries

In this section we give some basic definitions, notation, and results. In the rest
of this paper, (X, ‖ · ‖) stands for a complex Banach space.

Definition 2.1. A one parameter family {T (t)}0≤t<∞ of bounded linear operators
from X into X is called a C0-semigroup of bounded linear operators on X if

(i) T (0) = I, where I is the identity operator on X.
(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0.
(iii) limt↓0 T (t)x = x for every x ∈ X.

The linear operator A defined by

D(A) =
{
x ∈ X : lim

t↓0

T (t)x− x

t
exists

}
Ax = lim

t↓0

T (t)x− x

t
=
d+T (t)x

dt
|t=0 for x ∈ D(A)

is the infinitesimal generator of the semigroup {T (t)}0≤t<∞, where D(A) is the
domain of A.

Theorem 2.2. Let {T (t)}0≤t<∞ be a C0-semigroup of bounded linear operators on
X. Then
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(i) there exists ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Metω, ∀t ≥ 0;

(ii) the mapping (t, x) 7→ T (t)x is jointly continuous from [0,∞)× X to X.

For a detailed proof of the above theorem, see [7, theorem 2.3.1], and [7, corollary
2.3.1].

Definition 2.3. A continuous function f : R 7→ X is said to be almost periodic if
for every ε > 0 there exists a positive number l such that every interval of length l
contains a number τ such that

‖f(t+ τ)− f(t)‖ < ε ∀t ∈ R.

Let AP (R; X) be the set of all almost periodic functions from R to X. Then
(AP (R; X), ‖.‖∞) is a Banach space with supremum norm given by

‖u‖∞ = sup
t∈R

‖u(t)‖.

Theorem 2.4. If f ∈ AP (R; X), then f is uniformly continuous.

Theorem 2.5 (Bochner’s Criterion). A continuous function f : R 7→ X is an
almost periodic function if and only if for every sequence of real numbers (s′n),
there exists a subsequence (sn) such that (f(t+ sn)) converges uniformly for t ∈ R.

Lemma 2.6. If u ∈ AP (R; X) and g ∈ AP (R; R), then u(.− g(.)) ∈ AP (R; X).

For a detailed proof of the above lemma see [3, Lemma 2.4]. Let Y, W be Banach
spaces. We define the set AP (R× X; Y) which consists of all continuous functions
f : R× X 7→ Y such that f(., x) ∈ AP (R; Y) uniformly for each x ∈ E, where E is
any compact subset of X.

Proposition 2.7 ([1, Proposition 1]). If f ∈ AP (R × X; Y) and h ∈ AP (R; X),
then the function f(., h(.)) ∈ AP (R; Y).

Throughout the rest of the paper we fix p, 1 ≤ p < ∞. Denote by Lp
loc(R; X)

the space of all functions from R into X which are locally p-integrable in Bochner-
Lebesgue sense. We say that a function, f ∈ Lp

loc(R; X) is p-Stepanov bounded
(Sp-bounded) if

‖f‖Sp = sup
t∈R

( ∫ t+1

t

‖f(s)‖pds
)1/p

<∞.

We indicate by Lp
s(R; X) the set of Sp-bounded functions.

Definition 2.8. A function f ∈ Lp
s(R; X) is said to be almost periodic in the sense

of Stepanov (Sp-almost periodic) if for every ε > 0 there exists a positive number
l such that every interval of length l contains a number τ such that

sup
t∈R

( ∫ t+1

t

‖f(s+ τ)− f(s)‖pds
)1/p

< ε.

Let Sp
ap(R; X) be the set of all Sp-almost periodic functions.

It is clear that f(t) almost periodic implies f(t) is Sp-almost periodic; that is,
AP (R; X) ⊂ Sp

ap(R; X). Moreover, if 1 ≤ m < p, then f(t) is Sp-almost periodic
implies f(t) is Sm-almost periodic.
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Lemma 2.9 ([2], Bochner). If f ∈ Sp
ap(R; X) and uniformly continuous, then f is

almost periodic.

Lemma 2.10 (Bochner). f ∈ Sp
ap(R; X) if and only if f b ∈ AP (R;Lp([0, 1]; X)),

where f b(t) = {f(t+ s) : s ∈ [0, 1]}, t ∈ R.

For a detailed proof of the above lemma, see [2, pp. 78, 79].
We define the set Sp

ap(R × X; Y) which consists of all functions f : R × X 7→ Y
such that f(., x) ∈ Sp

ap(R; Y) uniformly for each x ∈ E, where E is any compact
subset of X.

