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MULTIPLICITY OF POSITIVE SOLUTIONS FOR A NAVIER
BOUNDARY-VALUE PROBLEM INVOLVING THE
p-BIHARMONIC WITH CRITICAL EXPONENT

YING SHEN, JIHUI ZHANG

ABSTRACT. By using the Nehari manifold and variational methods, we prove
that a p-biharmonic system has at least two positive solutions when the pair
the parameters satisfy certain inequality.

1. INTRODUCTION

In this article, we consider the multiplicity results of positive solutions of the
semilinear p-biharmonic system

1 OF
A Aufr-2Ay) = L IE@ W) a2 o)
p** ou
_ 1 0F(z,u,v) _ .
A(JAv|P2Av) = TR TR + plv]T%v i Q, (1.1)

w>0, v>0 inQ,
u=v=Au=Av=0 on 0,

where zo € 2 is a bounded domain in RY with smooth boundary 92, F € C'(Q x
(RT)2,R™) is positively homogeneous of degree p** = Np_l\gp which is the Sobolev
critical exponent; that is, F(z, tu, tv) = t?" F(x,u,v) (t > 0) holds for all (z,u,v) €
Q x (R*)2 (8F(g&”’v), aF(g;j“’v)) = VF. We assume that 1 < ¢ < p < &, A >0,
w>0.

In recent years, there have been many article concerned with the existence and
multiplicity of positive solutions for p-biharmonic elliptic problems. Results relating
to these problems can be found in [5] [7, 10, T2 13} 14, [15] [16] and the references
therein.
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Brown and Wu [2] considered the semilinear elliptic system

—Au+u= aiﬁf(a:)|u|a_2u\v|6 in Q,

—Av+v = O/%Bf(x)|u|“|v|ﬁ_zv in £, (1.2)
ou ov
Z 7 = q—2 7 q—2
n Ag(x)|u| ™% u, o ph(z)|v|?%v  on IN.

where a > 1, 8 > 1 satisfying 2 < a4+ 8 < 2* and the weight functions f, g, h are
satisfying the following conditions:

(A) feC(Q) with || fllc =1 and f* = max{f,0} # 0;

(B) g,h € C(09) with ||g|lec = |hllc = 1, g& = max{#g,0} # 0 and h* =

max{£h,0} Z 0.

They showed that (|1.2)) has at least two negative solutions if the pair of the param-
eters (A, 1) belongs to a certain subset of R2.

Recently, Hsu [IT] considered the case F(z,u,v) = 2|u|*[v|?, a > 1,3 > 1 satis-
fying a + B = p*; i.e., the elliptic system:

2a
—Ayu = ul*2ulvl? + Aul? %0 in Q,
gt = ol + A
20 _ _ . (1.3)
Ay v = wl®w]? 20 + plv|9"%0  in Q,
o = gl ol 20+

u=v=0 on 0N.

By variational methods, he proved that has at least two positive solutions if
the pair of the parameters (), 1) belongs to a certain subset of R?.

In this article, we give a simple variational method which is similar to the “fiber-
ing method” of Pohozaev’s ( see [8,[]) to prove the existence of at least two positive
solutions of problem . Throughout this paper, we let .S be the best Sobolev
embedding constant defined by

g Jo |1AulPdx
= 1 PN
ueW2p(@QNW P (\{0} (fq |ulP™ dz)7™
and let
pP—q » P —q 2ioa p N, g
Op7QaNaK,S,Q = pTT—a Q| » p—a S2p P—q,
q._pr_
CO = (E)piq C(p7 q, Na K7 S? ‘QD

For our results, we need the following assumptions:

(F1) F: Q xRt x R* — Rt is a C! function and F(x,tu,tv) = t* F(z,u,v)
for all t > 0 and z € Q, (u,v) € (RT)%

(F2) F(z,u,0) = F(z,0,v) = ‘Z—Z(m,u,O) = %—Z(I,O,v) = 0, where u,v € RY;

(F3) 8F(§7;u’v), OF(;’)“’”) are strictly increasing functions about u and v for all
u>0,v>0.

From assumption (F1), we have the so-called Euler identity

(u,v) - VF(x,u,v) = p™ F(z,u,v) (1.4)
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and, for a positive constant K,
F(z,u,v) < K(Jul” + [o]P). (1.5)

Theorem 1.1. If A\, i satisfy 0 < AFT 4 i < C(p,q,N, K, S,|9]), and (F1)—
(F3) hold, then (1.1) has at least one positive solution.

