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WEIGHTED EIGENVALUE PROBLEMS FOR THE p-LAPLACIAN
WITH WEIGHTS IN WEAK LEBESGUE SPACES

T. V. ANOOP

Abstract. We consider the nonlinear eigenvalue problem

−∆pu = λg|u|p−2u, u ∈ D1,p
0 (Ω)

where ∆p is the p-Laplacian operator, Ω is a connected domain in RN with
N > p and the weight function g is locally integrable. We obtain the existence
of a unique positive principal eigenvalue for g such that g+ lies in certain
subspace of weak-LN/p(Ω). The radial symmetry of the first eigenfunctions
are obtained for radial g, when Ω is a ball centered at the origin or RN .
The existence of an infinite set of eigenvalues is proved using the Ljusternik-
Schnirelmann theory on C1 manifolds.

1. Introduction

For given N ≥ 2, 1 < p < N , Ω a non-empty open connected subset of RN

and g ∈ L1
loc, we discuss the sufficient conditions on g for the existence of positive

solutions for the nonlinear eigenvalue problem

−∆pu = λg|u|p−2u in Ω,

u|∂Ω = 0,
(1.1)

for a suitable value of the parameter λ, where ∆pu := div(|∇u|p−2∇u) is the p-
Laplace operator.

For p = 2, the 2-Laplacian is the usual Laplace operator. For p 6= 2 the p-Laplace
operator arises in various contexts, for example, in the study of non-Newtonian
fluids like dilatant fluids (p < 2) and pseudo plastic (p ≥ 2), torsional creep problem
(p ≥ 2), glaciology ( p ∈ (1, 4/3]) etc. The exponent appearing in λg|u|p−2u makes
(1.1) to be a natural generalization of the linear weighted eigenvalue problem for
the Laplacian.

Here, we look for the weak solutions of (1.1) in the space D1,p
0 (Ω), which is the

completion of C∞c (Ω) with respect to the norm

‖∇u‖p :=
( ∫

Ω

|∇u|p
)1/p

.
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By an eigenvalue of (1.1) we mean λ ∈ R such that, (1.1) admits a non-zero weak
solution in D1,p

0 (Ω); i.e., there exists u ∈ D1,p
0 (Ω) \ {0} such that∫

Ω

|∇u|p−2∇u · ∇v = λ

∫
Ω

g |u|p−2u v, ∀ v ∈ D1,p
0 (Ω). (1.2)

In this case, we say that u is an eigenfunction associated of the eigenvalue λ. If one
of the eigenfunctions corresponding to λ is of constant sign, then we say that λ is
a principal eigenvalue. If all the eigenfunctions corresponding to λ are unique up
to constant multiples then we say that λ is simple.

In the classical linear case; i.e, when p = 2, g ≡ 1 and Ω is a bounded domain,
it is well known that (1.1) admits a unique positive principle eigenvalue and it is
simple. Furthermore, the set of all eigenvalues can be arranged into a sequence

0 < λ1 < λ2 ≤ λ3 ≤ · · · → +∞

and the corresponding normalized eigenfunctions form an orthonormal basis for
the Sobolev space H1

0 (Ω). Using the Courant-Weinstein variational principle [13,
Theorem 6.3.14] the eigenvalues can be expressed as

λk = inf
u⊥{u1,...,uk−1}, ‖u‖2=1

∫
Ω

|∇u|2, k = 1, 2, . . . (1.3)

Lindqvist [28] proved existence, uniqueness and simplicity of a principal eigen-
value for p > 1, when g ≡ 1 and the domain Ω bounded. Later, Azorero and Alonso
[7] identified infinitely many eigenvalues of (1.1), for p 6= 2, using the Ljusternik-
Schnirelmann type minmax theorem.

Many authors have given sufficient conditions on g for the existence of a positive
principal eigenvalue for (1.1), when Ω = RN , for example Brown et. al. [10] and
Allegretto [2] for p = 2, Huang [9], Allegretto and Huang [3] for the respective
generalization to p 6= 2. Fleckinger et al. [15], studied the problem (1.1) for general
p. All these earlier results assume that either g or g+ should be in LN/p(RN ). In
[24], Willem and Szulkin enlarged the class of weight functions beyond the Lebesgue
space LN/p(RN ). They obtained the existence of positive principal eigenvalue, even
for the weights whose positive part has a faster decay than 1/|x|p at infinity and
at all the points in the domain (see (3.6)).

For p = 2, there are some results available for the weights in Lorentz spaces,
for example, Visciglia in [31] looked at (1.1) in the context of generalized Hardy-
Sobolev inequality for the positive weights in certain Lorentz spaces. Following this
direction, Mythily and Marcello in [23] showed the existence of a unique positive
principal eigenvalue for (1.1), when g is in certain Lorentz spaces. Anoop, Lucia and
Ramaswamy [6] unified the sufficient conditions given in [2, 10, 23, 24] by showing
the existence of a positive principal eigenvalue for (1.1), when g+ lies in a suitable
subspace of weak-L

N
2 (Ω). In this paper we obtain an analogous result that unify the

sufficient conditions given in [3, 9, 15, 24] for the existence of a positive eigenvalue
for (1.1) by considering weights in a suitable subspace of the weak- LN/p(Ω).

For p = 2, the existence of a positive principal eigenvalue for more general posi-
tive weights is obtained in [26] using certain capacity conditions of Maz’ja [22] and
in [30] using the concentration compactness lemma. However, their eigenfunctions
are only a distributional solutions of (1.2) and the first eigenvalue lacks certain qual-
itative properties. Indeed, here we obtain a unique positive principal eigenvalue and
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an infinite set of eigenvalues for (1.1) for the weights in a suitable subspace of the
Lorentz space L(N

p ,∞).
Here we fix the solution space as D1,p

0 (Ω), which fits very well with the weak
formulation of boundary value problems in the unbounded domains. Furthermore,
when 1 < p < N , the space D1,p

0 (Ω) is continuously embedded in the Lebesgue
space Lp∗(Ω), where p∗ = Np

N−p . However, when p ≥ N , for a general unbounded
domain Ω, the space D1,p

0 (Ω) is not continuously embedded in L1
loc(Ω) (see [29,

Remark 2.2]). The main novelty of our results rely on the embedding of the space
D1,p

0 (Ω) in the Lorentz space L(p∗, p), see [5].
We use a direct variational method for the existence of an eigenvalue. For that

we consider the following Rayleigh quotient

R(u) :=

∫
Ω
|∇u|p∫

Ω
g|u|p

(1.4)

with the domain of definition

D+(g) := {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|p > 0}. (1.5)

Let

M := {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|p = 1}, (1.6)

J(u) :=
1
p

∫
Ω

|∇u|p (1.7)

If R is C1, then we arrive at (1.1) as the Euler-Lagrange equation corresponding
to the critical points of R on D+(g), with the critical values as the eigenvalues of
(1.1). Moreover, there is a one to one correspondence between the critical points of
R over D+(g) and the critical points of J over M . Thus we look for the sufficient
conditions on g+ for the existence of a critical points of J on M . As in [6], here we
consider the space

FN/p := closure of C∞c (Ω) in L(N/p,∞)

Now we state one of our main results.