We define the set Sp
ap(R×X×Y; W) which consists of all functions f : R×X×Y 7→

W such that f(., x, y) ∈ Sp
ap(R; W) uniformly for each (x, y) ∈ E, where E is any

compact subset of X× Y.

Example 2.11. (R2, ‖ · ‖) is a Banach space, where

‖x‖ = |x1|+ |x2|, x = (x1, x2) ∈ R2.

The functions F : R× R2 7→ R2, G : R× R2 × R2 7→ R2 are defined by

F (t, x) = (f(t), sinx1 − sinx2),

G(t, x, y) = K2(f(t), e−x1 − e−x2 + cos y1 − cos y2),

where K2 > 0, x = (x1, x2), y = (y1, y2), and

f(t) =

{
n t = nπ, n ∈ Z
sin t otherwise.

Notice that f ∈ Sp
ap(R; R) but f /∈ AP (R; R), as it is unbounded and discontinuous.

Hence it is easy to see that F ∈ Sp
ap(R × R2; R2), G ∈ Sp

ap(R × R2 × R2; R2) but
F /∈ AP (R× R2; R2), G /∈ AP (R× R2 × R2; R2).

Throughout the rest of the paper we assume that A is the infinitesimal generator
of C0-semigroup {T (t)}0≤t<∞. In the view of theorem 2.2(i), we also assume that
there exists constants ω > 0 and M ≥ 1 such that

‖T (t)‖ ≤Me−ωt for 0 ≤ t <∞. (2.1)

Definition 2.12. By an almost periodic mild solution u : R 7→ X of the differential
equation (1.1) we mean that u ∈ AP (R; X), and u(t) satisfies

u(t) = F (t, u(t− g(t))) +
∫ t

−∞
T (t− s)G(s, u(s), u(s− g(s)))ds, t ∈ R. (2.2)

Throughout the rest of the paper we consider the following assumptions.
(H1) g ∈ AP (R; R), F ∈ Sp

ap(R× X; X) and G ∈ Sp
ap(R× X× X; X).

(H2) The functions F,G satisfy the property that there exists K1,K2 > 0 such
that

‖F (t, u(t))− F (s, v(s))‖ ≤ K1‖u(t)− v(s)‖
for all t, s ∈ R and for each u, v ∈ AP (R; X), and

‖G(t, x1, φ(t))−G(t, x2, ϕ(t))‖ ≤ K2(‖x1 − x2‖+ ‖φ− ϕ‖∞)

for all t ∈ R and for (x1, φ), (x2, ϕ) ∈ X×AP (R; X).
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Example 2.13. Consider the function G defined in example 2.11. For x, y ∈ R2

and u, v ∈ AP (R; R2), we observe that

‖G(t, x, u(t))−G(t, y, v(t))‖
≤ K2|e−x1 − e−x2 + cosu1(t)− cosu2(t)− e−y1 + e−y2 − cos v1(t)− cos v2(t)|
≤ K2(|x1 − y1|+ |x2 − y2|+ |u1(t)− v1(t)|+ |u2(t)− v2(t)|)
= K2(‖x− y‖+ ‖u(t)− v(t)‖)
≤ K2(‖x− y‖+ ‖u− v‖∞) ∀t ∈ R.

Thus G satisfies the assumption (H2).
Define F : R × R2 7→ R2 by F (t, x) = K1(0, sinx1 − sinx2), where K1 > 0.

Clearly F ∈ Sp
ap(R× R2; R2).

For u, v ∈ AP (R; R2) and t, s ∈ R, we observe that

‖F (t, u(t))− F (s, v(s))‖ ≤ K1| sinu1(t)− sinu2(t)− sin v1(s) + sin v2(s)|
≤ K1(| sinu1(t)− sin v1(s)|+ | sinu2(t)− sin v2(s)|)
≤ K1(|u1(t)− v1(s)|+ |u2(t)− v2(s)|)
= K1‖u(t)− v(s)‖.

Thus F satisfies the assumption (H2).

3. Main results

In this section we prove the existence and uniqueness of almost periodic mild
solution for (1.1). We define two mappings Λ and L by

(Λu)(t) = F (t, u(t− g(t))) +
∫ t

−∞
T (t− s)G(s, u(s), u(s− g(s)))ds, (3.1)

(Lf)(t) =
∫ t

−∞
T (t− s)f(s)ds, t ∈ R. (3.2)

Throughout the rest of the paper we indicate the conjugate index of p by q; that
is, 1

p + 1
q = 1. We show the following.

