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LARGE TIME BEHAVIOR OF A CAHN-HILLIARD-BOUSSINESQ
SYSTEM ON A BOUNDED DOMAIN

KUN ZHAO

Abstract. We study the asymptotic behavior of classical solutions to an
initial-boundary value problem (IBVP) for a coupled Cahn-Hilliard-Boussinesq
system on bounded domains with large initial data. A sufficient condition is
established under which the solutions decay exponentially to constant states
as time approaches infinity.

1. Introduction

As one of the fundamental modelling equations, the Cahn-Hilliard equation [6, 7]
plays an important role in the mathematical study of multi-phase flows, and has
been studied intensively in the literature both analytically and numerically (see e.g.
[3, 4, 8, 12, 13, 19, 20, 25, 26, 27, 29]). The couplings of the Cahn-Hilliard equation
with other basic modelling equations have been proposed in various situations to
study complicated phenomena in fluid mechanics involving phase transition. For ex-
ample, the coupled Cahn-Hilliard-Navier-Stokes (CHNS) system and its variations,
which describe the motion of an incompressible two-phase flow under shear through
an order parameter formulation, have been used in order to understand the phe-
nomena of phase transition in incompressible fluid flows (c.f. [14, 18, 24]). Recently,
a closely related model to the CHNS system has been developed in [10, 11, 15, 16]
to understand the spinodal decomposition of binary fluid in a Hele-Shaw cell, tumor
growth, cell sorting, and two phase flows in porous media, which is referred as the
Cahn-Hilliard-Hele-Shaw (CHHS) system. In this paper, we consider the following
system of equations:

φt + U · ∇φ = ∆µ, x ∈ Rn, t > 0,

µ = −α∆φ + F ′(φ),
Ut + U · ∇U +∇P = µ∇φ + θen,

θt + U · ∇θ = κ∆θ,

∇ · U = 0,

(1.1)
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which is a system of strongly coupled partial differential equations obtained by cou-
pling the Cahn-Hilliard equation to the inviscid heat-conductive Boussinesq equa-
tions. It describes the motion of an incompressible inviscid two-phase flow subject
to convective heat transfer under the influence of gravitational force through or-
der parameter formulation. Here, U = (u1, . . . , un), P and θ denotes the velocity,
pressure and temperature respectively. φ is the order parameter and µ is a chem-
ical potential derived from a coarse-grained study of the free energy of the fluid
(c.f. [17]). The constant κ > 0 and α > 0 models heat conduction and diffusion
respectively, and en is the n-th unit vector in Rn. The function F usually has a
physical-relevant, double-well structure, each of them representing the two phases
of the fluid. A typical example of F takes the form (c.f. [9, 17]): F (z) = 1

4 (z2−1)2.
In this paper, we consider a general scenario by imposing appropriate growth con-
ditions on F . We remark that, system (1.1) reduces to the CHHS model if the
temperature equation and the hydrodynamic effect are dropped. On the other
hand, (1.1) becomes the CHNS system if the temperature equation is removed and
the viscosity of fluid is added to the velocity equation.

In the real world, flows often move in bounded domains with constraints from
boundaries, where the initial-boundary value problems appear. The solutions of
the initial-boundary value problems usually exhibit different behaviors and much
richer phenomena comparing with the Cauchy problem. In this paper, we consider
system (1.1) on a bounded domain in Rn. The system is supplemented by the
following initial and boundary conditions:

(φ, µ, U, θ)(x, 0) = (φ0, µ0, U0, θ0)(x),

∇φ · n|∂Ω = 0, ∇µ · n|∂Ω = 0, U · n|∂Ω = 0, θ|∂Ω = θ̄,
(1.2)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, n is the unit
outward normal to ∂Ω and θ̄ is a constant.

The initial-boundary value problem (1.1)–(1.2) was first studied in [30], where
the global existence and uniqueness of classical solutions are established, for large
initial data with finite energy in 2D. However, the large time asymptotic behavior
of the solutions is not investigated due to the lack of uniform-in-time estimates of
the solutions. We give definite answer to this unsolved issue in current paper for
the 2D case, based on new findings of the structure of the system.

Suggested by the conservation of total mass and the boundary conditions, it is
expected that the global attractors of φ and θ should be φ̄ = 1

|Ω|
∫
Ω

φ0(x)dx and
θ̄, respectively, due to diffusion and boundary effects. In this paper, we provide a
sufficient condition that guarantees the decay of the solution. We will show that
when the diffusion coefficient α passes a threshold value determined by F and Ω,
the functions φ and θ will converge exponentially in time to φ̄ and θ̄, respectively,
regardless of the magnitude of the initial perturbation. To be precise, we shall
assume that α−F3c0 > 0, where F3 > 0 is a constant such that F ′′ ≥ −F3, and c0

is the constant in Poincaré inequality on Ω. This condition is crucial in our analysis
due to the fact that it produces a positive constant multiple of ‖φ − φ̄‖2H2 which
is one of the major dissipative terms controlling the exponential decay of φ. The
condition will trigger a chain reaction leading the energy estimate performed in [30]
to a whole new scenario. As consequences of the convergence of φ and θ, we will
show that the velocity and vorticity are uniformly bounded in time.
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Throughout this paper, ‖ · ‖Lp , ‖ · ‖L∞ and ‖ · ‖W s,p denote the norms of the
usual Lebesgue measurable function spaces Lp (1 ≤ p < ∞), L∞ and the usual
Sobolev space W s,p, respectively. For p = 2, we denote the norm ‖ · ‖L2 by ‖ · ‖
and ‖ · ‖W s,2 by ‖ · ‖Hs , respectively. The function spaces under consideration are
C([0, T ];Hr(Ω)) and L2([0, T ];Hs(Ω)), equipped with norms sup0≤t≤T ‖Ψ(·, t)‖Hr

and
( ∫ T

0
‖Ψ(·, τ)‖2Hsdτ

)1/2, respectively, where r, s are positive integers. Unless
specified, ci will denote generic constants which are independent of φ, µ, U, θ and t,
but may depend on α, κ,Ω and initial data.

For the sake of completeness, we first state the results obtained in [30].

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary. Suppose
that F (·) satisfies the following conditions:

• F (·) is of C6 class and F (·) ≥ 0;
• There exist constants F1, F2 > 0 such that |F (n)(φ)| ≤ F1|φ|p−n + F2,

n = 1, . . . . , 6, ∀ 6 ≤ p < ∞ and φ ∈ R;
• There exists a constant F3 ≥ 0 such that F ′′ ≥ −F3.

If the initial data φ0(x) ∈ H5(Ω), µ0(x) ∈ H3(Ω) and (θ0(x), U0(x)) ∈ H3(Ω)
are compatible with the boundary conditions, then there exists a unique solution
(φ, µ, θ, U) of (1.1)–(1.2) globally in time such that

φ ∈ C([0, T ];H5(Ω)) ∩ L2([0, T ];H7(Ω)),

µ ∈ C([0, T ];H3(Ω)) ∩ L2([0, T ];H5(Ω)),

U ∈ C([0, T ];H3(Ω)) and θ ∈ C([0, T ];H3(Ω)) ∩ L2([0, T ];H4(Ω)) for 0 < T < ∞.

The next theorem is the main result of this paper regarding the large-time as-
ymptotic behavior of the solution obtained in Theorem 1.1.