Theorem 1.2. If \, ju satisfy 0 < A\7=7 + pi-1 < C, (F1)-(F3) hold, where Cj =

N-—2p
min{C*,Co}, and C* = min{d1,p,"" "' ,d2}, then (L.1) has at least two positive
solutions.

Remark 1.3. There are functions satisfying the conditions of Theorems [I.1] and
For example,

F(z,u,v) =

FR@)ul2[0572 + f3(x) 25 if (u,0) # (0,0),
0 if (u,v) =

where fi, fo € C(Q) N L>®(Q) with max{£f;,+f2,0} # 0. Obviously, F satisfy
(F1), (F2) and (F3).

This article is organized as follows: In Section 2, we give some notation and
preliminaries. In Section 3, we prove Theorems [I.1] and [T.2]

2. NOTATION AND PRELIMINARIES

Problem (1.1)) is posed in the framework of the Sobolev space E = (W%P(Q) N
WyP()) x (W2P(Q) N W, P(Q)) with the standard norm

I, )P = [ [Aufde + | [AvPde = [|Aullf, q) + 1AV]7, q)-
Q Q

In addition, we define [|ulz»0) = ([, |u|pdx)% as the norm of the Sobolev space
LP(Q).

A pair of functions (u*,v") € E, with (v := max{u, 0} and v+ := max{v,0}),
is said to be a weak solution of (L.1)) if

+ ot
/(|Au+\p72Au+Ag&1 + |A'U+|p72A'U+A(,02)d;p . 1* / M@ldl"
Q Q

p* ou
1 OF oot
L[ D e [ i ugnde — [ o1 upade = 0
p v Q Q

for all (1, ¢2) € E. Thus, by (1.4]) the corresponding energy functional of problem
(1.1) is defined by

1 1 1
Tt o) = Sl o) = = / Fau v )dn = 2o 07)
Q

for (ut,vt) € E, where Ky ,(u™,v") = X [, [uT|9dx 4 p [, [vT]9dz.
To verify Jy , € C*(E, R), we need the following lemmas.

Lemma 2.1. Suppose that (F3) holds. Assume that F € C1(Q x (RT)2,R*) is
positively homogeneous of degree p**, then %, % € C(Qx (RT)2,RY) are positively
homogeneous of degree p** — 1.
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The proof of the above lemma is almost the same as that in Chu and Tang [6],
and it is omitted.

From Lemma, we obtain the existence of a positive constant M such that for
all z € Q,

oF o o
|5 @ v)| < Ml 74 o), (2.1)
oF - . .
|5 @ v)| < Ml 7+ o), w0 € R (2.2)
v

As in Willem [I6] Theorem A.2], we consider the continuity of the superposition
operator
A:LP(Q) x LP(Q) — LYQ) : (u,v) — f(z,u,v).

Lemma 2.2. Assume that |Q| < 0o, 1 <p, r < oo, f € C(Q x R%,R) and
[f (2, u,0)] < ¢f " ol 7).

Then, for every (u,v) € LP(Q) x LP(Q), f(-,u,v) € L"(Q) and the operator A :
LP(Q) x LP(Q) — L"(Q): (u,v) — f(z,u,v) is continuous.

Now we consider the functional ¥ (u,v) fQ z,u,v)d.

Lemma 2.3. Assume that || < oo, gi, % € C(Q x (RT)?) satisfying (2.1,

[2.2)), then the functional 1 is of class C1(E,R*") and

N e

where (u,v), (a,b) € E

Proof. First, we proof the existence of the Gateaux derivative. Given z € € and
0 < || < 1, by the mean value theorem and (2.1]), (2.2)), there exists A; € [0,1] such
that

|F(z,u+ ta,v+tb) — F(x,u,v)|
2]
OF (z,u+thia,v+tA1d) OF (z,u +tA1a,v+tA1D)
al +|
ou v
< M(Ju+ a7 o+ 0P al + M(Ju+ a4 o4+ b
<272 M(Juf? e L o s [{ TR )
The Hélder inequality and the Sobolev imbedding theorem imply that
(i “HpfalPT T T (Jal + (b)) € LH9).
It follows from the Lebesgue theorem that
OF oF
W o () = [ (PR P gy,