Proposition 3.1. If f ∈ Sp
ap(R × X; Y) and g ∈ AP (R; X), then f(., g(.)) ∈

Sp
ap(R; Y).

Proof. From Lemma 2.10, it follows that f b ∈ AP (R × X;Lp([0, 1]; Y)), where
f b(t, x) = {f(t + s, x) : s ∈ [0, 1]}, t ∈ R, x ∈ X. From proposition 2.7, it follows
that f b(., g(.)) ∈ AP (R;Lp([0, 1]; Y)). Again from Lemma 2.10, we get f(., g(.)) ∈
Sp

ap(R; Y). �

Proposition 3.2. If f ∈ Sp
ap(R × X × Y; W), g ∈ AP (R; X) and h ∈ AP (R; Y),

then f(., g(.), h(.)) ∈ Sp
ap(R; W).

Proof. From the Bochner’s Criterion, it follows that (g(.), h(.)) ∈ AP (R; X × Y).
Hence from the proposition 3.1, we get f(., g(.), h(.)) ∈ Sp

ap(R; W). �

Lemma 3.3. If f(t) is an Sp-almost periodic function, then the function (Lf)(t)
is an almost periodic function.
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Proof. We consider

(Lf)k(t) =
∫ t−k+1

t−k

T (t− s)f(s)ds, k ∈ N, t ∈ R.

Then

‖(Lf)k(t)‖ ≤
∫ t−k+1

t−k

‖T (t− s)‖‖f(s)‖ds

≤M

∫ t−k+1

t−k

e−ω(t−s)‖f(s)‖ds.
(3.3)

Case 1: 1 < p <∞. Then 1 < q <∞. Using the Hölder’s inequality, we have

M

∫ t−k+1

t−k

e−ω(t−s)‖f(s)‖ds

≤M
( ∫ t−k+1

t−k

e−ωq(t−s)ds
)1/q( ∫ t−k+1

t−k

‖f(s)‖pds
)1/p

≤ M
q
√
qω

(
e−qω(k−1) − e−qωk

)1/q

‖f‖Sp

= M
e−ωk

q
√
qω

(eqω − 1)1/q‖f‖Sp .

Since the series
∑∞

k=1 e
−ωk is convergent, therefore from the Weierstrass test the

sequence of functions
∑n

k=1(Lf)k(t) is uniformly convergent on R. Hence we have

(Lf)(t) =
∞∑

k=1

(Lf)k(t).

From theorem 2.2(ii), (Lf)(.) is continuous. Let ε > 0. Then there exists a positive
number l such that every interval of length l contains a number τ such that

sup
t∈R

( ∫ t+1

t

‖f(s+ τ)− f(s)‖pds
)1/p

< ε1,

where

0 < ε1 <
q
√
qω(eω − 1)ε

M(eqω − 1)1/q
.

Now we consider ‖(Lf)k(s+ τ)− (Lf)k(s)‖

=
∥∥∫ s+τ−k+1

s+τ−k

T (s+ τ − z)f(z)dz −
∫ s−k+1

s−k

T (s− z)f(z)dz
∥∥

≤
∫ s−k+1

s−k

‖T (s− z)‖‖f(τ + z)− f(z)‖dz

≤M

∫ s−k+1

s−k

e−ω(s−z)‖f(τ + z)− f(z)‖dz

≤M
( ∫ s−k+1

s−k

e−ωq(s−z)dz
)1/q( ∫ s−k+1

s−k

‖f(z + τ)− f(z)‖pdz
)1/p

< ε1M
e−ωk

q
√
qω

(eqω − 1)1/q
.
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Therefore,
∞∑

k=1

‖(Lf)k(s+ τ)− (Lf)k(s)‖ ≤ ε1M
q
√
qω

∞∑
k=1

e−ωk (eqω − 1)1/q

=
ε1M(eqω − 1)1/q

q
√
qω(eω − 1)

< ε.

Hence (Lf)(t) is an almost periodic function.
Case 2: p = 1. Then q = ∞ and using the Hölder’s inequality, we have

M

∫ t−k+1

t−k

e−ω(t−s)‖f(s)‖ds ≤M
(

sup
t−k≤s≤t−k+1

e−ω(t−s)
)( ∫ t−k+1

t−k

‖f(s)‖ds
)

≤Me−ω(k−1)‖f‖S1 .

