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COMPARISON THEOREMS FOR RICCATI INEQUALITIES
ARISING IN THE THEORY OF PDE’S WITH p-LAPLACIAN

ONDŘEJ DOŠLÝ, SIMONA FIŠNAROVÁ, ROBERT MAŘÍK

Abstract. In this article, we study a Riccati inequality that appears in the
theory of partial differential equations with p-Laplacian. Our results allow
to compare existence and nonexistence of positive solutions for Riccati type
inequalities which are associated with equations with different powers p.

1. Introduction

In this article, we consider a problem which is closely related to the second-order
elliptic half-linear differential operator; i. e., the operator with the p-Laplacian

∆pu(x) = div(‖∇u(x)‖p−2∇u(x))

and signed power-type nonlinearity of degree p− 1:

L[u](x) := ∆pu(x) + c(x)|u(x)|p−2u(x), (1.1)

where p > 1 and the norm ‖·‖ is the Euclidean norm. The corresponding differential
equation

L[u] = 0 (1.2)
attracted a considerable attention in the last years because of its applications in
physics, glaceology, and biology, see the recent book [7] which summarizes results
related to this equation up to 2005 and also the book [15] which deals with the
application aspects of the problem.

Many problems related to the theory of equation (1.2) can be studied using the
corresponding Riccati type operator

R[w](x) := div w(x) + c(x) + (p− 1)‖w(x)‖q, (1.3)

where q = p
p−1 is the conjugate number to the number p. In this paper we study

the Riccati type partial differential inequality

R[w] ≤ 0. (1.4)

Throughout the paper we suppose for simplicity that c(x) is a Hölder continuous
function on a domain with piecewise smooth boundary Ω ⊆ Rn and the domain
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of the operators (1.1) and (1.3) is the set of C2(Ω, R) and C1(Ω, Rn) functions,
respectively.

The oscillation theory for (1.2) is similar to the classical oscillation theory of
linear second order differential equations. Among others, it turns out that the
Sturm type comparison theorems extend to (1.2) and equations can be classified as
oscillatory or nonoscillatory. There are many results which guarantee that equation
(1.2) is oscillatory; i. e., it possesses no positive solution on any exterior domain
in Rn. This is partly due to the fact that each known oscillation criterion for the
half-linear ordinary differential equation(

r(t)|u′|p−2u′
)′ + c(t)|u|p−2u = 0, (′ =

d
dt

), (1.5)

can be extended easily to equation (1.2) using results of [5] and [11]. Roughly
speaking, oscillation of (1.2) can be deduced if (1.2) is a majorant (in the sense of
integral average over spheres) of some radially symmetric equation, which can be re-
duced into an oscillatory ordinary differential equation. There is also an alternative
approach (see [12]), which is based on the fact that the substitution w = ‖∇u‖p−2∇u

|u|p−2u

transforms a nonzero solution of (1.2) into a solution of the Riccati type equation

R[w] = 0. (1.6)

Then one can employ integration over balls to convert (1.6) into an inequality in
one variable and finally to follow known methods from the one-dimensional case,
to finish the proof of the corresponding oscillation criteria. This approach allows
(among others) to deal with more general unbounded domains than exterior ones.
In the application of the Riccati technique in proofs of oscillation criteria, we prove
in fact that the Riccati equation (1.6) has no solution on the domain under con-
sideration (usually the complement of a ball centered at the origin with arbitrarily
large radius). Criteria for the nonexistence of solutions of (1.4) and (1.6) have been
derived in [13].

In contrast to a voluminous literature devoted to oscillation criteria, there are
only a few nonoscillation criteria, even for the linear operator

L2[u] := ∆u + c(x)u (1.7)

and the linear equation L2[u] = 0, which is a special case p = 2 in (1.2). Neglecting
some trivial results based on a comparison with radially symmetric nonoscillatory
majorant, we have only a few results based on the investigation of positive solutions
of the inequality L2[u] ≤ 0 (see [2, 8]) or of the Riccati equation R2[w] = 0 with
the operator

R2[w] = div w + c(x) + ‖w‖2 (1.8)

and the inequality R2[w] ≤ 0 (see [8]).
The approach based on the investigation of the inequality L2[u] ≤ 0 can be

also used for half-linear equations. Indeed, Allegretto and Huang [1] used Picone’s
identity and Harnack’s inequality to prove the following theorem (g and g1 are
supposed to belong to Ln/p(Ω) ∩ L∞loc(Ω)).