Next, we proof the continuity of the Gateaux derivative. Assume that (un, vn)
(u,v) in E. By Sobolev imbedding theorem, (uy,,v,) — (u,v) in LP" (Q) x LP" (
By Lemma we obtain that VF(z,un,v,) — VF(z,u,v) in L?(Q) where 3 :
By the Holder inequality and Sobolev imbedding theorem,

OF (x, Uy, vy, OF (z,u,v
0 ) — (), a0y < | 2 e tn)  OTB )y e

bl

Tl

*x_q

o

**1
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OF (z,upn,vy) OF(x,u,v)

+ |l 5 — g, e lblle= ()
_1,,0F(z,up,v,) OF(x,u,v)
< ST (| 50 I e T2
OF (z,up,vn)  OF(z,u,v)

| ) OG0 o)

and so
_ OF (x,upn,vy) OF(x,u,v)
19/t ) — ) < 570 2 tn) QPG00
OF (z,un,v,)  OF(z,u,v)

+

lLs)) —0 asn — ooc.

ov ov
O

From the above lemmas, we have J) , € C*(E, R).
As the energy functional Jy , is not bounded below on FE, it is useful to consider
the functional on the Nehari manifold

Nau= {(uvv) € E\{(O,O)}KJ//\)M(u,v), (u’v» = O}'
Thus, (u,v) € Ny, if and only if

(Ta (w5 0), (w,0) = [[(u, v) [P = /QF(JJ,uyv)dx — Ky u(u,v) = 0. (2.3)

Note that Ny, contains every nonzero solution of problem (1.1). Moreover, we
have the following results.

Lemma 2.4. The energy functional Jy ,, is coercive and bounded below on Ny ;.

Proof. If (u,v) € N, then by the Holder inequality and the Sobolev imbedding
theorem,

Kok

P —p P —q
I ulu,v) = | (w, v)[|P — K u(u,v)

p** —p p p** —q ,_a P —a . _p_ _p . pP—q q
z =y M o) = =2 =S| (A7 4 prma) (s )
(2.4)
Thus, Jy , is coercive and bounded below on Ny . g

Define @ ,,(u,v) = (J} ,(u,v), (u,v)). Then for (u,v) € Ny,

< l/\,u(u7v)7 (’LL, ’U)> :p||(u7v)||p —p**/QF(l’,U,U)d[E - qK)H“(U,’U) (25)

—(p-p") / Fla,u,)de — (q - p)Kapluw)  (26)
Q
= (p— Dl v)|” - 5 —q) / F(z,u,v)da (2.7)
Q
=(@—=p")(w,0)||" = (g —p™")Kx u(u,v). (2.8)

Now, we split Ny , into three parts:
Ny o= {(u,0) € Naul (@, (u, 0), (w,0)) > 0}
NR o= {(u,0) € Ny (@), (u, 0), (w,v)) = 0);
Ny = {(u,0) € Nau|(®3,(u, ), (u, v)) <0},
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Then, we have the following results.

Lemma 2.5. Suppose that (ug,vo) is a local minimizer for Jx, on Ny, and that
(ug,vo) & Ng#. Then Jﬁ\yﬂ(uo,vo) =0 in E~' (the dual space of the Sobolev space

E).

Proof. If (ug,vo) is a local minimizer for Jy , on Ny ,, then (ug,vo) is a solution of
the optimization problem minimize Jy ,(u,v) subject to ® ,(u,v) = 0. Hence, by

the theory of Lagrange multiplies, there exists # € R, such that
Iy (uo,v) = 0 @), (ug,v0) in E7H(Q),

Thus,
(5,1 (10, v0), (w0, v0)) 5 = (P}, (w0, v0), (0, v0)) -
Since (ug,vo) € Ny, we have (J3  (uo,vo), (uo,v0)>E = 0. Moreover,
(@) ,,(uo,v0), (ug,v0))r # 0, by (2.9 . = 0. Thus, J} ,(uo,v0) = 0 in IOt

dual space of the Sobolev space E).

Lemma 2.6. If
0 <A77 + 77 < Clp,q, N, K, 5,9,
then NY , = 0.
Proof. Suppose otherwise, that is there exists A > 0, u > 0 with
0 < As™a + pta < Clp,q, N, K, S,|9)
such that N/(\),u # (. Then for (u,v) € N/(\),u’ by (2.7)), (2.8) we have

0= &,u(u,v)y(uvv»=(p—q)ll(u,v)llp—(p**—q)/QF(ﬂw,v)dx

= (p—p7)l(w, )" = (¢ = p™) Kx pu(u, v).
By the Minkowski inequality, the Sobolev imbedding theorem and (|1.5)),

p**

/QF(;v,u,v)dxSK(/Q(|U\”+|U|1”) » d:c) "

<K /|u|p dx /|v\p dx T

<KS_7 /|Au|pd:r+/ |Av\pdx> !