Theorem 1.2. Suppose that the assumptions in Theorem 1.1 are in force and as-
sume that the constant α−F3c0 > 0, where c0 is the constant in Poincaré inequality
on Ω. Then the solution to (1.1)–(1.2) satisfies

‖φ(·, t)− φ̄‖H5 + ‖µ(·, t)− F ′(φ̄)‖H3 + ‖θ(·, t)− θ̄‖H3 ≤ γe−βt;

‖U(·, t)‖W 1,p ≤ γ(p), ∀ 1 ≤ p < ∞; ‖ω(·, t)‖L∞ ≤ γ̄, ∀ t ≥ 0,

for some constants γ, β, γ(p), γ̄ > 0 independent of t, where φ̄ = 1
|Ω|

∫
Ω

φ0(x)dx and
ω = vx − uy is the 2D vorticity.

Remark 1.3. It should be pointed out that, in the theorems obtained above, no
smallness restriction is put upon the initial data.

Remark 1.4. We observe that, by assuming small initial perturbation around the
equilibrium state and by exploring the structure of the function F , one can show
the exponential decay of the solution. However, the asymptotic result obtained in
Theorem 1.2 has an obvious advantage over the case for small perturbation. Indeed,
Theorem 1.2 provides a convenient criterion for determining whether the solution
collapses to a constant state as time evolves. Based on the result, one only needs
to measure the volume of the domain, instead of measuring the “smallness” of the
initial perturbation which is usually laborious to perform, to determine whether
the solution decays or not when other system parameters are fixed.
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Remark 1.5. It is well-known that the Cahn-Hilliard equation is an effective model
in the study of sharp interfaces in two-phase fluid flows. However, based on our
results, the order parameter φ tends to a uniform constant φ̄ instead of ±1. This
suggests that under the conditions of Theorem 1.1 and Theorem 1.2, the modelling
equations (1.1) indeed fail to model the sharp interfacial phenomenon. Therefore,
our results exhibit some bifurcation phenomena on the effectiveness of the modelling
equations.

The proof of Theorem 1.2 involves a series of accurate combinations of energy
estimates. The estimates are delicate mainly due to the coupling between the equa-
tions by convection, gravitational force and boundary effects. Great efforts have
been made to simplify the proof. Current proof involves intensive applications of
Sobolev embeddings and Ladyzhenskaya type inequalities, see Lemma 2.1. Roughly
speaking, because of the lack of the spatial derivatives of the solution at the bound-
ary, our energy framework proceeds as follows: We first apply the standard energy
estimate on the solution and the temporal derivatives of the solution. We then apply
standard results on elliptic equations to recover estimates of the spatial derivatives.
Such a process will be repeated up to third order, and then with the aid of the
assumption on α, the carefully coupled estimates will be composed into a desired
one leading to the exponential decay of the solution.

The rest of the paper is organized as follows. In Section 2, we give some basic
facts that will be used in the proof of Theorem 1.2. In Section 3, we prove some
uniform-in-time energy estimates of the solution based on which the combinations
of energy estimates will be performed. We then complete the proof of Theorem 1.2
in Section 4.

2. Preliminaries

In this section, we shall collect several facts which will be used in the proof of
Theorem 1.2. First, we recall some inequalities of Sobolev and Ladyzhenskaya type
(c.f. [1, 21]).

Lemma 2.1. Let Ω ⊂ R2 be any bounded domain with smooth boundary ∂Ω. Then
(i) ‖f‖L∞ ≤ c1‖f‖H2 ;
(ii) ‖f‖L∞ ≤ c2‖f‖W 1,p for all p > 2;
(iii) ‖f‖Lp ≤ c3‖f‖H1 for all 1 ≤ p < ∞;
(iv) ‖f‖2L4 ≤ c4

(
‖f‖‖∇f‖+ ‖f‖2

)
;

(v) ‖f‖2L8 ≤ c5

(
‖f‖‖∇f‖L4 + ‖f‖2

)
,

for some constants ci = ci(p, Ω), i = 1, . . . , 5.

Next, we recall some classical results on elliptic equations (c.f. [2, 22, 23]), which
are useful in the estimation of θ.

Lemma 2.2. Let Ω ⊂ R2 be any bounded domain with smooth boundary ∂Ω. Con-
sider the Dirichlet problem

κ∆Θ = f in Ω,

Θ = 0 on ∂Ω.

If f ∈ Wm,p, then Θ ∈ Wm+2,p and there exists a constant c6 = c6(p, κ,m, Ω) such
that

‖Θ‖W m+2,p ≤ c6‖f‖W m,p
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for any p ∈ (1,∞) and the integer m ≥ −1.

The next lemma is useful for the estimation of the velocity field (see [5]).

Lemma 2.3. Let Ω ⊂ R2 be any bounded domain with smooth boundary ∂Ω, and
let F ∈ W s,p(Ω) be a vector-valued function satisfying F · n|∂Ω = 0, where n is the
unit outward normal to ∂Ω. Then there exists a constant c7 = c7(s, p, Ω) such that

‖F‖W s,p ≤ c7(‖∇ × F‖W s−1,p + ‖∇ · F‖W s−1,p + ‖F‖Lp)

for any s ≥ 1 and p ∈ (1,∞).

Finally, we recall some Poincaré type inequalities, which will be used in the
estimation of φ, whose proof is straightforward.

Lemma 2.4. Let Ω ⊂ Rn be any bounded domain with smooth boundary ∂Ω. Then,
for any function Hs(Ω) 3 f : Ω → R, there exists a constant c8 = c8(s,Ω) > 0 such
that

(1) ‖f−f̄‖H2s ≤ c8‖∆sf‖ and ‖f−f̄‖H2s+1 ≤ c8‖∇∆sf‖, s ≥ 1, if ∇f ·n|∂Ω =
0;

(2) ‖f‖H2s ≤ c8‖∆sf‖ and ‖f‖H2s+1 ≤ c8‖∇∆sf‖, s ≥ 1, if f |∂Ω = 0,
where f̄ = 1

|Ω|
∫
Ω

fdx.

3. Uniform energy estimates

In this section, we establish some uniform-in-time energy estimates of the solu-
tion under the condition α− F3c0 > 0, based on which the exponential decay rate
of the solution will be proved. The results are stated as a sequence of lemmas and
the proofs are carried out by carefully exploring the condition α − F3c0 > 0 and
delicate applications of Cauchy-Schwarz and Gronwall inequalities.

To study the asymptotic behavior, we first reformulate the original problem to
get the one for the perturbations. For this purpose, let Φ = φ− φ̄ and Θ = θ − θ̄.
After plugging Φ and Θ into (1.1) we obtain

Φt + U · ∇Φ = ∆µ,

µ = −α∆Φ + F ′(φ),

Ut + U · ∇U +∇P̃ = µ∇Φ + Θe2,

Θt + U · ∇Θ = κ∆Θ,

∇ · U = 0,

(3.1)

which is equivalent to (1.1) for sufficiently smooth solutions, where P̃ = P − θ̄y,
and the initial and boundary conditions become

(Φ, µ, U, Θ)(x, 0) = (Φ0, µ0, U0,Θ0)(x) ≡ (φ0 − φ̄, µ0, U0, θ0 − θ̄)(x),

∇Φ · n|∂Ω = 0, ∇µ · n|∂Ω = 0, U · n|∂Ω = 0, Θ|∂Ω = 0.
(3.2)

We begin with the uniform estimate of ‖Φ‖L2 .