Since the series
∑∞

k=1 e
−ω(k−1) is convergent, therefore from the Weierstrass test

and from (3.3), the sequence of functions
∑n

k=1(Lf)k(t) is uniformly convergent on
R. Hence we have

(Lf)(t) =
∞∑

k=1

(Lf)k(t).

Notice that (Lf)(.) is continuous. Let ε > 0. Then there exists a positive number
l such that every interval of length l contains a number τ such that

sup
t∈R

( ∫ t+1

t

‖f(s+ τ)− f(s)‖ds
)
< ε2,

where

0 < ε2 <
(eω − 1)ε
Meω

.

Now we consider

‖(Lf)k(s+ τ)− (Lf)k(s)‖

=
∥∥∫ s+τ−k+1

s+τ−k

T (s+ τ − z)f(z)dz −
∫ s−k+1

s−k

T (s− z)f(z)dz
∥∥

≤
∫ s−k+1

s−k

‖T (s− z)‖‖f(τ + z)− f(z)‖dz

≤M

∫ s−k+1

s−k

e−ω(s−z)‖f(τ + z)− f(z)‖dz

≤M
(

sup
s−k≤z≤s−k+1

e−ω(s−z)
)( ∫ s−k+1

s−k

‖f(z + τ)− f(z)‖dz
)

< ε2Me−ω(k−1).

Therefore,
∞∑

k=1

‖(Lf)k(s+ τ)− (Lf)k(s)‖ ≤ ε2M

∞∑
k=1

e−ω(k−1) = ε2M
eω

eω − 1
< ε.

Hence (Lf)(t) is an almost periodic function. �

Lemma 3.4. The operator Λ maps AP (R; X) into itself.
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Proof. Let u ∈ AP (R; X). From Lemma 2.6, we get u(.− g(.)) ∈ AP (R; X). Hence
from theorem 2.4, u(t − g(t)) is uniformly continuous on R. For given ε > 0 there
exists δ > 0 such that ‖u(t1− g(t1))−u(t2− g(t2))‖ < ε/K1 whenever |t1− t2| < δ.
From the assumption (H2), we obtain

‖F (t1, u(t1 − g(t1)))− F (t2, u(t2 − g(t2)))‖ ≤ K1‖u(t1 − g(t1))− u(t2 − g(t2))‖
< ε whenever |t1 − t2| < δ.

Hence F (t, u(t − g(t))) is uniformly continuous. And also from the proposition
3.1, we have F (., u(. − g(.))) ∈ Sp

ap(R; X). Thus from Lemma 2.9, we obtain
F (., u(.−g(.))) ∈ AP (R; X). From proposition 3.2, we obtain G(., u(.), u(.−g(.))) ∈
Sp

ap(R; X). Hence from Lemma 3.3, we obtain (LG)(., u(.), u(.− g(.))) ∈ AP (R; X).
Thus (Λu)(.) ∈ AP (R; X). �

Theorem 3.5. Suppose (K1 + 2M
ω K2) < 1. Then (1.1) has unique almost periodic

mild solution.

Proof. Let u, v ∈ AP (R; X). We observed that

‖(Λu)(t)− (Λv)(t)‖
≤ ‖F (t, u(t− g(t)))− F (t− v(t− g(t)))‖

+
∫ t

−∞
‖T (t− s)‖‖G(s, u(s), u(s− g(s)))−G(s, v(s), v(s− g(s)))‖ds

≤ K1‖u(t− g(t))− v(t− g(t))‖

+MK2

∫ t

−∞
e−ω(t−s)(‖u(s)− v(s)‖+ ‖u− v‖∞)ds

≤ K1‖u− v‖∞ + 2MK2

( ∫ t

−∞
e−ω(t−s)ds

)
‖u− v‖∞

≤
(
K1 +

2M
ω
K2

)
‖u− v‖∞.

Thus
‖Λu− Λv)‖∞ ≤

(
K1 +

2M
ω
K2

)
‖u− v‖∞.

Thus Λ is a contraction map on AP (R; X). Therefore, Λ has unique fixed point in
AP (R; X), that is, there exist unique ψ ∈ AP (R; X) such that Λψ = ψ. Therefore
the equation (1.1) has unique almost periodic mild solution. �
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