= K™ (w07
Thus,

P10 ooy

[l (u, )| > (m

and

>k 3k

P —q,-a
u,v)|| < S™r
[[(w, 0)| <p**7p

T (A 4 prte )

This implies , ,
Ar=i +pr—a > C(p,q, N, K, S, [9]),
which is a contradiction. Thus, we conclude that if
0 < Ar=7 + pima < O(p,q, N, K, S, |Q)),

0o _
we have Ny , = 0.

(2.9)

(the
]
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By Lemma [2.6] we write Ny , = N UNy, and define
W A p A p

0 = inf J s
A, (u,v;G o A,M(U ’U)

0y, = inf  Jy ,(u,v);
Ao (u, v)ENA " A”u( )

(9’ inf Inu(u,v).
A (u,v)ENy , )\’M( )

Then we have the following result.

Lemma 2.7. (i) If 0 < Arta 4 ,uﬁ < C(p,q, N, K, S,|Q|), then we have
9)\”“ < 9;# <0

(ii) f 0 < APd 4 uﬁ < Co, then 8y, > do for some constant
dO = dO(pvqa Na K7 S7 |Q|a)‘mu) > 0.
Proof. (i) Let (u,v) € N;u' By (2.7,

and so
nu(u, v) = (}9 §>||<uv>||p+$ /Fu
<[<$ §>+<§ e (OO
2p—q)

Thus, from the definition of ) , and 93{7“, we can deduce that 0, ,, < QIH < 0.
(i) Let (u,v) € Ny ,. By (2.7),

P w0l < / F(z,u,v)dz.
P = Q
Moreover, by the Minkowski mequahty, the Sobolev imbedding theorem, and (|1.5)),
/ F(a,u,v)de < KS™5 || (u,0) |7 (2.10)
Q
This implies
1w, 0)]| > (2L 75557 for all (u,v) € N, (2.11)
K(p** —q) A
By (2.4) in the proof of Lemma

s’k *k

2,0y = 2—L5-%
p

T (1, 0) > || (u, 0) 2

>k k

ok _ _ _
(—L2—2 )—p*f—,pS%[p —P Ut P e
sk _
sl (07 4 ) )

Thus, if 0 < \)\|ﬁ + |,LL|P%‘1 < Cp, then

Iau(u,v) >do  for all (u,v) € Ny,
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for some dy = do(p,q, N, K, S,|Q|, \, #) > 0. This completes the proof. O
For each (u,v) € E with [, F(x,u,v)dz > 0, set
(p — @)l(u,v)|”
p**—q) fQF(x,u,v)dx

Then the following lemma holds, which is similar to the one in Brown and Wu [2
Lemma 2.6].

tmax = (( )P**lfp > 0.

Lemma 2.8. For each (u,v) € E with [, F(x,u,v)dz > 0, there are unique 0 <
t+ < tmax <t~ such that (tTu,tTv) € N;‘)M, (tu,t7v) € Ny, and

Iy (tTu tto) = 0<ti£1tf Iap(tu,tv); Iyt u t™v) = igg I, p(tu, tv).

3. ProoF oF THEOREMS [I.1] AND [.2]
We will need the following lemma.
Lemma 3.1. (i) If0 < APd 4 uﬁ < C(p,q, N, K, S, |9|), then there exists
a (PS)e,.,-sequence {(un,vn)} C Nx,, in E for Jy u;
(i) if0 < A7-a +puv-a < Cy, then there exists a (PS)(;; -sequence {(tn,vn)} C
"
Ny, i E for Jy,..
The proof of the above lemma is almost the same as that in Wu [I7]; we omit it.
First, we establish the existence of a local minimum for J , on N ;r u
Theorem 3.2. If0 < Av-i +pi1 < C(p,q, N, K, S, |Q|) and (F1)-(F3) hold, then
I has a minimizer (ud,vg) in N;# and it satisfies
(i) Jau(ug,vg) =0, =0,
(ii) (ug,vd) is a positive solution of (I.1)).

