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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
DIVERGENCE TYPE ELLIPTIC EQUATIONS

LIN ZHAO, PEIHAO ZHAO, XIAOXIA XIE

ABSTRACT. We establish the existence and multiplicity of weak solutions of a
problem involving a uniformly convex elliptic operator in divergence form. We
find one nontrivial solution by the mountain pass lemma, when the nonlinear-
ity has a (p — 1)-superlinear growth at infinity, and two nontrivial solutions
by minimization and mountain pass when the nonlinear term has a (p — 1)-
sublinear growth at infinity.

1. INTRODUCTION

In this article we study the boundary-value problem

—div(a(z, Vu)) + |[uP"2u = Af(x,u), z€Q, (1.1)
u(z) = constant, x € 9N, (1.2)
/ a(z,Vu)-nds =0, (1.3)

o9

where Q is a bounded domain in RY, with smooth boundary. We obtain the
existence and multiplicity for the equation

—div(a(z, Vu)) = f(x,u). (1.4)

Such operators arise, for example, from the expression of the p-Laplacian in curvi-
linear coordinates. We refer to the books [Bl [IT], 13] for the foundation of the
variational methods and refer to the overview papers [ 2| [, [6] [7, [8, ©] 10} 12] for
the advances and references of this area. Recently, the Dirichlet problem was
studied and obtained one weak solution by the mountain pass lemma in [8], when
the potential satisfies a set of assumptions and f is (p — 1)-superlinear at infinity.
Duc and Vu [2] extended the result of [§], considering the Dirichlet problem (1.4) in
the nonuniform case. Kristély, Lisei and Varga [4] study the Dirichlet proble,
and obtain three solutions when f is (p — 1)-sublinear at infinity. Yang, Geng and
Yan [12] deal with the singular p-Laplacian type equation and get three solutions
with f having (p — 1)-sublinear growth at infinity. Papageorgiou, Rocha and Staicu
[9] consider the nonsmooth p-Laplacian problem, and obtain at least two solutions.
In [7], the sub-supersolution method has been applied to find one solution to the
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problem with the boundary condition and where the nonlinearity
f satisfies the condition: |f(z,u)| < as(z), with az € L¥ (Q), % + i =1.

The first result of this paper is about the existence of solution of —.
We assume that the nonlinear term f : Q x R — R satisfies the Ambrosetti-
Rabinowitz type condition and obtain one weak solution by the mountain pass
lemma in Theorem [B.11

The second result of this paper is about the existence and multiplicity of solutions
for the problem (L.I)-(L.3). Under the growth on f, saying, f is (p — 1)-sublinear
at infinity, we obtain two nontrivial solutions by minimization and mountain pass
lemma in [I} 4, @], where they do the same thing under different assumptions on f.

We remark that in [2, 4 8], the function A, with V¢A = a(z,&), satisfies the
p-uniformly convex condition: there exists a constant k > 0 such that

1 1
A, S5 < LA 8 + 5AWn) —HE— P, e, EneRY.

However, for the case A(§) = [£|P, the p-uniform convexity condition is satisfied

only for p € [2,400). We assume the function A satisfies the condition (UC) in this
paper, while the condition (UC) is satisfied for A(§) = |¢[P for all p € (1, +00) (see

[3]).
2. PRELIMINARIES

Let X be a Banach space and X* is its topological dual. We denote the duality
brackets for the pair (X*, X) by (-,-) and WHP(Q) (p > 1) is the usual Sobolev
space, equipped with the norm

1/p
Jull = ooy = ([ 190+ fupa) ™. (21)
Let
V ={u € W"P(Q) : u|pq = constant}.
We next claim that V is a closed subspace of W1?(Q) and thus a reflexive Banach
space with the restricted norm of (2.1)).
Lemma 2.1 ([7]). V is a Banach space equipped with the norm of (2.1)).

Proof. From the definition of V, we set V = {u+¢: u € W *(Q),c € R}. We
assume that v, € V, then v, = u, + ¢, with u, € Wolp(Q) If {v,} is Cauchy
sequence in W1P(Q), then for all € > 0, we have
e > ||vp — vpllwie = |[un + e — (Um + cm) Wi

= IV(tn — um)llzr + [[un — um + cn — cmlle

2 [V (un = um)|Lr-
We obtain that {u,} is Cauchy sequence in Wy?(Q), so there exists & € W,?(Q)
such that

Up — 1 inW()l’p(Q).
As
[un — umllr < ¢l V(un — um)llr < cpe,

we have

”Cn - CmHLP = Hun +cn — (um + Cm) — Up + um”L"
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< ||un +cp — (um + Cm)”LP + Hun - um”Lp
<Mvn = vmllLe + cpllun — umlLe
< e+ e