Lemma 3.1. Under the assumptions of Theorem 1.2, it holds that

‖Φ(·, t)‖2 +
∫ t

0

‖Φ(·, τ)‖2H2dτ ≤ c9, ∀ t ≥ 0. (3.3)
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Proof. Taking L2 inner product of (3.1)1 with Φ, after integrating by parts we have

1
2

d

dt
‖Φ‖2 =

∫
Ω

Φ∆µx = −
∫

Ω

∇µ · ∇Φdx = −α‖∆Φ‖2 −
∫

Ω

F ′′(φ)|∇Φ|2dx, (3.4)

which gives
1
2

d

dt
‖Φ‖2 + α‖∆Φ‖2 ≤ F3‖∇Φ‖2, (3.5)

where we have used the condition on F . Since Φ = φ− φ̄ and φ̄ is a constant, using
the boundary conditions, Cauchy-Schwarz and Poincaré inequalities we have

‖∇Φ‖2 = −
∫

Ω

Φ∆Φdx ≤ 1
2c0

‖Φ‖2 +
c0

2
‖∆Φ‖2 ≤ 1

2
‖∇Φ‖2 +

c0

2
‖∆Φ‖2, (3.6)

which implies
‖∇Φ‖2 ≤ c0‖∆Φ‖2, (3.7)

where c0 is the constant in Poincaré inequality on Ω. Let α1 ≡ α − F3c0 > 0.
Substituting (3.7) in (3.5) we have

1
2

d

dt
‖Φ‖2 + α1‖∆Φ‖2 ≤ 0. (3.8)

Upon integrating (3.8) in time over [0, t] and using Lemma 2.4 we obtain (3.3).
This completes the proof. �

Remark 3.2. The estimate (3.8) already implies the decay of ‖Φ‖2. However,
our ultimate goal is to show the decay rate of the higher order derivatives of the
solution. Hence, for the sake of completeness, we leave the proof of the decay rate
in the next section.

Next, we prove uniform estimates of Θ, which will be used to settle down the
uniform bound of ‖U‖H1 .

Lemma 3.3. Under the assumptions of Theorem 1.2, there exists a constant β0

independent of t such that for any t ≥ 0, it holds that

‖Θ(·, t)‖2 ≤ ‖Θ0‖2e−2β0t,

∫ t

0

‖∇Θ(·, τ)‖2eβ0τdτ ≤ 1
κ
‖Θ0‖2. (3.9)

Proof. Taking the L2 inner product of (3.1)4 with Θ we have

1
2

d

dt
‖Θ‖2 + κ‖∇Θ‖2 = 0. (3.10)

Since Θ|∂Ω = 0, Poincaré’s inequality implies

d

dt
‖Θ‖2 +

2κ

c0
‖Θ‖2 ≤ 0, (3.11)

which yields immediately

‖Θ(·, t)‖2 ≤ ‖Θ0‖2e−2β0t, (3.12)

where β0 = κ/c0. This proves the first part of (3.9).
Next, we multiply (3.10) by eβ0t and use (3.12) to obtain

d

dt

(
eβ0t‖Θ‖2

)
+ 2κeβ0t‖∇Θ‖2 ≤ β0e

−β0t‖Θ0‖2. (3.13)
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For any t > 0, upon integrating (3.13) in time we obtain

eβ0t‖Θ(·, t)‖2 − ‖Θ0‖2 + 2κ

∫ t

0

eβ0τ‖∇Θ(·, τ)‖2dτ ≤
(
1− e−β0t

)
‖Θ0‖2, (3.14)

which implies the second part of (3.9) immediately. This completes the proof. �

With the help of Lemma 3.3 we now prove the uniform estimates of ‖U‖H1 and
‖Φ‖H1 .

Lemma 3.4. Under the assumptions of Theorem 1.2, for all t ≥ 0,

‖U(·, t)‖2H1 + ‖Φ(·, t)‖2H1 +
∫ t

0

(
‖∇µ(·, τ)‖2 + ‖Φ(·, τ)‖2H3

)
dτ ≤ c10. (3.15)

Proof. Step 1. Note that due to Lemma 2.3 and the boundary condition on U , it
suffices to estimate ‖U‖2 and ‖ω‖2, in order estimate ‖U(·, t)‖2H1 . Taking the L2

inner product of (3.1)3 with U we have
1
2

d

dt
‖U‖2 =

∫
Ω

µ(∇Φ · U)dx +
∫

Ω

Θe2 · Udx. (3.16)

Taking L2 inner product of (3.1)1 with µ we have

d

dt

(α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx
)

+ ‖∇µ‖2 = −
∫

Ω

µ(∇Φ · U)dx. (3.17)

Adding (3.16) and (3.17), we obtain
d

dt

(1
2
‖U‖2 +

α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx
)

+ ‖∇µ‖2 =
∫

Ω

Θe2 · Udx. (3.18)

Applying Cauchy-Schwarz inequality to the right-hand side of (3.18) and using
(3.12), we obtain

d

dt

(1
2
‖U‖2 +

α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx
)

+ ‖∇µ‖2 ≤ e−β0t‖U‖2 + e−β0t‖Θ0‖2. (3.19)

After dropping ‖∇µ‖2 from the left hand side (LHS) of (3.19), we have
d

dt

(1
2
‖U‖2 +

α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx
)
≤ e−β0t‖U‖2 + e−β0t‖Θ0‖2. (3.20)

Since F ≥ 0, Gronwall’s inequality then gives
1
2
‖U‖2 +

α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx ≤ c11, ∀ t ≥ 0. (3.21)

Applying (3.21) to (3.19) and integrating with respect to t we obtain

‖U‖2 + ‖Φ‖2H1 +
∫

Ω

F (φ)dx +
∫ t

0

‖∇µ(·, τ)‖2dτ ≤ c12, ∀ t ≥ 0. (3.22)

Step 2. By the definition of Φ, Lemma 2.4 and (3.1)2, we observe that

‖Φ‖2H3 ≤ c8‖∇(∆Φ)‖2 ≤ c13

(
‖∇µ‖2 + ‖F ′′(φ)∇Φ‖2

)
. (3.23)

Using the condition on F , Hölder inequality, Lemma 2.1 (iii) and (3.22) we have

‖F ′′(φ)∇Φ‖2 ≤ c14

(
‖φ‖2(p−2)

L4(p−2)‖∇Φ‖2L4 + ‖∇Φ‖2
)

≤ c15

(
(‖Φ‖2(p−2)

H1 + ‖φ̄‖2(p−2)
H1 )‖∇Φ‖2H1 + ‖∇Φ‖2

)
≤ c16‖Φ‖2H2 .

(3.24)
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substituting (3.24) in (3.23) we have

‖Φ‖2H3 ≤ c17

(
‖∇µ‖2 + ‖Φ‖2H2

)
, (3.25)

which, together with (3.3) and (3.22), implies∫ t

0

‖Φ(·, τ)‖2H3dτ ≤ c18, ∀ t ≥ 0. (3.26)

Step 3. By taking the curl of the velocity equation, we obtain

ωt + U · ∇ω = µxΦy − µyΦx + Θx, (3.27)

where ω = vx − uy is the 2D vorticity. Taking L2 inner product of (3.27) with ω
and applying Hölder inequality we have

d

dt
‖ω‖ ≤ 2‖∇µ‖‖∇Φ‖L∞ + ‖∇Θ‖. (3.28)

Upon integrating (3.28) in time using Hölder and Sobolev inequalities we have

‖ω(·, t)‖ ≤
∫ t

0

(
2‖∇µ‖‖∇Φ‖L∞ + ‖∇Θ‖

)
dτ + ‖ω0‖

≤ c19

( ∫ t

0

‖∇µ‖2dτ
)1/2( ∫ t

0

‖Φ‖2H3dτ
)1/2

+
( ∫ t

0

eβ0τ/2‖∇Θ‖2dτ
)1/2( ∫ t

0

e−β0τ/2dτ
)1/2

+ ‖ω0‖.