Theorem 1.1. Let Ω be an open connected subset of RN with p ∈ (1, N) . Let
g ∈ L1

loc(Ω) be such that g+ ∈ FN/p \ {0}. Then

λ1 = inf{J(u) : u ∈ M} (1.8)

is the unique positive principal eigenvalue of (1.1). Furthermore, all the eigenfunc-
tions corresponding to λ1 are of the constant sign and λ1 is simple.

Note that g− is only locally integrable and hence the map G defined as

G(u) =
∫

Ω

g|u|p

may not even be continuous and hence M may not even be closed in D1,p
0 (Ω).

Nevertheless, we show that the weak limit of a minimizing sequence of J on M lies
in M .

In general the eigenfunctions are only in W 1,p
loc (Ω) and hence the classical tools

for proving the qualitative properties of λ1 are not applicable, as they require
more regularity for the eigenfunctions. However, Kawohl, Lucia and Prashanth [18]
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developed a weaker version of strong maximum principle for quasilinear operator
analogous to the result in [11].

Further, we discuss the sufficient conditions on g for the radial symmetry of the
eigenfunctions corresponding λ1, when Ω is a ball centered at origin or RN . This
generalizes the result of Bhattacharya [8], who proved the radial symmetry of the
first eigenfunctions of (1.1), when Ω is a ball centered at origin and g ≡ 1.

Theorem 1.2. Let Ω be a ball centered at origin or RN . Let g be nonnegative,
radial and radially decreasing measurable function. If λ1 is an eigenvalue of (1.1),
then any positive eigenfunction corresponding to λ1 is radial and radially decreasing.

A sufficient condition on g, for the existence of infinitely many eigenvalues of
(1.1) is also discussed here. Let us point out that a complete description of the
set of all eigenvalues of p-Laplacian is widely open for p 6= 2. The question of
discreteness, countability of the set of all eigenvalues of p-Laplacian is not known,
even in the simplest case: g ≡ 1 and Ω is a ball. However there are several
methods that exhibit infinite number of eigenvalues goes to infinity. For p 6= 2,
the existence of infinitely many eigenvalues is obtained in [3, 9, 24], using the
Ljusternik-Schnirelmann minimax theorem. In this direction we have the following
result under certain weaker assumptions on g+.

Theorem 1.3. Let Ω be an open connected subset of RN with p ∈ (1, N) . Let
g ∈ L1

loc(Ω) be such that g+ ∈ FN/p \ {0}. Then (1.1) admits a sequence of positive
eigenvalues going to ∞.

The classical Ljusternik-Schnirelmann minimax theorem requires a deformation
homotopy that is available when M is at least a C1,1 manifold(i.e, transition maps
are C1 and its derivative is locally Lipschitz). The set M that we are considering here
is C1 but generally not C1,1. Szulkin [27] developed the Ljusternik-Schnirelmann
theorem on C1 manifold using the Ekeland variational principle. We use Szulkin’s
result to obtain an increasing sequence of positive eigenvalues of (1.1) that going
to infinity.

This paper is organized as follows. In Section 2, we recall certain basic properties
of the symmetric rearrangement of a function and the Lorentz spaces. Section 3
deals with several characterizations of the spaces Fd, d > 1. The examples of
functions belonging to FN/p are also given in Section 3. In Section 4, we present a
proof of the existence and other qualitative properties of the first eigenvalue like,
simplicity, uniqueness. The radial symmetry of the eigenfunctions corresponding
to λ1 is discussed in Section 4. In section 5, we discuss the Ljusternik-Schirelmann
theory on C1 Banach manifold and give a proof for the existence of infinitely many
eigenvalues of (1.1). Further extensions and the applications of weighted eigenvalue
problems for the p-Laplacian are indicated in Section 6.

2. Prerequisites

2.1. Symmetrization. First, we recall the definition of the symmetrization of
a function and its properties. Then we state certain rearrangement inequalities
needed for the subsequent sections, for more details on symmetrization we refer to
[20, 19, 14].

Let Ω be a domain in RN . Given a measurable function f on Ω, we define
distribution function αf and decreasing rearrangement f∗ of f as below

αf (s) :=
∣∣{x ∈ Ω : |f(x)| > s}

∣∣, f∗(t) := inf{s > 0 : αf (s) ≤ t}. (2.1)
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In the following proposition we summarize some useful properties of distribution
and rearrangements.

Porposition 2.1. Let Ω be a domain and f be a measurable function on Ω. Then
(i) αf , f∗ are nonnegative, decreasing and right continuous.
(ii) f∗(αf (s0)) ≤ s0, αf (f∗(t0)) ≤ t0;
(iii) f∗(t) ≤ s if and only if αf (s) ≤ t,
(iv) f and f∗ are equimeasurable; i.e, αf (s) = αf∗(s) for all s > 0.
(v) Let c, s, t > 0 such that c = st1/p. Then

t1/pf∗(t) ≤ c if and only if s(αf (s))1/p ≤ c. (2.2)

Proof. For a proof of (i), (ii) and (iii), see [14, Propositions 3.2.2 and 3.2.3]. Item
(iv) follows from (iii) as follows

αf∗(s) = |{t : f∗(t) > s}| = |{t : t < αf (s)}| = αf (s).

(v) Taking s = ct
−1
p in (iii) one deduces that

t1/pf∗(t) ≤ c if and only if αf (s) ≤ t.

Now as t = (c/s)p, we obtain

αf (s) ≤ t if and only if s(αf (s))1/p ≤ c.

�

Next we define Schwarz symmetrization of measurable sets and functions, see
[20] for more details.

Definition 2.2. Let A ⊂ RN be a Borel measurable set of finite measure. We
define A∗, the symmetric rearrangement of the set A, to be the open ball centered
at origin having the same measure that of A. Thus

A∗ = {x : |x| < r}, with ωNrN = |A|,
where ωn is the measure of unit ball in RN .

Let f be a measurable function on Ω ⊂ RN such that αf (s) < ∞ for each s > 0.
Then we define the symmetric decreasing rearrangement f∗ of f on Ω∗ as

f∗(x) =
∫ ∞

0

χ{|f |>s}∗(x)ds

Next we list a few inequalities concerning f∗ that we use for proving the radial
symmetry of the eigenfunctions corresponding to the first eigenvalue. For a proof
see [20, Section 3.3].

Porposition 2.3. Let Ω be a ball centered at origin or RN . Let f be a nonnegative
measurable function on Ω such that αf (s) < ∞ for each s > 0.

(a) If f is radial and radially decreasing then f = f∗ a.e.
(a) Let F : R+ → R be a nonnegative Borel measurable function. Then∫

RN

F (f∗(x))dx =
∫

RN

F (f(x))dx.

(b) If Φ : R+ → R is nonnegative and nondecreasing then

(Φ ◦ f)∗ = Φ ◦ f∗ a.e.
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2.2. Lorentz Spaces. In this section, we recall the definition and the main prop-
erties of the Lorentz spaces. For more details on Lorentz spaces see [1, 14, 16].

Given a measurable function f and p, q ∈ [1,∞], we set

‖f‖(p,q) := ‖t
1
p−

1
q f∗(t)‖q;(0,∞)

and the Lorentz spaces are defined by L(p, q) := {f : ‖f‖(p,q) < ∞}. In particular
for q = ∞, we obtain

‖f‖(p,∞) = sup
t>0

t1/pf∗(t).

For p > 1, the weak-Lp space is defined as

weak-Lp := {f : sup
s>0

s(αf (s))1/p < ∞}.

The following lemma identifies the Lorentz space L(p,∞) with the weak-Lp space.