Proof. By the Lemma i), there exists a minimizing sequence {(uy,v,)} for Jy ,
on N, , such that

I (Un,vn) = 0x o +0(1),  Jy ,(tn,vn) = 0(1) in E-! (3.1)
Then by Lemma[2.4)and the compact imbedding theorem, there exist a subsequence
{(tn,vn)} and (ug,vy) € E such that
u, — ug  weakly in W2P(Q) N W, P (Q),
u, — ug  strongly in LY(Q),
v, = vf  weakly in WP (Q) N W, P(Q),
v, — vy strongly in LY(Q).
This implies that K, (un,v,) — K u(ud,vf) as n — oo. By and (3.2), it
is easy to prove that (ug,vg) is a weak solution of (I.I). Since

P —q

**q

(3.2)

JA,/A(unaUn) = Up, ) |[P = KA,/A(unaUn)

=1

p

T

q
K)x,u(una Un)
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and by Lemma (1),
Inp(Un,vp) = 0x, <0 asn— oo.

Letting n — oo, we see that K ,(uf,vq) > 0. Thus, (ud,vy) is a nontrivial
solution of (L.1)).

Now it follows that u, — ugj strongly in W2P(Q) N Wl’p(Q) v, — vy strongly
in W2P(Q) N Wy P(Q) and Jy . (ud,vd) = O, By (uf,vg) € Ny, and applying
Fatou’s lemma, we obtain

Oxgn < Iapulug,0g)

*%

2 P —q
**II(Uo, vg)IIP — p—s K u(ud,vg)

2
< lim inf(f | (e, ) [P —

*ok

p

—q

K (un, vn
pre Al )
<liminf Jy ,(up,vn) = 0x

n—oo

This implies
Tau(ug,vg) = Oxp I (un, vn) [ = 1| (ug s vg)IIP-

Let (U, 0pn) = (un,vn) — (ug, vy ), then by Brézis-Lieb lemma [I],

1@, T )P = Nl (s 0) 1P = [l (g, v
Therefore, u,, — ug strongly in WZ’p(Q)ﬁW&’p(Q), v, — vy strongly in W2P(Q)N
WyP(). Moreover, we have (uf,v]) € NIM. In fact, if (ug,vd) € Ny
by Lemma there are unique ta' and ¢, such that ( Ug ,t+ +) € N;H and
(toug,tyvg ) € N, ,- In particular, we have td <ty = 1. Since

d n d?
o —utdud, tfvd) =0 and e

there exists t§ < # < t; such that Jy ,(tdud,tdvd) < Jxu(fugd,fvd). By Lemma

23

— D tdud  tdvg) >0,

I u(to uo vto Yo ) < I #(tuo vtvo ) < Iaulty “0 » 1o Vg ) JA,#(“J»”J%

which is a contradiction. It follows from the maximum principle that (u(‘f , va' ) is a
positive solution of ([1.1). This completes the proof. O

The following two lemmas are similar to those in Hsu [I1].

Lemma 3.3. If {(un,v,)} C E is a (PS).-sequence for Jy ,, with (un,v,) = (u,v)
i E, then J;’#(u,v) = 0, and there exists a positive constant A depending on

p,q, N, S and |Q|, such that J ,(u,v) > —A(NFTT i),

Lemma 3.4. If {(u,,vn)} C E is a (PS)c-sequence for Jy,, then {(un,vn)} is
bounded in E.

Define
[[(u, v)[P
(wv)eB " ([, F(x,u, v)d:c)?*L*

Sp = :/F(x,u,v)dx>0}.
Q

We need also the following version of Brézis-Lieb lemma [I].
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Lemma 3.5. Consider F € C*(Q, (R")?2) with F(x,0,0) =0 and
|8F(m,u7v) | |5F(x,u, v)
ou ’ v

for some 1 < p < 00,C1 > 0. Let (ug,vi) be a bounded sequence in LP(2, (RT)?),
and such that (ug,v;) = (u,v) weakly in E. Then as k — oo,

/ F(x,ug,vp)de — / F(x,ur — u,vp — v)de —|—/ F(x,u,v)dx.
Q Q o

| < Ca(ful”™" + P~

Lemma 3.6. J, , satisfies the (PS). condition with ¢ satisfying

2 P P
—0 < €< Cop = ng/(zp) — A(AP=a + pra).

Proof. Let {(un,vn)} C E be a (PS).-sequence for Jy, with ¢ € (—00,¢x). It
follows from Lemma[3.4]that {(u,,v,)} is bounded in E, and then (u,,v,) = (u,v)
up to a subsequence, (u,v) is a critical point of Jy ,. Furthermore, we may assume

Up = u, v, — v in WHP(Q)NWyP(Q),
Up — U, U, — v in LI(Q),
Uy — U, U, — UV a.e. on (.