We conclude that {¢,,} is a Cauchy sequence in LP(£2), and so is in R. We conclude
that there exists ¢ € R, such that

Up +Cp, > u+¢ inV asc, — ¢in R.
d
Definition 2.2. We say that v € V is a weak solution of the boundary-value

problem 1' if
/ a(z,Vu) - Vudx —|—/ |u|P~uv do — )\/ flx,u)vde =0, YveV. (2.2)
Q Q Q

Definition 2.3 ([3]). Let A: Q x RN — R, A = A(z,£) be a continuous function
in O x RN with continuous derivative with respect to &, a(z,£) = Ve A(z, &) = A'.
Define AVI: Q x R — R as follows,
AV, t) = sup A(z,€), VzeQ.
[§]=t
For every ¢,b € (0,1) and = € Q, define

Eepfw) = {(€m) € RY x BY : A, 51 > L max{ Alw, <€), A, )},

and

£-n
qs,b(x) = SUP{|72| : (5777) € Ee,b(x)}~
We say that A satisfies condition (UC) if
giH(l) ANz, q. y(z))dz =0 for every e € (0,1).
—0Jq

So a function A is said to be uniformly convex if A satisfies condition (UC).

As in [3], we remark that for A(¢) = |¢|P, the p-uniform convexity condition
§+n
T2

where k is a positive constant, is satisfied only if p € [2, +00), but (UC) is satisfied
for all p € (1,4+00).
Lemma 2.4 ([5, 11, 13]). Let X be a Banach space and I € C'(X;R) satisfy the
Palais-Smale condition. Suppose
(i) 1(0) =0;
(i) there exists constants r > 0,a > 0 such that I(u) > a if |Ju|| = r;
(iii) there exists uy € X such that ||ui|| > r and I(u1) < a.

Define

1 1

I'={y e C([0,1]; X) : 7(0) = 0,7(1) = w1 }.
Then

= inf supI(u) > a
g veFuer) (u) 2
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is a critical value.

3. MAIN RESULT

Let p>1, A: QxRN — R, a(x, &) be derivative of A(z,&) with respect to &,
and we assume that the following conditions hold

(A1) A(z,0) =0 for all z €

(A2) a satisfies the growth condition |a(z,&)| < co(1 + [£]P71) for all z € Q,

¢ € RV, for some constant ¢y > 0;

(A3) A is uniformly convex;

(A4) A is p-subhomogeneous, 0 < a(z, £)¢ < pA(x, &) for all 2 € Q, £ € RV,

(A5) A satisfies A(x,&) > A[P for all z € Q, £ € RY, where A > 0 is a constant.

Let f: Q) xR — R be a continuous function satisfying the following conditions:
(F1) The subcritical growth condition

|f(2,8)] <ca(1+]s]77h), VoeQscR,
wherep<q<p*:NN—_’}ifp<N0rp<q<+ooifp>N;
(F2) (The Ambrosetti-Rabinowitz condition) F(z,s) = [; f(z,t)dt is f-super-

homogeneous at infinity; i.e., there exists sg > 0 such that
0<0F(z,s) < f(z,s)s, for|s| > so, x €9,

where 6 > p;

[s]?
(F4) hm|.s|—>oo {sﬁifl) =4

(F5) There exists s* > 0,s* € R such that F(z,s*) >0, Vz € .

Our main result is as follows.

Theorem 3.1. Let A : Q x RN — RN be a potential which satisfies (A1)-(Ab),
and let f: QxR — R be a continuous function. If f satisfies (F1)—(F3), then
(1.1)-(1.3) has at least one nontrivial weak solution in V, for every X € R.

Theorem 3.2. Let A : Q x RN — RN be a potential which satisfies (A1)-(A5),
and let f: QxR — R be a continuous function. If f satisfies (F3)—(F5), then there
exists a constant p > 0, such that for A € (u, +00), problem — has at least
two nontrivial weak solutions in V.

3.1. Proof of Theorem Under the assumptions of Theorem [3.1] we define
the functional

J(w) :/QA(Q:,Vu) dx+$/0|u|pd:c—>\/QF(x,u) da.

It is easy to see that J : V — R is well defined and J € C'(V;R). Its derivative is
given by

((w.9) = [ oo, V) Vodo+ [ [P Pupde = [ fau)pds,

for all u,¢ € V. Thus the weak solution of 7 corresponds to the critical
point of the functional J on V.