(3.29)

Since the right hand side of (3.29) is uniformly bounded in time by virtue of previous
estimates, we have

‖ω(·, t)‖ ≤ c20, ∀ t ≥ 0. (3.30)
Thus, (3.15) follows from (3.22), (3.26) and (3.30). This completes the proof. �

With the aid of Lemma 3.4 we are now able to improve the estimates of Φ and µ.
Due to the lack of spatial derivatives of the solution on ∂Ω, we shall alternatively
work on the temporal derivatives and use an iteration program to recover the spatial
derivatives.

Lemma 3.5. Under the assumptions of Theorem 1.2, it holds that

‖Φ(·, t)‖2H2 + ‖µ(·, t)‖2 +
∫ t

0

(
‖Φt‖2 + ‖∇µ‖2H1

)
dτ ≤ c21, ∀ t ≥ 0. (3.31)

Proof. Step 1. By taking L2 inner product of (3.1)1 with Φt we have

‖Φt‖2 +
∫

Ω

Φt(U · ∇Φ)dx =
∫

Ω

Φt∆µdx. (3.32)

Using the boundary conditions we calculate the RHS of (3.32) as:∫
Ω

Φt∆µdx = − d

dt

(α

2
‖∆Φ‖2 +

1
2

∫
Ω

F ′′(φ)|∇Φ|2dx
)

+
1
2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx.

(3.33)
Substituting (3.33) in (3.32) we obtain

d

dt

(α

2
‖∆Φ‖2 +

1
2

∫
Ω

F ′′(φ)|∇Φ|2dx
)

+ ‖Φt‖2

=
1
2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx−
∫

Ω

Φt(U · ∇Φ)dx.

(3.34)
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Using Cauchy-Schwarz inequality and Lemma 3.4 we estimate the first term on
the RHS of (3.34) as∣∣∣1

2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx
∣∣∣ ≤ 1

4
‖Φt‖2 +

1
4

∫
Ω

|F ′′′(φ)|2|∇Φ|4dx

≤ 1
4
‖Φt‖2 + c22‖φ‖2(p−3)

L4(p−3)‖∇Φ‖4L8 + c22‖∇Φ‖4L4

≤ 1
4
‖Φt‖2 + c23

(
‖∇Φ‖4L8 + ‖∇Φ‖4L4

)
.

(3.35)

Lemma 2.1 (iii)–(v) and Lemma 3.4 then give

‖∇Φ‖4L4 + ‖∇Φ‖4L8 ≤ c24

(
‖∇Φ‖2‖∇2Φ‖2 + ‖∇Φ‖4 + ‖∇Φ‖2‖∇2Φ‖2L4 + ‖∇Φ‖4

)
≤ c25

(
‖∇2Φ‖2 + ‖∇Φ‖2 + ‖∇2Φ‖2H1

)
≤ c26‖Φ‖2H3 .

(3.36)
So we update (3.35) as∣∣∣1

2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx
∣∣∣ ≤ 1

4
‖Φt‖2 + c27‖Φ‖2H3 . (3.37)

The second term on the RHS of (3.34) is estimated as∣∣∣− ∫
Ω

Φt(U · ∇Φ)dx
∣∣∣ ≤ 1

4
‖Φt‖2 + c28‖U‖2H1‖∇Φ‖2H1

≤ 1
4
‖Φt‖2 + c29‖Φ‖2H2 ,

(3.38)

where we have used Lemma 3.4. Combining (3.34), (3.37) and (3.38) we have
d

dt

(α

2
‖∆Φ‖2 +

1
2

∫
Ω

F ′′(φ)|∇Φ|2dx
)

+
1
2
‖Φt‖2 ≤ c30‖Φ‖2H3 . (3.39)

Upon integrating (3.39) in time and using (3.26) we have

α

2
‖∆Φ‖2 +

1
2

∫
Ω

F ′′(φ)|∇Φ|2dx +
1
2

∫ t

0

‖Φt‖2dτ ≤ c31. (3.40)

Since F ′′ ≥ −F3, we have∫
Ω

F ′′(φ)|∇Φ|2dx ≥ −F3‖∇Φ‖2 ≥ −F3c0‖∆Φ‖2, (3.41)

where we have used (3.6). Substituting (3.41) in (3.40) we have

α1

2
‖∆Φ‖2 +

1
2

∫ t

0

‖Φt‖2dτ ≤ c31,

which, together with Lemma 2.4, implies

‖Φ‖2H2 +
∫ t

0

‖Φt‖2dτ ≤ c32. (3.42)

Step 2. We derive some consequences of (3.42). From (3.1)2 and Lemma 2.1
(i) we see that

‖µ(·, t)‖2 ≤ c33

(
‖∆Φ‖2 + ‖F ′(φ)‖2

)
≤ c34

(
‖∆Φ‖2 + ‖φ‖2(p−1)

L∞ + 1
)

≤ c35

(
‖∆Φ‖2 + ‖Φ‖2(p−1)

H2 + ‖φ̄‖2(p−1)
L∞ + 1

)
.

(3.43)
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Therefore, using (3.42) we have

‖µ(·, t)‖2 ≤ c36, ∀ t ≥ 0. (3.44)

Since ∇µ · n|∂Ω = 0, by Lemma 2.4 and Lemma 3.4 we have

‖∇µ‖2H1 ≤ c37‖∆µ‖2 ≤ c38

(
‖Φt‖2 + ‖U · ∇Φ‖2

)
≤ c39

(
‖Φt‖2 + ‖U‖2H1‖∇Φ‖2H1

)
≤ c40

(
‖Φt‖2 + ‖Φ‖2H2

)
,

(3.45)

which, together with (3.15) and (3.42), implies that∫ t

0

‖∇µ‖2H1dτ ≤ c41. (3.46)

Therefore, (3.31) follows from (3.42), (3.44) and (3.46). This completes the proof.
�

The next lemma gives the uniform estimate of ‖Ut(·, t)‖2 whose proof requires
more careful examination of the energy estimate for the temperature.

Lemma 3.6. Under the assumptions of Theorem 1.2, there exists a constant β1 > 0
independent of t such that

eβ1t‖Θ(·, t)‖2H1 +
∫ t

0

eβ1τ/2‖Θ(·, τ)‖2H2dτ ≤ c42, ∀ t ≥ 0. (3.47)

Proof. Step 1. Taking L2 inner product of (3.1)4 with Θt we have
κ

2
d

dt
‖∇Θ‖2 + ‖Θt‖2 ≤ ‖U · ∇Θ‖2 +

1
4
‖Θt‖2. (3.48)

Using Lemma 3.4 we have

‖U · ∇Θ‖2 ≤ c43‖U‖2H1‖∇Θ‖2L4 ≤ c44‖∇Θ‖2L4 . (3.49)

So we update (3.48) as
κ

2
d

dt
‖∇Θ‖2 +

3
4
‖Θt‖2 ≤ c44‖∇Θ‖2L4 . (3.50)

The estimate of the RHS of (3.50) is tricky. First, applying Lemma 2.1 (iv) to
∇Θ to obtain

c44‖∇Θ‖2L4 ≤ c45

(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
≤ c46(δ)‖∇Θ‖2 + δ‖D2Θ‖2, (3.51)

where δ is a number to be determined. Since Θ|∂Ω = 0, by the elliptic estimate
(c.f. Lemma 2.2), we have

‖Θ‖2H2 ≤ c47

(
‖Θt‖2 + ‖U · ∇Θ‖2

)
. (3.52)

For the second term on the RHS of (3.52), we use (3.49) and (3.51) to get

‖U · ∇Θ‖2 ≤ c48

(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
. (3.53)