Hence we have J3 ,(u,v) =0 and

[ Olunlt + lonl)do = [ (Nful? + o (3.3)
Q Q
Let @, = up — 4,0, = v, —v. Then by Brézis-Lieb lemma [I],

| (@, 0) 1P — || (wn, v0) [|P = [[(w, 0)[[P as n — oo. (3.4)

and by Lemma
/F(:c Up, Up )dx H/ Ty U,y Uy )dT — / F(z,u,v)dx. (3.5)
Q
Since Jy u(tn, vn) = ¢+ 0(1), J} ,(tn,vn) = o(1) and ([B-3)-(3.5), we deduce that

1, . 1
= (@, Un) |7 —
p

ok

/QF(ac,ﬂn,'ﬁn)dm =c— Japu(u,v) +o(1). (3.6)
and

@, TP = [ Pl s = o(2),
Hence, we may assume that ?

G, 5P — 1, /QF(x,an,an)da: Sl (3.7)
If [ = 0, the proof is complete. Assume [ > 0, then from , we obtain

Spl#® = Sp lim (/ F(2, T, Un)dz)PP" < lim ||(Tn, 00)||P = 1,
Q n—oo

n—oo

which implies { > Sg/ 2) " In addition, from Lemma (3.6) and (3.7), we obtain

1 1 2 N/(2p) _p_ P
c= I+ J u, v Z—S — A Ap—a 4 yp—a ,
G = oo+ ) > 58X/ — A+ )

which contradicts ¢ < 2 SN/ 2p) A()\P%Z + ,uﬁ). O
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Lemma 3.7. There exist a nonnegative function (u,v) € E\{(0,0)} and C* > 0
such that for 0 < APT + uﬁ < C*, we have

sup Jy ,(tu, tv) < coo.
>0

In particular, 0y, < ¢ for all 0 < NPT+ uﬁ < C*.

Proof. Since zg € €, there is py > 0 such that B (z0;2p0) C Q. Now, we consider
the functional I : E — R defined by

1 1
I(u,v) = =||(u,v)||P — /Fac,u,v dx
(u,v) pll( | g ( )

and define a cut-off function 7n(z) € C§°(R2) such that n(z) = 1 for |z — x| <
po,n(x) =0 for |z — o] > 2pp,0 <n <1and |Vn <C. Fore >0, let

P
where U(+) is a radially symmetric minimizer of {|‘||uA\|7:HLp Yuew2p®N)\fo}- Similar
T

to the work of Brown and Wu [3], we have the following estimates:

o p% _N-2p
(Q|u5|p dz)"" = TN e vy + OCC),

_N=-2p
[AuclPde = &= 7 AU |7, mry + O(1), (3.8)
A (=)

Au,|Pd
JolBudde o\ o5,
(Jo lue

p**dl‘) ik

Thus, we obtain
JAUIZ g,
[rog o

JAul, g

ueWw2r(RN\{0} [|ull? ..

(RY)

(RN)
Set ugp(x) = equc(x — x0),v9(x) = equs(x — o) and (ug,vg) € E, where g € Q,
(e1,e2) € (RT)2 and €} + e} = 1 are such that

F(zo,e1,e2) = _  max F(z,91,92) = K.
z€Q,gV+95=1,91,92>0

Then, by (F1), (1.5, the definition of Sp and (3.8)), we obtain

( (e} +eb) Jo [Auc[Pdx )N/(2)
(Jo F(z, equc(z — o), eoue(z — x0))dx) 7™

Jo |Au [Pdx
Jo(Jue(z — o) [P F(x, €1, 62)d$)7’%
(g )Y/EP(5 + O(& ™5 ¥/
(KLP)N/(%)(SN/(%) +OETT)

2 p
NS}{Y/(QP)+O(€ P )7

sup I (tug, tug) <
>0

N/(2p)

IN
2o e e =]

IN
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where we have used that
P P B 2 A )N/p)

—B) = — 5 A, B> 0.
t>0 P p** ) N(Bp**

We can choose §; > 0 such that for all 0 < P = ,uﬁ < 01, so we have

Coo = Nsﬁ/@p) — A7 + p7oa) > 0.