Theorem 1.1. Suppose that the inequality −∆pu ≥ g1|u|p−2u has a positive solu-
tion in Ω. If g ≤ g1 in Ω, then so does the inequality −∆pu = g|u|p−2u.
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Eliason and White [8] proved the following theorem for linear operator L2 defined
on R2. As mentioned in [8], this result extends to the more general operator

div(r(x)∇u) + c(x)u

with an elliptic matrix r(x) and x ∈ Rn.

Theorem 1.2. The inequality R2[w] ≤ 0 has a conservative C1(G) vector field
solution w on a subdomain G ⊆ Ω ⊆ R2 if and only if the equation R2[w] = 0
has one; and this holds if and only if the equation L2[u] = 0 has a positive C2(G)
solution on G.

The aim of this article is to extend Theorem 1.2 to half-linear equations. This
extension shows that the associated Riccati inequality (1.4) plays an important
role not only in oscillation criteria, but also in problems related to the existence of
(eventually) positive solutions, which are closely related to nonoscillation criteria.

Another aim of this article is to prove some comparison results for the existence
of a solution of the Riccati type inequality. It is a well known fact from the the-
ory of ordinary half-linear equations (1.5), that bigger p speeds up oscillation of
the equation, see [14, 16]. Another approach which allows to compare oscillatory
properties of half-linear differential equations with different power in nonlinearity
appeared in works [4, 6, 9]. More precisely, the oscillation properties of half-linear
equations are studied within the framework of the linear equations, as the following
theorem shows.

Theorem 1.3 ([4, Theorem 1 and Theorem 2]). Denote Φ(x) = |x|p−2x and sup-
pose that the equation (

r̃(t)Φ(x′)
)′ + c̃(t)Φ(x) = 0 (1.9)

is nonoscillatory and possesses a positive solution h(t) such that h′(t) 6= 0 for large
t. Consider the equations (

r(t)Φ(x′)
)′ + c(t)Φ(x) = 0 (1.10)

and
(R(t)y′)′ +

p

2
C(t)y = 0, (1.11)

where

C(t) = h(t)
[(

(r(t)− r̃(t))Φ(h′(t))
)′

+ (c(t)− c̃(t))Φ(h(t))
]

and R(t) = r(t)h2(t)|h′(t)|p−2.

(1) If p ≥ 2 and (1.11) is nonoscillatory, then (1.10) is also nonoscillatory.
(2) If p ∈ (1, 2] and (1.11) is oscillatory, then (1.10) is also oscillatory.

The second aim of this paper is to provide a version of Theorem 1.3 suitable for
a differential inequality which appears in the theory of (1.2). In addition to the
fact that we introduce a multidimensional version, we also provide more freedom in
comparison. More precisely, we follow the idea suggested in [10] and the equation
which is used as a replacement for (1.11) need not to be linear. However, we do not
formulate the comparison theorems directly for the second order PDE’s, but for
the corresponding Riccati type inequalities. For an explanation and more details
see Remarks 3.3 and 3.4 at the end of the paper.
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2. Preliminary results

In this section we present some technical lemmas which allow us to formulate
our main results in the last section.

First of all, we find (in Lemma 2.2 below) an upper and lower estimate for a
function

P (u1, u2) =
‖u1‖p

p
− 〈u1, u2〉+

‖u2‖q

q
(2.1)

which appears frequently in the qualitative theory of equations with p-Laplacian. In
the proof of Lemma 2.2 we show that the problem can be reduced to an inequality
for a function in one variable, which is studied in Lemma 2.1 below. Further, we
derive an inequality between two Riccati type operators. This inequality is used to
prove our main results.