Then, using Cauchy-Schwarz inequality we update (3.52) as

‖Θ‖2H2 ≤ c49

(
‖Θt‖2 + ‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
≤ c50

(
‖Θt‖2 + ‖∇Θ‖2

)
+

1
2
‖Θ‖2H2 ,

(3.54)

which implies
‖Θ‖2H2 ≤ c51

(
‖Θt‖2 + ‖∇Θ‖2

)
. (3.55)
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By choosing δ = 1/(4c51) in (3.51), and coupling the result with (3.55) we have

c44‖∇Θ‖2L4 ≤ c52‖∇Θ‖2 +
1
4
‖Θt‖2. (3.56)

Combining (3.50) and (3.56) we obtain

κ

2
d

dt
‖∇Θ‖2 +

1
2
‖Θt‖2 ≤ c52‖∇Θ‖2. (3.57)

Step 2. We multiply (3.10) by 2c52/κ and add the result to (3.57) to obtain

d

dt

(c52

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ c52‖∇Θ‖2 +

1
2
‖Θt‖2 ≤ 0. (3.58)

It is clear that, by Poincaré inequality, there exists a constant c53 > 0 such that

c53

(c52

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
≤ c52‖∇Θ‖2. (3.59)

Substituting (3.59) in (3.58) we have

d

dt

(c52

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ c53

(c52

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+

1
2
‖Θt‖2 ≤ 0, (3.60)

which implies (by dropping 1
2‖Θt‖2 from the LHS) that(c52

κ
‖Θ(·, t)‖2 +

κ

2
‖∇Θ(·, t)‖2

)
≤

(c52

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
e−c53t. (3.61)

Therefore, for t ≥ 0,

‖Θ(·, t)‖2H1 ≤
(

min{c52/κ, κ/2}
)−1(c52

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
e−c53t. (3.62)

Using (3.58) and (3.61), by repeating the same procedure as in Lemma 3.3, we
have

ec53t/2
(c52

κ
‖Θ(·, t)‖2 +

κ

2
‖∇Θ(·, t)‖2

)
+

∫ t

0

ec53τ/2
(
c52‖∇Θ(·, τ)‖2 +

1
2
‖Θt(·, τ)‖2

)
dτ

≤ 2
(c52

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
,

(3.63)

which yields∫ t

0

ec53τ/2
(
c52‖∇Θ(·, τ)‖2 +

1
2
‖Θt(·, τ)‖2

)
dτ ≤ 2

(c52

κ
‖Θ0‖2 +

κ

2
‖∇Θ0‖2

)
. (3.64)

In view of (3.55) we see that∫ t

0

ec53τ/2‖Θ(·, τ)‖2H2dτ ≤ c54. (3.65)

Therefore, (3.47) follows from (3.62) and (3.65). This completes the proof. �

With the help of Lemma 3.6, we have the following result.

Lemma 3.7. Under the assumptions of Theorem 1.2, for all t ≥ 0,

‖µ(·, t)‖2H1 + ‖Φt(·, t)‖2 + ‖U(·, t)‖2W 1,4 + ‖U(·, t)‖2L∞ + ‖Ut(·, t)‖2 ≤ c55. (3.66)
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Proof. Step 1. Taking L2 inner product of (3.27) with |ω|2ω and using Hölder
inequality we have

d

dt
‖ω‖L4 ≤ 2‖∇µ‖L8‖∇Φ‖L8 + ‖∇Θ‖L4 ≤ c56(‖∇µ‖H1‖Φ‖H2 + ‖Θ‖H2). (3.67)

Integrating (3.67) in time and using the previous lemmas, we have

‖ω(·, t)‖L4 ≤ c56

( ∫ t

0

‖∇µ‖2H1dτ
)1/2( ∫ t

0

‖Φ‖2H2dτ
)1/2

+ c56

( ∫ t

0

e−β1τ/2dτ
)1/2( ∫ t

0

eβ1τ/2‖Θ‖2H2dτ
)1/2

+ ‖ω0‖L4

≤ c57,

(3.68)

which, together with Lemma 2.3 and Sobolev embedding, implies

‖U(·, t)‖W 1,4 + ‖U(·, t)‖L∞ ≤ c58, ∀ t ≥ 0. (3.69)

For the estimate of ‖Ut‖2, taking L2 inner product of (3.1)3 with Ut we have

‖Ut‖2 ≤ c59

(
‖U‖2L∞‖∇U‖2 + ‖µ‖2H1‖Φ‖2H2 + ‖Θ0‖2

)
≤ c60

(
‖∇µ‖2 + 1

)
, (3.70)

where we have used (3.42), (3.44) and (3.69).
Step 2. We now deal with µ and Φt. Taking L2 inner product of (3.1)1 with µt

we have
1
2

d

dt
‖∇µ‖2 + α‖∇Φt‖2 = −

∫
Ω

[
F ′′(φ)Φ2

t + µt(U · ∇Φ)
]
dx. (3.71)

From (3.42) and Sobolev embedding we know that

‖Φ‖L∞ ≤ c61, (3.72)

which according to the condition on F implies

‖F (p−n)(φ)‖L∞ ≤ F1c(p, n)
(
‖Φ‖p−n

L∞ +‖φ̄‖p−n
L∞

)
+F2 ≤ c62, n = 1, . . . . , 6. (3.73)

Using (3.73) we estimate the RHS of (3.71) as follows:∣∣∣− ∫
Ω

[
F ′′(φ)Φ2

t + µt(U · ∇Φ)
]
dx

∣∣∣
≤ ‖F ′′(φ)‖L∞‖Φt‖2 + 2α‖U‖2L∞‖∇Φ‖2 +

1
8α
‖µt‖2

≤ c62‖Φt‖2 + c63‖∇Φ‖2 +
1
8α

(
2α2‖∆Φt‖2 + 2‖F ′′(φ)‖2L∞‖Φt‖2

)
≤ c64‖Φt‖2 + c65‖∆Φ‖2 +

α

4
‖∆Φt‖2,

where we have used (3.69) and Lemma 2.4. We update (3.71) as

1
2

d

dt
‖∇µ‖2 + α‖∇Φt‖2 ≤ c64‖Φt‖2 + c65‖∆Φ‖2 +

α

4
‖∆Φt‖2. (3.74)

Differentiating (3.1)1 with respect to t we have

Φtt + Ut · ∇Φ + U · ∇Φt = ∆µt. (3.75)

Taking L2 inner product of (3.75) with Φt we have

1
2

d

dt
‖Φt‖2 + α‖∆Φt‖2 =

∫
Ω

F ′′(φ)Φt∆Φtdx +
∫

Ω

Φ(Ut · ∇Φt)dx. (3.76)
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Using (3.73) and (3.70) we estimate the RHS of (3.76) as follows:∣∣∣ ∫
Ω

F ′′(φ)Φt∆Φtdx +
∫

Ω

Φ(Ut · ∇Φt)dx
∣∣∣

≤ α

4
‖∆Φt‖2 +

1
α
‖F ′′(φ)‖2L∞‖Φt‖2 +

1
2α
‖Φ‖2L∞‖Ut‖2 +

α

2
‖∇Φt‖2

≤ α

4
‖∆Φt‖2 + c66‖Φt‖2 + c67‖Φ‖2H2(‖∇µ‖2 + 1) +

α

2
‖∇Φt‖2

≤ α

4
‖∆Φt‖2 + c66‖Φt‖2 + c68

(
‖∇µ‖2 + ‖∆Φ‖2

)
+

α

2
‖∇Φt‖2.