Lemma 2.4. Let Ω be a domain in RN and f be a measurable function on Ω. For
each p > 1, we have

sup
t>0

t1/pf∗(t) = sup
s>0

s(αf (s))1/p.

Proof. Let
c1 = sup

t>0
t1/pf∗(t), c2 = sup

s>0
s(αf (s))1/p. (2.3)

Without loss of generality we may assume that c1 is finite. Now for s > 0, take
t = ( c1

s )p. Thus t1/pf∗(t) ≤ c1. Now by taking c = c1 in (2.2), with c1 = st
1
p , one

can deduce that s(αf (s))1/p ≤ c1, for all s > 0. Hence c2 ≤ c1. The other way
inequality follows in a similar way. �

The functional ‖ · ‖(p,q) is not a norm on L(p, q). To obtain a norm, we set
f∗∗(t) := 1

t

∫ t

0
f∗(r)dr and define

‖f‖∗(p,q) := ‖t
1
p−

1
q f∗∗(t)‖q ; (0,∞), for 1 ≤ p, q ≤ ∞.

For p > 1, the functional ‖ · ‖∗(p,q) defines a norm in L(p, q) equivalent to ‖.‖(p,q)

(see [14, Lemma 3.4.6]). Endowed with this norm L(p, q) is a Banach space, for
p, q ≥ 1.

In the following proposition we summarize some of the properties of L(p, q)
spaces, see [14, 16] for the proofs.

Porposition 2.5. (i) If p > 0 and q2 ≥ q1 ≥ 1, then L(p, q1) ↪→ L(p, q2)
(ii) If p2 > p1 ≥ 1 and q1, q2 ≥ 1, then L(p2, q2) ↪→ Lloc(p1, q1).
(iii) Hölder inequality: Given (f, g) ∈ L(p1, q1) × L(p2, q2) and (p, q) ∈ (1,∞)

× [1,∞] such that 1/p = 1/p1 + 1/p2, 1/q ≤ 1/q1 + 1/q2, then

‖fg‖(p,q) ≤ C‖f‖(p1,q1) ‖g‖(p2,q2), (2.4)

where C depends only on p.
(iv) Let (p, q) ∈ (1,∞) × (1,∞). Then the dual space of L(p, q) is isomorphic

to L(p′, q′) where 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1.
(v) Let γ > 0. Then ∥∥|f |γ∥∥

(p,q)
= ‖f‖γ

( p
γ , q

γ )
(2.5)

As mentioned before the main interest of considering the Lorentz spaces is that
the usual Sobolev embedding, the embedding of D1,p

0 (Ω) in to Lp∗(Ω), can be
improved as below (see for example, appendix in [5]):
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Porposition 2.6 (Lorentz-Sobolev embedding). We have D1,p
0 (Ω) ↪→ L(p∗, p);

i.e., there exists C > 0 such that

‖u‖(p∗, p) ≤ C‖∇u‖p, ∀ u ∈ D1,p
0 (Ω).

3. The function space Fd

For (d, q) ∈ [1,∞)×[1,∞), C∞
c (Ω) is dense in the Banach space L(d, q). However,

the closure of C∞
c (Ω) in L(d,∞) is a closed proper sub space of L(d,∞) that will

henceforth be denoted by

Fd := C∞
c (Ω)

‖·‖(d,∞) ⊂ L(d,∞).

Next we list some of the properties of the space Fd, see [6, Proposition 3.1] for
a proof.

Porposition 3.1. (i) For each d > 1, L(d, q) ⊂ Fd when 1 ≤ q < ∞.
(ii) For each a ∈ Ω, the Hardy potential x 7→ |x− a|−N

d does not belong to Fd.

Recall that L(d, d) = Ld(Ω), hence from (i) it follows that LN/p(Ω) is contained
in FN/p. Thus Theorem 1.1 readily extends the results in [3, 15], since g ∈ LN/p(Ω)
is a part of their assumptions. Similarly the result in [9] follows as the positive
part of weights he considered is bounded and compactly supported. Note that (ii)
shows that Fd is a proper subspace of the Lorentz space L(d,∞).

Now we state a few useful characterizations of the space Fd.

Porposition 3.2. The following statements are equivalent
(i) f ∈ Fd,
(ii) f∗(t) = o(t−1/d) at 0 and ∞; i.e.,

lim
t→0+

t1/df∗(t) = 0 = lim
t→∞

t1/df∗(t). (3.1)

(iii) αf (s) = o(s−d) at 0 and ∞; i.e.,

lim
s→0+

s(αf (s))1/d = 0 = lim
s→∞

s(αf (s))1/d. (3.2)

Proof. (i)⇒(ii): See the first part of [6, Theorem 3.3].
(ii)⇒(iii): Let (ii) hold. Thus for given ε > 0, there exist t1, t2 > 0 such that

t1/df∗(t) < ε, ∀ t ∈ (0, t1) ∪ (t2,∞). (3.3)

Let s1 = ε (t1)−1/d and s2 = ε (t2)−1/d. Note that

If s ∈ (0, s2) ∪ (s1,∞), then t = (
ε

s
)d ∈ (0, t1) ∪ (t2,∞).

Now using (3.3) and (2.2) with c = ε, we obtain

s(αf (s))1/d < ε, ∀s ∈ (0, s2) ∪ (s1,∞).

This shows that αf (s) = o(s−d) at 0 and ∞.
(iii)⇒ (i): Assume (iii). Then for a given ε > 0, there exist s1, s2 such that

s(αf (s))1/d < ε, ∀s ∈ (0, s1] ∪ [s2,∞). (3.4)

We use [6, Proposition 3.2] to show that f is in Fd. Let

Aε := {x : s1 ≤ f(x) < s2}, fε := fχAε .
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Note that |Aε| ≤ αf (s1) < ∞ and fε ∈ L∞(Ω). Let g = fχAc
ε
. Thus it is enough

to prove
‖f − fε‖(d,∞) = ‖g‖(d,∞) < ε.

Observe that, for s ∈ (s1, s2), αg(s) = αf (s2) and hence

s(αg(s))1/d < s2(αf (s2))1/d < ε, ∀s ∈ (s1, s2). (3.5)

Since |g| ≤ |f |, we have αg(s) ≤ αf (s), for all s > 0. Now by combining (3.4) and
(3.5) we obtain

s(αg(s))1/d < ε, ∀s > 0.

Hence by lemma 2.4 we obtain ‖g‖(d,∞) < ε. �

Next we give another sufficient condition similar to a condition of Rozenblum,
see [26, (2.19)], for a function to be in Fd.

Lemma 3.3. Let h ∈ L(d,∞) and h > 0. If f is such that
∫
Ω

hd−q|f |q < ∞ for
some q ≥ d. Then f ∈ L(d, q) and hence in Fd.

Proof. The result is obvious when q = d. For q > d, let g = h
d
q−1f . Then the

above integrability condition yields g ∈ Lq(Ω). Using property (2.5) we obtain
h1− d

q ∈ L( dq
q−d ,∞). Now by Hölder inequality (2.4) we obtain f ∈ L(d, q) and

hence in Fd as L(d, q) ⊂ Fd. �

Remark 3.4. Let g ∈ Lq(RN ) with q ≥ d and let

f(x) = |x|(
1
q−

1
d )Ng.