Lemma 2.1. Let q = p
p−1 and consider the function

f(t) =
|t|q

q
− t +

1
p
− 4

α2α
|t− 1|α,

where α ∈ [2, q] in the case 1 < p ≤ 2 and α ∈ [q, 2] for p ≥ 2. Then f(t) ≥ 0 for
1 < p ≤ 2 and f(t) ≤ 0 for p ≥ 2.

Proof. If p = 2, then f ≡ 0. Consider the case p < 2; i. e., q > 2, the case p > 2
can be treated analogically. We have

f ′(t) = Φq(t)− 1− 4
2α

Φα(t− 1), f ′′(t) = (q − 1)|t|q−2 − 4(α− 1)
2α

|t− 1|α−2,

where Φq(t) = |t|q−2t, Φα is defined analogically. Hence f ′(−1) = 0 = f ′(1),
f(−1) = 2− 4

α ≥ 0, and f ′′(−1) = q − α ≥ 0. Drawing the graphs of the functions

|t| and
(

4(α−1)
2α(q−1)

) 1
q−2 |t − 1|

α−2
q−2 shows that the equation f ′′(t) = 0 has exactly 2

roots, one positive in the interval (0, 1), and one negative in [−1, 0). Hence f ′′ is
positive outside of the interval determined by these roots and negative inside of it.
This means that f has at both stationary points t = ±1 nonnegative local minima.
This also implies that the equation f ′(t) = 0 may have at most one zero in (−1, 1),
where the function f attains a positive local maximum. Consequently, summarizing
these facts about the graph of the functions f we obtain that f(t) ≥ 0 for t ∈ R. �

Observe also that substituting t → −t gives for q ≥ 2 the inequality
|t|q

q
+ t +

1
p
− 4

α2α
|t + 1|α ≥ 0, t ∈ R (2.2)

and the opposite inequality for q ∈ (1, 2].
The following lemma is an extension of [3, Lemma 2.4] which deals with the

scalar case and α = 2.

Lemma 2.2. (i) Let p ≥ 2 and ‖u1‖ 6= 0. Then for every α ∈ [q, 2] there
exists a number γ(α, p) such that

P (u1, u2) ≤ γ(α, p)‖u1‖(p−1)(q−α)‖u2 − ‖u1‖p−2u1‖α. (2.3)

(ii) Let p ∈ (1, 2]. Then for every α ∈ [2, q] there exists a number γ(α, p) such
that

P (u1, u2) ≥ γ(α, p)‖u1‖(p−1)(q−α)‖u2 − ‖u1‖p−2u1‖α. (2.4)
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Remark 2.3. In the proof we will show that we can take γ(α, p) = 4/α2α. How-
ever, the numerical computations show that this constant is not optimal and can
be improved. To find this optimal constant is a subject of the present investigation.

Proof of Lemma 2.2. Observe that (2.4) trivially holds for ‖u1‖ = 0. Therefore,
in the remaining part of the proof we suppose ‖u1‖ 6= 0. We will prove the first
statement of lemma (p ≥ 2), the proof of the second part is analogical. By dividing
both sides of (2.3) with the factor ‖u1‖p we get the inequality

1
p
−

〈 u1

‖u1‖
,

u2

‖u1‖p−1

〉
+
‖ u2
‖u1‖p−1 ‖q

q
≤ γ(α, p)‖ u2

‖u1‖p−1
− u1

‖u1‖
‖α. (2.5)

Define x = u2
‖u1‖p−1 and a = u1

‖u1‖ . Then ‖a‖ = 1 and (2.5) can be written in the
form

‖x‖q

q
− 〈a, x〉+

1
p
≤ γ(α, p)‖x− a‖α. (2.6)

As mentioned above, we show that this inequality holds with γ(α, p) = 4
α2α .

Let g(x) = 〈x, a〉 + 4
α2α ‖x − a‖α. We will examine the minimal value of this

function over the sphere ‖x‖ = t, t ≥ 0. Any x ∈ Rn can be written in the form
x = µa + νa⊥ for some unit vector a⊥ with 〈a, a⊥〉 = 0. Then

t2 = ‖x‖2 = 〈µa + νa⊥, µa + νa⊥〉 = µ2 + ν2.