(3.77)

So we update (3.76) as

1
2

d

dt
‖Φt‖2 +

3α

4
‖∆Φt‖2 ≤ c66‖Φt‖2 + c68

(
‖∇µ‖2 + ‖∆Φ‖2

)
+

α

2
‖∇Φt‖2. (3.78)

Combining (3.74) and (3.78) we obtain

d

dt

(
‖∇µ‖2+‖Φt‖2

)
+α

(
‖∇Φt‖2+‖∆Φt‖2

)
≤ c69

(
‖Φt‖2+‖∇µ‖2+‖∆Φ‖2

)
. (3.79)

After integrating (3.79) in time and using (3.3) and (3.31) we have

‖∇µ(·, t)‖2 + ‖Φt(·, t)‖2 +
∫ t

0

(
‖∇Φt‖2 + ‖∆Φt‖2

)
dτ ≤ c70, ∀ t ≥ 0. (3.80)

Substituting (3.80) in (3.70) we have ‖Ut(·, t)‖2 ≤ c71. This completes the proof.
�

As consequences of previous lemmas, we have the following result.

Lemma 3.8. Under the assumptions of Theorem 1.2, it holds

‖Φ(·, t)‖2H4 + ‖µ(·, t)‖2H2 ≤ c72, ∀ t ≥ 0. (3.81)

Proof. First, by (3.45) we have

‖µ(·, t)‖2H2 ≤ c40

(
‖Φt(·, t)‖2 + ‖Φ(·, t)‖2H2

)
+ ‖µ(·, t)‖2. (3.82)

Then the uniform estimate of ‖µ(·, t)‖2H2 follows from Lemma 3.5 and Lemma 3.7.
Second, by Lemma 2.4 and (3.1)2 we have

‖Φ(·, t)‖2H4 ≤ c73

(
‖µ(·, t)‖2H2 + ‖F ′(φ)(·, t)‖2H2

)
. (3.83)

Using the second condition (H2) on F , (3.31) and (3.73), it is straightforward
to show that ‖F ′(φ)(·, t)‖2H2 ≤ c74, which together with the uniform bound of
‖µ(·, t)‖2H2 imply that ‖Φ(·, t)‖2H4 ≤ c75. This completes the proof. �

4. Large time asymptotic behavior

In this section we prove Theorem 1.2, based on a sequence of accurate combina-
tions of energy estimates. For the convenience of the reader, we first collect some
uniform-in-time estimates. From (3.31), (3.66) and (3.81) we have, for any t ≥ 0:(
‖Φ‖2H4 + ‖µ‖2H2 + ‖Φt‖2 + ‖F (p−n)(φ)‖2L∞ + ‖U‖2W 1,4 + ‖U‖2L∞ + ‖Ut‖2

)
(t) ≤ c76.

(4.1)
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4.1. Decay of (Φ, µ). Step 1. First, by (3.1)2 we have

‖µ− F ′(φ̄)‖2H3 = ‖ − α∆Φ + F ′(φ)− F ′(φ̄)‖2 + ‖∇µ‖2H2

≤ 2α2‖∆Φ‖2 + 2‖F ′(φ)− F ′(φ̄)‖2 + ‖∇µ‖2H2 .
(4.2)

Using (4.1) and Lemma 2.3 we estimate the last two terms on the RHS of (4.2) as
follows:

2‖F ′(φ)− F ′(φ̄)‖2 + ‖∇µ‖2H2

≤ 2‖F ′′(ζ)‖2L∞‖Φ‖2 + c77‖∇∆µ‖2

≤ c78‖Φ‖2 + c79

(
‖∇Φt‖2 + ‖∇(U · ∇Φ)‖2

)
≤ c78‖Φ‖2 + c80

(
‖∇Φt‖2 + ‖∇U‖2‖∇Φ‖2∞ + ‖U‖2∞‖∇2Φ‖2

)
≤ c81

(
‖∇Φt‖2 + ‖Φ‖2H3

)
.

(4.3)

Combining (4.2) and (4.3) we have

‖µ− F ′(φ̄)‖2H3 ≤ c82

(
‖∇Φt‖2 + ‖Φ‖2H3

)
. (4.4)

Combining (3.25) and (4.4) we then have

‖µ− F ′(φ̄)‖2H3 ≤ c83

(
‖Φt‖2H1 + ‖Φ‖2H2 + ‖∇µ‖2

)
. (4.5)

Second, by Lemma 2.4 and (3.1)2 we have

‖Φ‖2H5 ≤ c8‖∇∆2Φ‖2 ≤ c84‖∇∆µ‖2 + c85‖∇∆F ′(φ)‖2. (4.6)

By direct calculations and Sobolev embeddings we can show that

‖∇F ′(φ)‖2H2 ≤ c86‖F ′′′(φ)‖2L∞
(
‖∇Φ‖4H1 + 2‖∇Φ‖2H1‖∇Φ‖2H2

)
+ c87‖F ′′′′(φ)‖2L∞‖∇Φ‖4H2‖∇Φ‖2.

(4.7)

Using (4.1) we obtain from (4.7) that ‖∇F ′(φ)‖2H2 ≤ c88‖∇Φ‖2H2 , which, together
with (4.6), implies that

‖Φ‖2H5 ≤ c89

(
‖∇Φt‖2 + ‖Φ‖2H3

)
. (4.8)

Combining (4.5), (4.8) and (3.25) we have

‖µ− F ′(φ̄)‖2H3 + ‖Φ‖2H5 ≤ c90

(
‖Φt‖2H1 + ‖Φ‖2H2 + ‖∇µ‖2

)
. (4.9)

Therefore, it suffices to show the decay of RHS of (4.9) in order to prove the decay
of Φ and µ.
Step 2. We recall (3.17),

d

dt

(α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx
)

+ ‖∇µ‖2 = −
∫

Ω

µ(∇Φ · U)dx. (4.10)

Due to the structure of the function F (·), there may be a constant term in the
integral

∫
Ω

F (φ)dx in general, which is impossible to decay. In order to resolve this
issue, we observe, since

∫
Ω
(φ− φ)dx = 0, it holds that∫

Ω

F (φ)− F (φ)dx =
∫

Ω

F ′(φ)(φ− φ)dx +
1
2

∫
Ω

F ′′(ξ)(φ− φ)2dx

=
1
2

∫
Ω

F ′′(ξ)Φ2dx, for some ξ between φ and φ̄.
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Then we update (4.10) as

d

dt

(α

2
‖∇Φ‖2 +

1
2

∫
Ω

F ′′(ξ)Φ2dx
)

+ ‖∇µ‖2 = −
∫

Ω

µ(∇Φ · U)dx. (4.11)

Using (4.1) and Lemma 2.4 we estimate the RHS of (4.11) as∣∣∣− ∫
Ω

µ(∇Φ · U)dx
∣∣∣ =

∣∣∣ ∫
Ω

ΦU · ∇µdx
∣∣∣

≤ 1
2
‖∇µ‖2 +

1
2
‖U‖2L4‖Φ‖2L4

≤ 1
2
‖∇µ‖2 + c91‖Φ‖2H1

≤ 1
2
‖∇µ‖2 + c92‖∆Φ‖2.