Then using the above lemma one can easily verify that f ∈ L(d, q). In general for
any h ∈ L(d,∞) with h > 0, f = gh1− d

q ∈ L(d, q). Thus we can obtain Lorentz
spaces by interpolating Lebesgue and weak-Lebesgue spaces suitably.

Another class of functions contained in FN/p is provided by the work of Szulkin
and Willem [24]. More specifically they consider the weights g defined by the
conditions:

g ∈ L1
loc(Ω), g+ = g1 + g2 6≡ 0, g1 ∈ LN/p(Ω),

lim
|x|→∞, x∈Ω

|x|pg2(x) = 0, lim
x→a, x∈Ω

|x− a|pg2(x) = 0 ∀a ∈ Ω.
(3.6)

The following lemma can be proved using similar arguments as in [6, Lemma
4.1].

Lemma 3.5. Let g : Ω → R be a measurable function such that

(i) lim
|x|→∞, x∈Ω

|x|pg(x) = 0, (ii) lim
x→a, x∈Ω

|x− a|pg(x) = 0, ∀a ∈ Ω. (3.7)

Then there exist finite number of points a1, . . . , am ∈ Ω with the following property:
For every ε > 0 there exists R := R(ε) > 0 such that

|g(x)| < ε

|x|p
a.e. x ∈ Ω \B(0, R) (3.8)

|g(x)| < ε

|x− ai|p
a.e. x ∈ Ω ∩B(ai, R

−1) , i = 1, . . . ,m, (3.9)

g ∈ L∞(Ω \Aε), (3.10)

where Aε :=
⋃m

i=1 B(ai, R
−1) ∩ Ω.
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Theorem 3.6. Let g : Ω → R be as in the previous lemma. Then g ∈ FN/p.

Proof. We use Proposition 3.2(iii) to show that g ∈ FN/p. For ε > 0, let R be given
as in the previous lemma. Let s1 := εR−p. We first show that

s(αg(s))p/N < ε, ∀s < s1.

Using (3.8), for each s ∈ (0, s1), we have

B(0, R) ⊂ B(0, (
ε

s
)1/p) |g(x)| < s, ∀x ∈ Ω \B(0, (

ε

s
)1/p). (3.11)

Therefore, for each s ∈ (0, s1), the distribution function αg(s) can be estimated as
follows:

αg(s) =
∣∣{x ∈ Ω ∩B(0, (

ε

s
)1/p) : |f(x)| > s}

∣∣ ≤ ωN (
ε

s
)N/p ,

where ωN is the volume of unit ball in RN . Thus

s(αg(s))p/N < C1ε, ∀ s < s1. (3.12)

where the constant C1 is independent of ε.
Next we consider the set Aε =

⋃m
i=1 B(ai, R

−1) ∩ Ω and let s2 := ‖g‖L∞(Ω\Aε).
For s > s2, using (3.9) the distribution function can be estimated as follows:

αg(s) =
∣∣{x ∈ Ω : |g(x)| > s}

∣∣ =
∣∣{x ∈ Aε : |g(x)| > s}

∣∣
≤

m∑
i=1

∣∣{x ∈ B(ai, R
−1) ∩ Ω : |g(x)| > s}

∣∣
≤

m∑
i=1

∣∣{x ∈ B(ai, R
−1) : ε|x− ai|−p > s}

∣∣
=

m∑
i=1

ωN (
ε

s
)N/p.

Therefore,
s(αg(s))

p
N ≤ C2ε ∀s > s2, (3.13)

where C2 is independent of ε. Now proof follows using condition (iii) of proposition
3.2 together with (3.12) and (3.13). �

As an immediate consequence we have the following remark.

Remark 3.7. The positive part of any function satisfying (3.6) belongs to the space
FN/p. In particular Theorem 1.1 summarizes the result by Willem and Szulkin [24].

3.1. Examples. Now we consider examples of weights that admit a positive prin-
cipal eigenvalue for (1.1) to understand how the conditions (3.6) and the properties
that define the space FN/p are related to one another. First, we consider the fol-
lowing functions:

g1(x) =
1(

log(2 + |x|2)
)p/N (1 + |x|2)p/2

, (3.14)

g2(x) =
1

|x|p(1 + |x|2)p/2
(
log(2 + 1

|x|2 )
)p/N

. (3.15)

One can verify that g1, g2 satisfy (3.6) and hence belong to FN/p and none of them
lies in LN/p(RN ).
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Next we give an example of a weight which is in FN/p but does not satisfy the
condition (3.6).

Example 3.8. In the cube Ω = {(x1, . . . , xN ) ∈ RN : |xi| < R} with 0 < R < 1
consider the function defined by

g3(x) =
∣∣x1 log(|x1|)

∣∣−p/N
, x1 6= 0. (3.16)

Using the condition (3.3), one can verify that g3 ∈ L(N
p , q), for q > N

p . But g3

does not satisfy (3.6). Indeed along the curve x2 = (x1)
1

2N , the limit of |x|pg3(x)
is infinity as x tends to 0 and this limit is zero as x tends to 0 along the x1 axis.
Thus g3 does not satisfy the condition (3.6).

4. Existence of an eigenvalue and its properties

In this section we prove the existence and the uniqueness of the positive principal
eigenvalue for (1.1) for g for which g+ ∈ FN/p \ {0}. Moreover we prove a few
qualitative properties of that positive principal eigenvalue.

4.1. The existence of a minimizer. We prove the existence using a direct vari-
ational principle. First, we recall the following sets and functional:

D+(g) = {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|p > 0}, M = {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|p = 1},

J(u) =
1
p

∫
Ω

|∇u|p, G(u) =
1
p

∫
Ω

g|u|p.

From the definition of the space D1,p
0 (Ω), it is obvious that J is coercive and weakly

lower semi-continuous. Due to the weak assumption on g−, the map G may not be
even continuous. However the map

G+(u) :=
1
p

∫
Ω

g+|u|p

is continuous and compact on D1,p
0 (Ω).

Lemma 4.1. Let g+ ∈ FN/p \ {0}. Then G+ is compact.

Proof. Let {un} converge weakly to u in X. We show that G+(un) → G+(u), up
to a subsequence. For φ ∈ C∞c (Ω), we have

p(G+(un)−G+(u)) =
∫

Ω

φ (|un|p − |u|p) +
∫

Ω

(g+ − φ) (|un|p − |u|p). (4.1)

We estimate the second integral using the Lorentz-Sobolev embedding and the
Hölder inequality as below∫

Ω

|(g+ − φ)|
∣∣(|un|p − |u|p)

∣∣ ≤ C‖g+ − φ‖(N/p,∞)

(
‖un‖p

(p∗,p) + ‖u‖p
(p∗,p)

)
(4.2)

where C is a constant which depends only on N, p. Clearly {un} is a bounded
sequence in L(p∗, p). Let

m := sup
n
{‖un‖p

(p∗,p) + ‖u‖p
(p∗,p)}.

Now using the definition of the space FN/p, for a given ε > 0, we choose gε ∈ C∞c (Ω)
so that

‖g+ − gε‖(N/p,∞) <
p ε

2mC
.
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Thus by taking φ = gε in (4.2) we obtain∫
Ω

|(g+ − gε)|
∣∣(|un|p − |u|p)

∣∣ <
p ε

2

Since X ↪→ Lp
loc(Ω) compactly, the first integral in (4.1) can be made arbitrary

small for large n. Thus we choose n0 ∈ N so that∫
Ω

gε(|un|p − |u|p) <
pε

2
, ∀n > n0.