Using the definitions of Jy ,, and (uo,vo), we obtain
P
I pu(tug, tvg) < EH(UQ,UO)HP forallt >0, A\, >0,

which implies that there exists ¢ty € (0, 1) satisfying

sup Jx u(touo, toto) < ¢, forall 0 < P —i-,uﬁ < 6.
0<t<to

Using the definitions of Jy ,, and (ug,vo), we obtain

4
sup Jy . (tug, tvg) = sup (I ,(tuo, tvg) — EK)\7/L(’[L0,UQ))

t>tg t>tg
2 N/(2p) Neapo gy | g
< ST A0 ) = (efA +eqp) |ue|?dx
N q BN (03p0)
2 N/ (2p) No2p, 1 g
< —8Sg +0( 7 )= =2m(A+p) |ue|?dx,
N q BN (05p0)

(3.10)

_P_
where m = min{e{,e}. Let 0 < e < pf~', we obtain

ug|9dx = 1 —dz
| | P N-—2p
BN (05p0) BN(0;p0) (€ 4 |x|P=T) 7 ¢

1
> / —— 5,4z = C2(N,p,q, po)-
BN (0p0) (2p5~") q

Combining with (3.10) and the above inequality, for all € = (A\7-7 + p7-a) V% €
p

(0,p57"), we have

2 v 0 tg
sup Jy . (tug, tvg) < 752\//(217) +O\77 + pr-a) — 2mCo(X + p). (3.11)
t>to N q

Hence, we can choose d5 > 0 such that for all 0 < P = + uﬁ < §o, we obtain

D D tq v P
O(\r=7 + pv-a) — ;Omcz(/\ + 1) < —A(N7=a + pi—a).
N=2p P D p P
If we set C* = min{dy, p,""" ,02} and € = (A\P=a + p»—7)~¥-2r then for 0 < A\p—a +
uﬁ < C*, we have

sup Ji,u(tug, tvg) < Coo- (3.12)
t>to

Finally, we prove that 9;# < ¢y for all 0 < APCa 4 uﬁ < C*. Recall that

(up,vo) = (e1ue, e2ue). It is easy to see that

/ F(z,ug,v)dz > 0.
Q
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Combining this with Lemma from the definition of ) , and (3.11), we obtain
that there exists tg > 0 such that (toug, tovg) € N W and

o S I pu(touo, tovg) < S1>lp Iau(tug, tvg) < coo
>0

for all 0 < A7 4 p7a < C*, O

Theorem 3.8. If 0 < A7-7 + pi-i < C; and (F1)-(F3) hold, then I has a
minimizer (uqy , vy ) in Ny, and it satisfies

(1) Tapulug,vg) =05,
(ii) (ug,vy ) is a positive solution of (L.1)).
where C§ = min{C*, Cy}.

Proof. By lemma [3.1] (ii), there is a (PS)G_ -sequence {(un,vn)} C Ny , in F
for J,\# for all 0 < Aivi 4 pici < Cp. From Lemmas 7| and n( i), for

0 < Aot7 + pima < C*, Ji,u satisfies (PS)Q— condition and 0y, > 0. Since

Jxu is coercive on Ny ,, we obtain that (un,vn) is bounded in E. Therefore,
there exist a subsequence still denoted by (u,,v,) and (ug,vy) € Ny, such that

(Un,vn) — (ug, vy ) strongly in E and Jy ,(ug , v ) = 0, >0 forall 0 < APa 4
pr—7 < Cf. Finally, by the same arguments as in the proof of Theorem for all
0 <A77 + pi-1 < Cf, we have that (ug ,vg ) is a positive solution of (L.1)). O

Now, we complete the proof of Theorems [L.1] and [:2] By Theorem [3.2] we

obtain that for all 0 < A\7-7 + pis < C’(p,q,N7 K, S,|9|), problem (I.1)) has a
positive solution (ug,vd) € N ;r 4~ On the other hand, from Theorem we

obtain the second positive solution (ug,vy) € Ny , for all 0 < APod 4o <
Cy < C(p,q, N, K, S,|Q]). Since N/\+u NN, , = 0, this implies that (ug,vg) and
(ug ,vg ) are distinct. This completes the proof of Theorems and [1.2) .
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