We have

g(x) =〈µa + νa⊥, a〉+
4

α2α
〈µa + νa⊥ − a, µa + νa⊥ − a〉α/2

=µ +
4

α2α
(t2 − 2µ + 1)α/2.

Now we solve the extremal problem g(x) → min, ‖x‖ = t which can be written in
the form

µ +
4

α2α
(t2 − 2µ + 1)α/2 → min, µ ∈ [−t, t].

Since α/2 ≤ 1, the minimized function is concave and hence it attains its minimum
over [−t, t] at the boundary point of this interval; i. e.,

g(x)
∣∣
‖x‖=t

≥ min
{
− t +

4
α2α

|t + 1|α, t +
4

α2α
|t− 1|α

}
.

Consequently, inequality (2.6) holds if

|t|q

q
+

1
p
∓ t− 4

α2α
|t∓ 1|2 ≤ 0.

But this is just the inequality from Lemma 2.1 for the sign “−” or its equivalent
reformulation after the substitution t → −t (see (2.2) in case q ∈ (1, 2]) . The
Lemma is proved. �

The next lemma presents a link between two Riccati type operators, namely
the operator which corresponds to half-linear equation (1.2) (the power at the
dependent variable is q) and the Riccati operator with α-degree nonlinearity, where
α ∈ [min{q, 2},max{q, 2}].

Lemma 2.4. Let h ∈ C2(Ω, R+). Define G = h‖∇h‖p−2∇h and v = hpw − G.
Further, let α ∈ [min{q, 2},max{q, 2}] and γ(α, p) be the number from Lemma 2.2.
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(i) If 1 < p ≤ 2, then

hpR[w] ≥ div v + hL[h] + γ(α, p)ph−α‖∇h‖(p−1)(q−α)‖v‖α (2.7)

holds on Ω.
(ii) If p ≥ 2 and ‖∇h‖ 6= 0 on Ω, then

hpR[w] ≤ div v + hL[h] + γ(α, p)ph−α‖∇h‖(p−1)(q−α)‖v‖α (2.8)

holds on Ω.

Proof. We start with the following obvious identities

div G = ‖∇h‖p + h∆ph (2.9)

and
hp div w = hp div(h−p(v + G))

= div v + div G− ph−1〈v + G,∇h〉
= div v + ‖∇h‖p + h∆ph− ph−1〈v + G,∇h〉.

(2.10)

Now a direct computation shows

hpR[w] = hp div w + hpc(x) + (p− 1)hp‖w‖q

= div v + ‖∇h‖p + h∆ph− ph−1〈v + G,∇h〉+ hpc(x) + (p− 1)h−q‖hpw‖q

= div v + hL[h] + ph−q
(‖hq−1∇h‖p

p
− 〈v + G, hq−1∇h〉+

‖v + G‖q

q

)
= div v + hL[h] + ph−qP (hq−1∇h, v + G).

For u1 = hq−1∇h and u2 = v + G we have

‖u1‖(p−1)(q−α)‖u2 − ‖u1‖p−2u1‖α

= h(q−1)(p−1)(q−α)‖∇h‖(p−1)(q−α)‖v + G− h‖∇h‖p−2∇h‖α

= hq−α‖∇h‖(p−1)(q−α)‖v‖α.

Now the lemma follows from the estimates in Lemma 2.2. �

3. Main results

In this section we introduce the main results of the paper. Since most of the work
has been already done in the previous section, the proofs are short and straightfor-
ward. Our first theorem certifies the importance of Riccati type inequality (1.4) in
the theory of half-linear differential equations (1.2).

Theorem 3.1. The following statements are equivalent:
(i) The equation L[u] = 0 has a positive C2 solution on Ω.
(ii) The inequality L[u] ≤ 0 has a positive C2 solution on Ω.
(iii) The equation R[w] = 0 has a C1 solution w on Ω such that the vector field

‖w‖q−2w is conservative.
(iv) The inequality R[w] ≤ 0 has a C1 solution w on Ω such that the vector field

‖w‖q−2w is conservative.