Hence |G+(un)−G+(u)| < ε, for n > n0. �

Now we are in a position to prove the existence of a minimizer for J on M .

Theorem 4.2. Let Ω be a domain in RN with N > p. Let g ∈ L1
loc(Ω) and

g+ ∈ FN/p \ {0}. Then J admits a minimizer on M .

Proof. Since g ∈ L1
loc(Ω) and g+ 6= 0, there exists ϕ ∈ C∞c (Ω) such that

∫
Ω

g|ϕ|p > 0
(see for example, [18, Proposition 4.2]) and hence M 6= ∅. Let {un} be a minimizing
sequence of J on M ; i.e.,

lim
n→∞

J(un) = λ1 := inf
u∈M

J(u).

By the coercivity of J, {un} is bounded in D1,p
0 (Ω) and hence using the reflexivity

of D1,p
0 (Ω) we obtain a subsequence of {un} that converges weakly. We denote the

weak limit by u and the subsequence by {un} itself. Now using the compactness of
G+, we obtain

lim
n→∞

∫
Ω

g+|un|p =
∫

Ω

g+|u|p.

Now as un ∈ M we write, ∫
Ω

g−|un|p =
∫

Ω

g+|un|p − 1

Since the embedding D1,p
0 (Ω) ↪→ Lp

loc(Ω) is compact, up to a subsequence un → u
a.e. in Ω. Hence by applying Fatou’s lemma,∫

Ω

g−|u|p ≤
∫

Ω

g+|u|p − 1,

which shows that
∫
Ω

g|u|p ≥ 1. Setting ũ := u/(
∫
Ω

g|u|p)1/p, the weak lower semi
continuity of J yields

λ1 ≤ J(ũ) =
J(u)∫
Ω

g|u|p
≤ J(u) ≤ lim inf

n
J(un) = λ1

Thus the equality must hold at each step and hence
∫
Ω

g|u|p = 1, which shows that
u ∈ M and J(u) = λ1. �

Note that R is not sufficiently regular to conclude that u is an eigenfunction of
(1.2) corresponding to λ1, using critical point theory.

Porposition 4.3. Let u be a minimizer of R on D+(g). Then u is an eigenfunction
of (1.1)
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Proof. For each φ ∈ C∞c (Ω), using dominated convergence theorem one can verify
that R admits directional derivative along φ. Now since u is a minimizer of J on
D+(g) we obtain

d

dt
R(u + tφ)|t=0 = 0.

Therefore, ∫
Ω

|∇u|p−2∇u · ∇φ = λ1

∫
Ω

g |u|p−2u φ, ∀φ ∈ C∞c (Ω).

Now we use the density of C∞c (Ω) in D1,p
0 (Ω) to conclude that∫

Ω

|∇u|p−2∇u · ∇v = λ1

∫
Ω

g |u|p−2u v, ∀ v ∈ D1,p
0 (Ω).

�

4.2. Qualitative properties of λ1. First we prove that the eigenfunctions cor-
responding to λ1 are of constant sign. Since the eigenfunctions are not regular
enough, the classical strong maximum principle is not applicable here. In [6], for
p = 2, we use a strong maximum principle due to Brezis and Ponce [11] to show
that first eigenfunctions are of constant sign. A similar strong maximum principle
is obtained in [18], for quasilinear operators. From [18, Proposition 3.2] we have
the following lemma.

Lemma 4.4 (Strong Maximum principle for ∆p). Let u ∈ D1,p
0 (Ω), V ∈ L1

loc(Ω)
be such that u, V ≥ 0 a.e in Ω. If V |u|p−1 ∈ L1

loc(Ω) and u satisfies the following
differential inequality( in the sense of the distributions)

−∆p(u) + V (x)up−1 ≥ 0 in Ω,

then either u ≡ 0 or u > 0 a.e.

Now using the above lemma we prove the following result.

Lemma 4.5. The eigenfunctions of (1.1) corresponding to λ1 are of constant sign.

Proof. It is clear that the eigenfunctions corresponding to λ1 are the minimizers of
Rp on D+

p (g). Let u be a minimizer of Rp on D+
p (g). Since u 6= 0 either u+ or u− is

non zero. Without loss of generality we may assume that u+ 6= 0. Now by taking
u+ as a test function in (1.2), we see that u+ also minimizes Rp on D+

p (g). Thus
by Proposition 4.3, u+ also solves (1.1) in the weak sense,

−∆pu
+ − λ1g(u+)p−1 = 0, in Ω.

In particular, we have the following differential inequality in the sense of distribu-
tions:

−∆pu
+ + λ1g

−(u+)p−1 = λ1g
+(u+)p−1 ≥ 0, in Ω.

It is clear that g− and u+ satisfy all the assumptions of Lemma 4.4, provided
g−(u+)p ∈ L1

loc(Ω). Since g|u|p ∈ L1(Ω), we have (g−)1/q(u+)p−1 ∈ Lq(Ω), where
q is the conjugate exponent of p. Further, (g−)1/p ∈ Lp

loc(Ω), since g ∈ L1
loc(Ω).

Let us write
g−(u+)p−1 = (g−)1/p(g−)1/q(u+)p−1.

Now we use Hölder inequality to conclude that g−(u+)p−1 ∈ L1
loc(Ω). Now in view

of Lemma 4.4 we obtain u+ > 0 a.e. and hence u = u+. Moreover, the zero set of
u is of measure zero. �
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Indeed, the above lemma shows that λ1 is a principal eigenvalue of (1.1). Next
we prove the uniqueness of the positive principal eigenvalue, using the Picone’s
identity for the p-Laplacian. In [4], Picone’s identity is proved for C1 functions.
However it is not hard to obtain a similar identity for less regular functions.

Lemma 4.6 (Picone’s identity). Let u ≥ 0, v > 0 a.e. and let |∇v|, |∇u| exist as
measurable functions. Then the following identity holds a.e.

|∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
|∇v|p−2∇v

= |∇u|p −∇(
up

vp−1
) · |∇v|p−2∇v.

Further, the left hand side of the above identity is nonnegative.

Now we prove the uniqueness of the positive principal eigenvalue.

Lemma 4.7. Let g ∈ L(N/p,∞) and let λ > 0 be a positive principal eigenvalue
of (1.1). Then

λ = λ1 = inf{
∫

Ω

|∇u|p : u ∈ M}.

Proof. Let v ∈ D1,p
0 (Ω) be a positive eigenfunction of (1.1) corresponding to λ. Let

u ∈ M and let {φn} in C∞c (Ω) be such that ‖u− φn‖D1,p
0 (Ω) → 0 and

∫
Ω

g|u|p = 1.

Note that |φn|p
v+ε ∈ D1,p

0 (Ω). Thus by the Picone’s identity (see Lemma 4.6), we have

0 ≤
∫

Ω

|∇φn|p −
∫

Ω

|∇v|p−2∇v · ∇
( |φn|p

(v + ε)p−1

)
. (4.3)

Since v is an eigenfunction of (1.1) corresponding to λ, we have∫
Ω

|∇v|p−2∇v · ∇
( φp

n

(v + ε)p−1

)
= λ

∫
Ω

gvp−1 |φn|p

(v + ε)p−1
. (4.4)

Now from (4.3) and (4.4) we

0 ≤
∫

Ω

|∇φn|p − λ

∫
Ω

gvp−1 |φn|p

(v + ε)p−1
. (4.5)

By letting ε → 0, the dominated convergence theorem yields

0 ≤
∫

Ω

|∇φn|p − λ

∫
Ω

g|φn|p.