(4.12)

Substituting (4.12) in (4.11), we have

d

dt

(
α‖∇Φ‖2 +

∫
Ω

F ′′(ξ)Φ2dx
)

+ ‖∇µ‖2 ≤ c93‖∆Φ‖2. (4.13)

Step 3. Recalling (3.34) and using (4.1) and Lemma 2.4 we have

d

dt

(α

2
‖∆Φ‖2 +

1
2

∫
Ω

F ′′(φ)|∇Φ|2dx
)

+ ‖Φt‖2

=
1
2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx−
∫

Ω

Φt(U · ∇Φ)dx

≤ 1
2
‖Φt‖2 + c94(‖∇Φ‖4H1 + ‖∇Φ‖2H1)

≤ 1
2
‖Φt‖2 + c95‖∆Φ‖2,

which yields

d

dt

(
α‖∆Φ‖2 +

∫
Ω

F ′′(φ)|∇Φ|2dx
)

+ ‖Φt‖2 ≤ c96‖∆Φ‖2. (4.14)

Step 4. From (3.77) and (4.1) we have

1
2

d

dt
‖Φt‖2 + α‖∆Φt‖2 ≤

α

4
‖∆Φt‖2 +

α

2
‖∇Φt‖2 + c97(‖Φt‖2 + ‖∆Φ‖2). (4.15)

Combining (3.74) and (4.15), we have

d

dt

(
‖∇µ‖2 + ‖Φt‖2

)
+ α

(
‖∇Φt‖2 + ‖∆Φt‖2

)
≤ c98

(
‖Φt‖2 + ‖∆Φ‖2

)
. (4.16)

Step 5. Taking L2 inner product of (3.75) with µt we have

α

2
d

dt
‖∇Φt‖2 + ‖∇µt‖2 =

∫
Ω

(UtΦ + UΦt) · ∇µtdx−
∫

Ω

F ′′(φ)ΦtΦttdx. (4.17)

For the last term on the RHS of (4.17), we have

−
∫

Ω

F ′′(φ)ΦtΦttdx = −1
2

d

dt

∫
Ω

F ′′(φ)Φ2
t dx +

1
2

∫
Ω

F ′′′(φ)Φ3
t dx.
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So we update (4.17) as
d

dt

(
α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
t dx

)
+ 2‖∇µt‖2

= 2
∫

Ω

(UtΦ + UΦt) · ∇µtdx +
∫

Ω

F ′′′(φ)Φ3
t dx.

(4.18)

Using (4.1) and Lemma 3.6 we estimate the first two terms on the RHS of (4.18)
as ∣∣∣2 ∫

Ω

(UtΦ + UΦt) · ∇µtdx
∣∣∣ ≤ ‖∇µt‖2 + ‖Ut‖2‖Φ‖2L∞ + ‖U‖2L∞‖Φt‖2

≤ ‖∇µt‖2 + c99‖Φ‖2H2 + c76‖Φt‖2

≤ ‖∇µt‖2 + c100‖∆Φ‖2 + c101‖∆Φt‖2.

(4.19)

Similarly, for the term involving Φ3
t , we have∣∣∣ ∫

Ω

F ′′′(φ)Φ3
t dx

∣∣∣ ≤ ‖F ′′′(φ)‖∞‖Φt‖3L3

≤ c76‖Φt‖2∞‖Φt‖L1

≤ c102‖∆Φt‖2‖Φt‖ ≤ c103‖∆Φt‖2.

(4.20)

Substituting (4.19) and (4.20) in (4.18), we have
d

dt

(
α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
t dx

)
+ ‖∇µt‖2 ≤ c104

(
‖∆Φt‖2 + ‖∆Φ‖2

)
. (4.21)

Step 6. In this step, we make combinations of energy estimates, which will be used
to prove the exponential decay of Φ and µ. First, we collect energy inequalities from
Steps 2–5:

(4.13) d
dt

(
α‖∇Φ‖2 +

∫
Ω

F ′′(ξ)Φ2dx
)

+ ‖∇µ‖2 ≤ c93‖∆Φ‖2

(4.14) d
dt

(
α‖∆Φ‖2 +

∫
Ω

F ′′(φ)|∇Φ|2dx
)

+ ‖Φt‖2 ≤ c96‖∆Φ‖2

(4.16) d
dt

(
‖∇µ‖2 + ‖Φt‖2

)
+ α

(
‖∇Φt‖2 + ‖∆Φt‖2

)
≤ c98

(
‖Φt‖2 + ‖∆Φ‖2

)
(4.21) d

dt

(
α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
t dx

)
+ ‖∇µt‖2 ≤ c104

(
‖∆Φt‖2 + ‖∆Φ‖2

)
First, multiply (4.16) by 2c104

α and then add (4.21) to obtain

d

dt

[
J0(t)

]
+ K0(t) ≤ c105

(
‖Φt‖2 + ‖∆Φ‖2

)
, (4.22)

where

J0(t) ≡
2c104

α

(
‖∇µ‖2 + ‖Φt‖2

)
+ α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
t dx,

K0(t) ≡ c104

(
2‖∇Φt‖2 + ‖∆Φt‖2

)
+ ‖∇µt‖2.

Second, multiply (4.14) by 2c105 then add (4.22) to obtain
d

dt

[
J1(t)

]
+ K1(t) ≤ c106‖∆Φ‖2, (4.23)

where

J1(t) ≡ J0(t) + 2c105

(
α‖∆Φ‖2 +

∫
Ω

F ′′(φ)|∇Φ|2dx
)
,

K1(t) ≡ c105‖Φt‖2 + K0(t).
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Third, by coupling (4.23) and (4.13), we have

d

dt

[
J2(t)

]
+ K2(t) ≤ c107‖∆Φ‖2, (4.24)

where

J2(t) ≡ J1(t) +
(
α‖∇Φ‖2 +

∫
Ω

F ′′(ξ)Φ2dx
)
, K2(t) ≡ K1(t) + ‖∇µ‖2.

Recalling (3.7), we have

d

dt
‖Φ‖2 + 2α1‖∆Φ‖2 ≤ 0. (4.25)

Then, multiply (4.25) by c107
α1

then add (4.24) to obtain

d

dt

[
J3(t)

]
+ K3(t) ≤ 0, (4.26)

where
J3(t) ≡ J2(t) +

c107

α1
‖Φ‖2, K3(t) ≡ K2(t) + c107‖∆Φ‖2.

Step 7. In this step we apply the condition α1 = α − F3c0 > 0 to uncover the
secret hidden in (4.26), which will give the desired decay estimates of Φ and µ.
First, by (4.1) and Poincaré inequality we have

2c104

α

(
‖∇µ‖2 + ‖Φt‖2

)
+ α1‖∇Φt‖2

≤ J0(t)

≤ 2c104

α

(
‖∇µ‖2 + ‖Φt‖2

)
+ α‖∇Φt‖2 + c76‖Φt‖2,

which implies
J0(t) ∼= ‖∇µ‖2 + ‖Φt‖2H1 .

where the symbol ∼= denotes the equivalence of quantities. Also, by Poincaré in-
equality, we have

c104

(
c0‖Φt‖2 + ‖∇Φt‖2 + ‖∆Φt‖2

)
+ ‖∇µt‖2

≤ K0(t)

≤ c104

(
‖Φt‖2 + 2‖∇Φt‖2 + ‖∆Φt‖2

)
+ ‖∇µt‖2.