Proof. Define

w =
‖∇u‖p−2∇u

|u|p−2u
. (3.1)
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By a direct calculation, the i-th component of the vector w satisfies

∂wi

∂xi
=

∂
∂xi

(
‖∇u‖p−2 ∂u

∂xi

)
|u|p−2u

− (p− 1)
‖∇u‖p−2 ∂u

∂xi

|u|p
∂u

∂xi

and summing up over all independent variables we get

div w =
div

(
‖∇u‖p−2∇u

)
|u|p−2u

− (p− 1)
‖∇u‖p−2

|u|p
‖∇u‖2

=
div

(
‖∇u‖p−2∇u

)
|u|p−2u

− (p− 1)‖w‖q.

Using this computation we easily observe that

R[w] =
L[u]

|u|p−2u
(3.2)

holds.
(i) =⇒ (iii). Follows from (3.2) and from the fact that if w is defined by (3.1),

then ‖w‖q−2w = ∇u
u = ∇(lnu) and ln u is a scalar potential to ‖w‖q−2w.

(iii) =⇒ (iv). Clearly holds.
(iv) =⇒ (ii). Since ‖w‖q−2w has a scalar potential, there exists a scalar function

ϕ, such that ∇ϕ = ‖w‖q−2w. Define function u = eϕ. The function u satisfies (3.1)
and in view of (3.2) the implication holds.

(ii) =⇒ (i). Follows from Theorem 1.1. �

Our second theorem relates two Riccati type inequalities. One of them is in-
equality (1.4) which is associated to the half-linear equation with p-Laplacian (1.2)
(the dependent variable appears in the inequality in the power q), while the second
one contains the dependent variable in the power α; i. e., the equation is associated
with a half-linear PDE with β-degree Laplacian, where β is the conjugate number
to the number α (see also Remark 3.3 below).

Theorem 3.2. Let h ∈ C2(Ω, R+).
(i) Let p ∈ (1, 2], (1.4) has a C1 solution on Ω, α ∈ [2, q] be arbitrary number

and γ(α, p) be the number from Lemma 2.2. Then

div v + h(x)L[h(x)] + pγ(α, p)h−α(x)‖∇h(x)‖(p−1)(q−α)‖v‖α ≤ 0 (3.3)

has also a C1 solution on Ω.
(ii) Let p ≥ 2, α ∈ [q, 2] be arbitrary number, γ(α, p) be the number from Lemma

2.2 and let h satisfy ‖∇h‖ 6= 0 on Ω. If (3.3) has a C1 solution on Ω, then
(1.4) has also a C1 solution on Ω.

The proof of the above theorem is a direct consequence of the inequalities from
Lemma 2.4.

Remark 3.3. Suppose that both h and ‖∇h‖ do not vanish in Ω. The equation

div v + h(x)L[h](x) + pγ(α, p)h−α(x)‖∇h(x)‖(p−1)(q−α)‖v‖α = 0

is the Riccati equation for the second order partial differential equation

div
(
A(x)‖∇u‖β−2∇u

)
+ h(x)L[h](x)|u|β−2u = 0, (3.4)
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where β = α
α−1 and A(x) =

[
pγ(α,p)

β−1

]1−β

hβ(x)‖∇h(x)‖p−β . Thus if (3.4) has a

positive solution on Ω, then (3.3) has a solution. Conversely, if (3.3) has a C1

solution v on Ω and ‖v‖α−2v is conservative, then (3.4) has a positive C2 solution
on Ω. If α = 2, then (3.4) becomes the linear partial differential equation

div
(
h2(x)‖∇h(x)‖p−2∇u

)
+

p

2
h(x)L[h](x)u = 0.

In this case, Theorem 3.2 allows us to transfer results from the linear theory to
half-linear equations.

Remark 3.4. Note that we are not able to guarantee that the condition on the
existence of scalar potential from (iv) part of Theorem 3.1 holds. For this reason
we are not able yet to formulate the results from Theorem 3.2 in terms of second
order half-linear differential equations, like in Theorem 1.3.
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