Now we let n →∞ to obtain the inequality

0 ≤
∫

Ω

|∇u|p − λ

∫
Ω

gup.

Therefore,

λ ≤
∫

Ω

|∇u|p, ∀u ∈ M. (4.6)

This completes the proof. �

Remark 4.8. Using Lemma 4.5, we see that λ1 is a positive principal eigenvalue
and Lemma 4.7 shows that λ1 is the unique positive principal eigenvalue of (1.1).
In particular, the eigenfunctions corresponding to other eigenvalues of (1.1) must
change sign.
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When Ω is connected, for the simplicity of λ1, we refer to [18, Theorem 1.3].
There, the authors obtained the simplicity of the first eigenvalue of (1.1), if it
exists, even for g in L1

loc(Ω).

4.3. Radial symmetry of the eigenfunctions. Now we give sufficient conditions
for the radial symmetry of the eigenfunctions corresponding to the eigenvalue λ1

of (1.1). Here we assume that the domain Ω is a ball centered at origin or RN .
Bhattacharya [8] proved the radial symmetry of the first eigenfunctions of (1.1),
when g ≡ 1 and Ω is ball.

Here we prove that all the positive eigenfunctions corresponding to λ1 are radial
and radially decreasing, provided g is nonnegative, radial and radially decreasing.
Thus our result is a two fold generalization of results of Bhattacharya, as we allow
more general weight functions and the domain can be RN . Our result uses cer-
tain rearrangement inequalities. We emphasize that here we are not assuming any
conditions on g that ensures λ1 is an eigenvalue.

Theorem 4.9. Let Ω be a ball centered at origin or RN . Let g be nonnegative,
radial and radially decreasing measurable function. If λ1 is an eigenvalue of (1.1),
then any positive eigenfunction corresponding to λ1 is radial and radially decreasing.

Proof. Let u be a positive eigenfunction of (1.1) corresponding to λ1. Let u∗ and g∗
be the symmetric decreasing rearrangement of u and g respectively. Since g is non-
negative, radial and radially decreasing, we use property (a) of Proposition 2.3 to
conclude that g = g∗ a.e. Further, as u is positive by property (c) of Proposition 2.3
we obtain (up)∗ = (u∗)p a.e. Now by the Hardy-Littlewood inequality,∫

Ω

g up ≤
∫

Ω

g∗(up)∗ =
∫

Ω

g(u∗)p.

Also due to Polya-Szego, we have the following inequality:∫
Ω

|∇u∗|p ≤
∫

Ω

|∇u|p.

Thus
1∫

Ω
g(u∗)p

∫
Ω

|∇u∗|p ≤
1∫

Ω
g(u)p

∫
Ω

|∇u|p. (4.7)

Since u is a minimizer of Rp on D+
p (g), equality holds in (4.7) and hence u∗ also

minimizes Rp on D+
p (g). Now as λ1 is simple, we obtain u∗ = αu a.e. for some

α > 0. This shows that u is radial, radially decreasing. �

Using the above lemma we see that for g(x)) = 1
|x|p , x ∈ RN (1.1) does not

admit a positive principal eigenvalue. A proof for the case p = 2 is given in [17].

Porposition 4.10. Let g(x) = 1/|x|p, x ∈ RN . Then (1.1) does not admit a
positive principal eigenvalue.

Proof. From Lemma 4.7, we know that, if λ > λ1 then λ is not a principal eigenvalue
of (1.1). Thus, it is enough to show that λ1 is not an eigenvalue of (1.1), when
g(x) = 1

|x|p . By [18, Theorem 1.3], if λ1 is an eigenvalue of (1.1), then λ1 is simple.
Further, if u is an eigenfunction of (1.1) corresponding λ1, then using the scale
invariance of (1.1), for each α ∈ R, one can verify that

vα(x) = u(αx)
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is also an eigenfunction of (1.1) corresponding to λ1. Now using the simplicity of
λ1, we obtain

u(x) = |x|1−
N
p u(1).

A contradiction as |x|1−
N
p 6∈ D1,p

0 (RN ). �

Remark 4.11. In particular, the above Lemma shows that the best constant in
the Hardy’s inequality ∫

RN

|∇u|p ≤ C

∫
RN

1
|x|p

|u|p

is not attained for any u ∈ D1,p
0 (RN ).

5. An infinite set of eigenvalues

In this section we discuss the existence of infinitely many eigenvalues of (1.1),
using the Ljusternik-Schnirelmann theory on C1 manifold due to Szulkin [27]. Before
stating his result we briefly describe the notion of P.S. condition and genus.

Let M be a C1 manifold and f ∈ C1(M; R). Denote the differential of f at u by
df(u). Then df(u) is an element of (TuM)∗, the cotangent space of M at u (see
[12, section 27.4] for definition and properties).

We say that a map f ∈ C1(M; R) satisfies Palais-Smale ( P.S. for short) condition
on M, if a sequence {un} ⊂ M is such that f(un) → λ and df(un) → 0 then {un}
possesses a convergent subsequence.

Let A be a closed symmetric (i.e, −A = A) subset of M, the krasnoselski genus
γ(A) is defined to be the smallest integer k for which there exists a non-vanishing
odd continuous mapping from A to Rk. If there exists no such map for any k, then
we define γ(A) = ∞ and we set γ(∅) = 0. For more details and properties of genus
we refer to [25].

From [27, Corollary 4.1] one can deduce the following theorem.

Theorem 5.1. Let M be a closed symmetric C1 submanifold of a real Banach space
X and 0 /∈M. Let f ∈ C1(M;R) be an even function which satisfies P.S. condition
on M and bounded below. Define

cj := inf
A∈Γj

sup
x∈A

f(x),

where Γj = {A ⊂M : A is compact and symmetric about origin, γ(A) ≥ j}. If for
a given j, cj = cj+1 · · · = cj+p ≡ c, then γ(Kc) ≥ p + 1, where Kc = {x ∈ M :
f(x) = c , df(x) = 0}.

Note that the set M = {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|p = 1} may not even possess
a manifold structure from the topology of D1,p

0 (Ω), due to the weak assumptions
on g−. However, we show that M admits a C1 Banach manifold structure from a
subspace contained in D1,p

0 (Ω).
For g− ∈ L1

loc(Ω), we define

‖u‖p
X :=

∫
Ω

|∇u|p +
∫

Ω

g−|u|p.

X := {u ∈ D1,p
0 (Ω) : ‖u‖X < ∞}.

Then one can easily verify the following:
• X is a Banach space with the norm ‖ · ‖X and X is reflexive.
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• Since g− is locally integrable, C∞c (Ω) is contained in X.
• Let g ∈ L1

loc(Ω) and g+ ∈ FN/p. Then D+
p (g) is contained in X. This can

be seen as∫
Ω

g−|u|p <

∫
Ω

g+|u|p ≤ C‖g+‖( N
p ,∞)‖u‖

p

D1,p
0 (Ω)

< ∞, (5.1)

where C is the constant involving the constants that are appearing in the
Lorentz-Sobolev embedding and the Hölder inequality. Note that the first
inequality follows as

∫
Ω

g|u|p > 0, for u ∈ D+(g).
• X is continuously embedded into D1,p

0 (Ω). Thus X embedded continuously
into the Lorentz space L(p∗, p) and embedded compactly into Lp

loc(Ω).
We denote the dual space of X by X ′ and the duality action by 〈·, ·〉.