Therefore, K0(t) ∼= ‖Φt‖2H2 + ‖∇µt‖2.
Similarly, we have

J1(t) ∼= ‖∇µ‖2 + ‖Φt‖2H1 + ‖Φ‖2H2 K1(t) ∼= ‖Φt‖2H2 + ‖∇µt‖2

J2(t) ∼= ‖∇µ‖2 + ‖Φt‖2H1 + ‖Φ‖2H2 K2(t) ∼= ‖Φt‖2H2 + ‖∇µt‖2 + ‖∇µ‖2

J3(t) ∼= ‖∇µ‖2 + ‖Φt‖2H1 + ‖Φ‖2H2 K3(t) ∼= ‖Φt‖2H2 + ‖∇µt‖2 + ‖∇µ‖2 + ‖Φ‖2H2

Then it is clear that there exists a constant c108 > 0 independent of t such that
c108J3(t) ≤ K3(t), which, together with (4.26), implies

d

dt

(
J3(t)

)
+ c108J3(t) ≤ 0,

which gives
J3(t) ≤ J3(0)e−c108t, ∀ t ≥ 0.
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We then have

‖∇µ(·, t)‖2 + ‖Φt(·, t)‖2H1 + ‖Φ(·, t)‖2H2 ≤ c109e
−c108t, ∀ t ≥ 0,

which, together with (4.9), implies

‖Φ(·, t)‖2H5 + ‖(µ− F ′(φ̄))(·, t)‖2H3 ≤ c110e
−c108t, ∀ t ≥ 0, (4.27)

4.2. Decay of Θ. In this section, we show the exponential decay of ‖Θ‖H3 . Again,
this will be done by combining uniform estimates of the solution.
Step 1. Since Θ|∂Ω = 0, by Lemma 2.2 and (4.1) we have

‖Θ‖2H3 ≤ c111

(
‖Θt‖2H1 + ‖U · ∇Θ‖2H1

)
≤ c112

(
‖Θt‖2H1 + ‖U‖2L∞‖∇Θ‖2 + ‖∇U‖2L4‖∇Θ‖2L4 + ‖U‖2L∞‖∇2Θ‖2

)
≤ c113

(
‖Θt‖2H1 + ‖Θ‖2H2

)
.

(4.28)
Step 2. By taking temporal derivative of (3.1)4 we obtain

Θtt + Ut · ∇Θ + U · ∇Θt = κ∆Θt. (4.29)

Taking L2 inner product of (4.29) with Θt and using (4.1) we have

1
2

d

dt
‖Θt‖2 + κ‖∇Θt‖2 =

∫
Ω

Θ(Ut · ∇Θt)dx

≤ κ

2
‖∇Θt‖2 +

1
2κ
‖Ut‖2‖Θ‖2L∞

≤ κ

2
‖∇Θt‖2 + c114‖Θ‖2H2 ,

which gives
d

dt
‖Θt‖2 + κ‖∇Θt‖2 ≤ c115‖Θ‖2H2 . (4.30)

Substituting (3.55) in (4.30), we have

d

dt
‖Θt‖2 + κ‖∇Θt‖2 ≤ c116

(
‖∇Θ‖2 + ‖Θt‖2

)
. (4.31)

Now, we recall (3.58),

d

dt

(c52

κ
‖Θ‖2 +

κ

2
‖∇Θ‖2

)
+ c52‖∇Θ‖2 +

1
2
‖Θt‖2 ≤ 0. (4.32)

By absorbing the RHS of (4.31) into the LHS of (4.32) we have

d

dt

(
J4(t)

)
+ K4(t) ≤ 0, (4.33)

where
J4(t) ∼= ‖Θ‖2 + ‖∇Θ‖2 + ‖Θt‖2 ∼= ‖Θ‖2H2 + ‖Θt‖2,

K4(t) ∼= ‖∇Θ‖2 + ‖Θt‖2 + ‖∇Θt‖2 ∼= ‖Θ‖2H2 + ‖Θt‖2H1 .
(4.34)

Step 3. By taking L2 inner product of (4.29) with Θtt and using Cauchy-Schwarz
inequality, we have

κ

2
d

dt
‖∇Θt‖2 +

1
2
‖Θtt‖2 ≤ ‖Ut‖2‖∇Θ‖2L∞ + ‖U‖2L∞‖∇Θt‖2. (4.35)
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For the RHS of (4.35), using (4.1), Lemma 2.1 and Lemma 2.2 with m = 0, p = 3,
we have
‖Ut‖2‖∇Θ‖2L∞ + ‖U‖2L∞‖∇Θt‖2 ≤ c117

(
‖Θ‖2W 2,3 + ‖∇Θt‖2

)
≤ c118

(
‖Θt‖2L3 + ‖U · ∇Θ‖2L3 + ‖∇Θt‖2

)
≤ c119

(
‖Θt‖2H1 + ‖U‖2L∞‖∇Θ‖2H1 + ‖∇Θt‖2

)
≤ c120

(
‖Θt‖2H1 + ‖∇Θ‖2

)
,

(4.36)
where we have used (3.55) for ‖∇Θ‖2H1 . So we update (4.35) as

κ
d

dt
‖∇Θt‖2 + ‖Θtt‖2 ≤ c121

(
‖Θt‖2H1 + ‖∇Θ‖2

)
. (4.37)

Then it is clear that, by absorbing the RHS of (4.37) into the LHS of (4.33), it
holds that

d

dt

(
J5(t)

)
+ K5(t) ≤ 0, (4.38)

where

J5(t) ∼= ‖Θ‖2H2 + ‖Θt‖2H1 , K5(t) ∼= ‖Θ‖2H2 + ‖Θt‖2H1 + ‖Θtt‖2. (4.39)

Therefore,
‖Θ(·, t)‖2H2 + ‖Θt(·, t)‖2H1 ≤ c122e

−c123t, ∀ t ≥ 0. (4.40)
which, together with (4.28), implies that

‖Θ(·, t)‖2H3 ≤ c124e
−c123t, ∀ t ≥ 0. (4.41)

4.3. Uniform estimates of U and ω. In this section, we show uniform estimates
for U and ω as indicated in Theorem 1.2. For this purpose, we observe, for any
p ≥ 2, it holds that

d

dt
‖ω‖Lp ≤ 2‖∇µ‖L2p‖∇Φ‖L2p + ‖∇Θ‖Lp

≤ 2‖∇µ‖L∞ |Ω|
1
2p ‖∇Φ‖L∞ |Ω|

1
2p + ‖∇Θ‖L∞ |Ω|1/p

≤ c127 max{1, |Ω|}
(
‖∇µ‖H2‖∇Φ‖H2 + ‖∇Θ‖H2

)
.

(4.42)

Using the decay estimates for Φ, µ and Θ, we update (4.42) as
d

dt
‖ω‖Lp ≤ c128e

−c129t, ∀ t ≥ 0, (4.43)

where the constants c128 and c129 are independent of p ≥ 2. Upon integrating
(4.43) in time, we have

‖ω(·, t)‖Lp ≤ c130 + ‖ω0‖L∞ max{1, |Ω|}, ∀ t ≥ 0. (4.44)

Letting p →∞ in (4.44) we have

‖ω(·, t)‖L∞ ≤ c131, ∀ t ≥ 0. (4.45)

Moreover, by Lemma 2.3,

‖U(·, t)‖W 1,p ≤ c7(p)
(
‖ω(·, t)‖Lp + ‖U(·, t)‖Lp

)
≤ c7(p)

(
‖ω(·, t)‖L∞ + ‖U(·, t)‖L∞

)
max{1, |Ω|}.

By (4.1) and (4.45), we have

‖U(·, t)‖W 1,p ≤ c132(p), ∀ t ≥ 0, ∀ 1 ≤ p < ∞.
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This estimate, together with (4.27), (4.41) and (4.45), completes the proof of The-
orem 1.2.

We complete this section with the following remark.

Remark 4.1. Using the arguments in this paper one can show that Theorem 1.2
still holds if the Dirichlet boundary condition for θ is replaced by the Neumann
boundary condition ∇θ · n|∂Ω = 0. In this case, the asymptotic state of θ is
θ̃ = 1

|Ω|
∫
Ω

θ0(x)dx, which is a constant.
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