Using the definition of the norm one can easily see that, the map G−
p , defined by

G−
p (u) :=

1
p

∫
Ω

g−|u|p,

is continuous on X. Further, using the dominated convergence theorem one can
verify that G−

p is continuously differentiable on X and its derivative is given by

〈G−
p
′(u), v〉 =

∫
Ω

g−|u|p−2u v.

Similarly using the Sobolev embedding and the Hölder inequality one can easily
verify that G+

p is C1 in D1,p
0 (Ω) and in particular on X. The derivative of G+

p is
given by

〈G+
p
′(u), v〉 =

∫
Ω

g+|u|p−2u v.

Note that for u ∈ M , 〈G′
p(u), u〉 = p and hence the map G′

p(u) 6= 0. Recall that,
c ∈ R is called a regular value of Gp, if G′

p(u) 6= 0 for all u such that Gp(u) = c.
Thus we have the following lemma.

Lemma 5.2. Let Ω be a domain in RN with N > p. Let g ∈ L1
loc(Ω) be such that

g+ ∈ FN/p \ {0}. Then the map Gp is in C1(X; R) and G′
p : X → X ′ is given by

〈G′
p(u), v〉 =

∫
Ω

g|u|p−2u v.

Further, 1 is a regular value of Gp.

Remark 5.3. In view of [12, Example 27.2], the above lemma shows that M is a
C1 Banach submanifold of X. Note that M is symmetric about the origin as the
map Gp is even.

Next we show that Jp satisfies all the conditions to apply Theorem 5.1.

Lemma 5.4. Jp is a C1 functional on M and the derivative of Jp is given by

〈J ′p(u), v〉 =
∫

Ω

|∇u|p−2∇u · ∇v

The proof is straight forward and is omitted.

Remark 5.5. Using [13, Proposition 6.4.35], one can deduce that

‖dJp(u)‖ = min
λ∈R

‖J ′p(u)− λG′
p(u)‖. (5.2)
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Thus dJp(un) → 0 if and only if there exists a sequence {λn} of real numbers such
that J ′p(un)− λnG′

p(un) → 0.

In the next lemma we prove the compactness of the map G+
p , that we use for

showing that the map Jp satisfies P.S. condition on M .

Lemma 5.6. The map G+
p
′ : X → X ′ is compact.

Proof. Let un ⇀ u in X and v ∈ X. Let q be the conjugate exponent of p. Now
using the Lorentz-Sobolev embedding and the Hölder inequality available for the
Lorentz spaces, one can verify the following:

(|un|p−2un − |u|p−2u) ∈ L
( p∗

p− 1
,

p

p− 1

)
,

(g+)1/q(|un|p−2un − |u|p−2u) ∈ L(
p

p− 1
,

p

p− 1
)

(g+)1/p|v| ∈ L(p , p)∥∥(g+)1/pv
∥∥

p
≤ C‖g+‖1/p

(N/p,∞)‖v‖(p∗,p)

where C is a constant that depends only on p, N . Now by using the usual Hölder
inequality we obtain

|〈G′
p(un)−G′

p(u), v〉|

≤
∫

Ω

g+|(|un|p−2un − |u|p−2u| |v|

≤
( ∫

Ω

g+|(|un|p−2un − |u|p−2u)|p/(p−1)
)(p−1)/p( ∫

Ω

g+|v|p
)1/p

≤ ‖g+‖1/p
(N/p,∞)‖v‖(p∗,p)

( ∫
Ω

g+|(|un|p−2un − |u|p−2u)|p/(p−1)
)(p−1)/p

Thus

‖G′
p(un)−G′

p(u)‖ ≤ ‖g+‖1/p
(N/p,∞)

( ∫
Ω

g+|(|un|p−2un − |u|p−2u)|p/(p−1)
)(p−1)/p

Now it is sufficient to show that( ∫
Ω

g+|(|un|p−2un − |u|p−2u)|p/(p−1)
)(p−1)/p

→ 0, as n →∞.

Let ε > 0 and gε ∈ C∞
c (Ω) be arbitrary.∫

Ω

g+|(|un|p−2un − |u|p−2u)|p/(p−1)

=
∫

Ω

gε|(|un|p−2un − |u|p−2u)|p/(p−1) +
∫

Ω

(g+ − gε)|(|un|p−2un − |u|p−2u)|p/(p−1)

(5.3)

First we estimate the second integral. Observe that
∣∣(|un|p−2un − |u|p−2u)

∣∣p/(p−1)

is bounded in L(p∗

p , 1). Let

m = sup
n
‖
∣∣(|un|p−2un − |u|p−2u

)∣∣p/(p−1)‖
( p∗

p ,1)
,∫

Ω

|(g+ − gε)||(|un|p−2un − |u|p−2u)|p/(p−1) ≤ Cm
∥∥(

g+ − gε

)∥∥
(N/p,∞)
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where the constant C includes all the constants that appear in the Hölder inequality
and the Lorentz-Sobolev embedding. Now since g+ ∈ FN/p, from the definition of
FN/p, we can choose gε ∈ C∞

c (Ω) such that

m‖(g+ − gε)‖(N/p,∞) <
ε

2C

Thus we can make the second integral in (5.3) smaller than ε
2 for a suitable choice

of gε. Since X is embedded compactly into Lp
loc(Ω), the first integral converges to

zero up to a subsequence {unk
} of {un}. Hence we obtain k0 ∈ N so that,∫

Ω

g+|(|unk
|p−2un − |u|p−2u)|p/(p−1) < ε, ∀ k > k0.

Now the uniqueness of limit of subsequence helps us to conclude, as in Lemma
4.1, that

( ∫
Ω

g+|(|un|p−2un − |u|p−2u)|p/(p−1)
)(p−1)/p → 0 as n → ∞. Hence the

proof. �

Definition 5.7. For λ ∈ R+, we define Aλ : X → X ′ as

Aλ = Jp
′ + λ G−

p
′
.

In the next proposition we show that the map Jp indeed satisfies P.S. condition
on the M .

Porposition 5.8. Jp satisfies P.S. condition on M .

Proof. Let {un} be a sequence in M , such that Jp(un) → λ and dJp(un) → 0. Thus
there exists a sequence {λn} such that

J ′p(un)− λnG′
p(un) → 0 as n →∞, (5.4)

Since Jp(un) is bounded, using the estimate (5.1), we see that {G−
p (un)} is bounded.

Thus the sequence {un} is bounded in X and hence by the reflexivity we may assume
passing to a subsequence that un ⇀ u. Since G+

p is weakly continuous, we obtain
G+

p (un) → G+
p (u). Now by Fatou’s lemma,∫

Ω

g−|u|p ≤ lim inf
∫

Ω

g+|un|p − 1 =
∫

Ω

g+|u|p − 1. (5.5)

Thus
∫
Ω

g|u|p ≥ 1 and hence u 6= 0. Further, λn → λ as n →∞, since

p(Jp(un)− λn) = 〈J ′p(un)− λnG′
p(un), un〉 → 0.

Now we write (5.4) as
Aλn(un)− λnG+

p
′(un) → 0.

Since λn → λ, we obtains Aλn(un) − Aλ(un) → 0. Now the compactness of G+
p
′

yields the strong convergence of Aλ(un) and hence 〈Aλ(un), un − u〉 → 0. Since
un ⇀ u, using [24, Lemma 4.3] one obtain un → u. �

We borrow an idea from [18, Proposition 4.2], for the proof of the following
lemma.

Lemma 5.9. For each n ∈ N, the set Γn 6= ∅.
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Proof. The idea is to construct odd continuous maps from Sn−1 → M , for each
n ∈ N. Let Ω+ = {x : g+(x) > 0}. Since |Ω+| > 0, using the Lebesgue-Besicovitch
differentiation theorem, one can choose n points x1, x2, . . . xn in Ω+ such that

lim
r→0

1
|Br(xi)|

∫
Br(xi)

g(y)dy = g(xi) > 0.

Thus there exists R > 0, such that BR(xi) ∩BR(xj) = ∅ and∫
Br(xi)

g(y)dy > 0, for 0 < r < R.

Now one can choose r such that 0 < r < R and∫
BR(xi)\Br(xi)

|g(y)|dy <

∫
Br(xi)

g(y)dy (5.6)

Let ui ∈ C∞c (BR(xi)) such that 0 ≤ ui(x) ≤ 1 and ui ≡ 1 on Br(xi). Now using
(5.6) we have the following∫

BR(xi)

g|ui|p =
∫

Br(xi)

g +
∫

BR(xi)\Br(xi)

g|ui|p ≥
∫

Br(xi)

g −
∫

BR(xi)\Br(xi)

|g| > 0

Thus we obtain vi = ui/(
∫
Ω

g|ui|p)1/p ∈ M . Note that the support of vis are dis-
joint. Now for α = (α1, α2, . . . αn) ∈ Rn with

∑
|αi|p = 1, we have

∑
αivi ∈ C∞

c (Ω)
and

∫
Ω

g|
∑

αivi|p = 1. It is easy to see that the map φ(α) =
∑

αiui is an odd
continuous map from Sn−1 into M . Thus φ(Sn−1) is compact and symmetric about
origin. Now from the definition of genus it follows that γ(φ(Sn−1)) ≥ γ(Sn−1) =
n. �

Now we are in a position to adapt the Ljusternik-Schnirelmann theorem avail-
able for C1 manifold in our situation and prove the existence of infinitely many
eigenvalues for (1.1).

Proof of Theorem 1.3. Since J and M satisfy all the requirements of Theorem 5.1,
for each j ∈ N, we have γ(Kcj ) ≥ 1. Thus Kcj 6= ∅ and hence there exist uj ∈ M
such that dJ(uj) = 0 and J(uj) = cj . Therefore cj is an eigenvalue of (1.1) and uj

is an eigenfunction corresponding to cj .
A proof for the unboundedness of the sequence {cn} is given in [9](see Theorem

2). For the sake of completeness we adapt their idea in our situation. Recall that
the space X is separable (see [1, (3.5)]) and hence X admits a biorthogonal system
{em, e∗m}, (see [21, Proposition 1.f.3]) such that

{em,m :∈ N} = X, e∗m ∈ X ′, 〈e∗m, en〉 = δn,m,

〈e∗m, x〉 = 0, ∀m ⇒ x = 0.

Let En = span{e1, e2, . . . , en} and let

E⊥
n = span{en+1, en+2, . . . }.

Since E⊥
n−1 is of codimension n− 1, for any A ∈ Γn we have A∩E⊥

n−1 6= ∅ (see [25,
Proposition 7.8]). Let

µn = inf
A∈Γn

sup
A∩E⊥n−1

J(u), n = 1, 2, . . .

Now we show that µn → ∞. If possible let {µn} be bounded, then there exists
un ∈ E⊥

n−1 ∩M such that µn ≤ J(un) < c for some constant c > 0. Since un ∈ M ,
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the estimate (5.1) shows that un is indeed bounded in X. Thus un ⇀ u for some
u ∈ X. Now by the choice of biorthogonal system, for each m, 〈e∗m, un〉 → 0 as
n →∞. Thus un ⇀ 0, in X and hence u = 0, a contradiction to

∫
Ω

g|u|p ≥ 1 (see
the conclusion followed estimate (5.5)). Therefore, µn →∞ and hence cn →∞ as
µn ≤ cn. �

Remark 5.10. If g− ∈ FN/p \ {0}, then there exists a sequence µn of negative
eigenvalues of (1.1) tending to −∞. Further, µ1 is simple and it is the unique
negative principal eigenvalue of (1.1).

6. Remarks

In this section we remark about possible extensions and applications of weighted
eigenvalue problems for the p-Laplacian.

One can study the existence of ground states for the ∆p operator with a more
general subcritical nonlinearities in the right hand side. More precisely, for given
locally integrable functions V, g on a domain Ω ⊂ RN with V ≥ 0 but g allowed to
change sign, we look for the positive solutions in D1,p

0 (Ω) for the problem

∆pu + V |u|p−2u = λg|u|q−2u, u ∈ D1,p
0 (Ω), (6.1)

where q ∈ [p, p∗) and 1 < p < N .

Remark 6.1. Indeed, one can show that if g+ ∈ Fep \ {0} with 1ep + q
p∗ = 1,

then (6.1) has a positive solution. If one verify that G(u) =
∫
Ω

g+|u|q is compact,
then by arguing as in Proposition 4.2, it is immediate that

∫
Ω
{|∇u|p + V |u|p} has

a positive minimizer on Mq = {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|q = 1}. Also using the

homogeneity of the Rayleigh quotient R =
R
Ω{|∇u|p+V |u|p}

(
R
Ω g|u|q)

p
q

corresponding to (6.1)

we obtain a minimizer of R on {u ∈ D1,p
0 (Ω) :

∫
Ω

g|u|q > 0} and hence a positive
solution of (6.1). For the positivity of this minimizer one can use [18, Proposition
5.3].

Remark 6.2. Let g be as in the above remark. Then the following generalized
Hardy-Sobolev inequality holds( ∫

Ω

g|u|q
)q/p

≤ 1
λ1

∫
Ω

{|∇u|p + V |u|p}, ∀u ∈ D1,p
0 (Ω),

∫
Ω

g|u|q > 0 (6.2)

where λ1 is the minimum of
∫
Ω
{|∇u|p + V |u|p} on Mq. Further the best constant

is attained. This extends the results of Visciglia [31] for p 6= 2.

Remark 6.3. The existence of a simple eigenvalue for (1.1) can be applied to study
the bifurcation phenomena of the solutions for the semilinear problem of the type

−∆pu = λ
(
a(x)u + b(x)r(u)

)
, u ∈ D1,p

0 (Ω) (6.3)

for a real parameter λ when a, b are in certain sub class of weak Lebesgue space
with a suitable growth condition on r. Such a result is available for p = 2 see in
[6]. We deal with this question in a subsequent work.
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equations, Birkhäuser advanced texts, Springer, 2007.

[14] D. E. Edmunds; W. D. Evans; Hardy operators, function spaces and embeddings, Springer
monographs in mathematics, Springer, 2004.

[15] Jacqueline Fleckinger-Pelle, Jean-Pierre Gossez, de Francois de Thelin; Principal eigenvalue
in an unbounded domain and a weighted Poincaré inequality, Contributions to nonlinear
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