To prove Theorem [3.I] we apply the mountain pass lemma to this functional.
We will show J satisfies the Palais-Smale condition in the first. Let {u,} C V be a
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Palais-Smale sequence; i.e., J'(u,) — 0 in X* and J(u,) — I, where [ is a constant.
We first show that {u,} is bounded in V,

J(un) — %(J/(Un)7un> = /Q[A(x,Vun) — %a(az,Vun) - Vu,]dz

(f—f)/ [P da:+/\/ (22 )t — F(2, un)|dz,

where 6 > p. From condition (A4), we have

J(un)_éu’(un),un} > (1—7)/ A, Vun)da:—&-(; é)/ﬂ [P

+>\/ (x, un)up —F(x,un)]dx,

then
P 1 1 /
1-= Az, Vuy)dr + (- — = Uy, [Pdx
(1= [ A Vuda+ =) [l
1 1
< J(up) — = (I (un), un) — A [=f(x,up)uy, — F(x,uy)|de + Mm(Q),
0 {aun (@) >s0} 0

where M = sup{|}f(z,s)s — F(z,s)| : © € Q,]s| < s}, and m(Q) denotes the
Lebesgue measure of 2.
By (F2) (the Ambrosetti-Rabinowitz condition), we have

1- g)/ﬂA(x,Vun)da: + (% - é) /Q |un|Pda < J(un) — $<J’(un),un> + Mm(Q).
y (A5),

0 0

where min{A, %} denotes the minimum of A and %. As

(1= 2 min{A, 1}(/ Vun]? + |un[P)dz < T () — (T (), ) + Mim(€2),
p Q

1/p

el = ([ 1Vl + funfPe) ™"

we conclude that {u,} is bounded in V. Since V is a closed subspace of W1 (£2)
and the reflexivity of W1P(Q), we may extract a weakly convergent subsequence
that we call {u,,} for simplicity. So we may assume that u,, — u weakly in W1P(Q).

Next, we will prove that w,, converges strongly to u € V. From the derivative of
J we obtain

/Qa(:c, Vuy) - V(uy, —u)de +/ |t [P~ 200 (1, — w)d
= (J (un),u /f (z,un) (un — u) dz. o

Since ||J'(un)|lyy-1.r — 0 and {u, — u} is bounded in V. C W1P(Q), by the
(' (un), un —w)| < || I (un)]lpy -1 [|un — ul| it follows that
(J (), tn — u) — 0.

From (F1), we have
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< C3/ |tn () — u(x)|dx + 03/ |t ()97 Hup (7)) — u(z)|de
<c (Q))l/q + a2l — wllza,
i, = 1. Since the embedding WP(Q)) — L4(Q) is compact, with
q< NN—_’}, we obtain u,, — wu strongly in L4(£2). So we obtain

[ 1 el (@) - ula)ldz — o,

Q
Considering the inequality
[ @2 ) 0) = e = [ ) ) = o)

< HunHi;IHUn — L,

1
where =
riaa

and u,, — u strongly in L?(Q)), we have
/Q [lun (@) P~ un () (un () — u(z))|da.
From (3.1)), we may conclude

lim sup{a(z, u,), u, — u) = limsup/ a(x, Vuy,) - V(u, —u)dx <0,
o

where (a(z, up), un — u) denotes [, a(z, Vu,) - V(u, — u)dz.

Therefore, from condition (A3), A is uniformly convex, and the operator a(x, ) =
D¢ A(x, &) satisfies the (Sy) property. From the (S5 ) condition in [8, Proposition
2.1], so we have u,, — u strongly in W1P(Q). Since {u,} C V, V is a closed
subspace of W1?(Q), and we have u € V. So u,, — u strongly in V.

Next, we show that J satisfies the geometry condition of the mountain pass
lemma; i.e.,

(1) There exists 7 > 0, such that inf|j,—, J(u) = b > 0.

(2) There exists ug € V such that J(tug) — —o0, as t — +00.
Step 1. Fix A € R, we choose € > 0 small enough satisfying A > As . Then by
(F3), there exists § > 0 such that |f(z,s)| < e|s|P~! for |s] < 4, for all x € Q.
Integrating the above inequality, we deduce that

F(z,s) < f| [P, for |s] <.
p
Consequently, using (F1) and the Sobolev embedding, we have

1
J(u) E/A(x,Vu)dQH—f/ fufPdzs — A = Jufda
Q pJa

{zeQ:|u(z)|<s} P
- )\/ cqlu|?dx
{zeQ:|u|>6}

Ae

P
> min{A, ];}Ilullp - ;Cpllullp = Acalfu]|®

> (min{A, 2} = 6, ) Jull” = Acallull” = B(r),

where r = ||u||P, min{A, 1} > —cp, as ¢ is small enough. Moreover, ®(r) > 0 for
r > 0 small enough, since ¢ > p.
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Step 2. Since A is p-subhomogeneous, can be restated as a differential inequality
for the function F' in the form

ss IG (sl F(2,9)) 2 0, for |s| > so.

We infer that for |s| > s, we have F(z,s) > vo()|s|?, where
Yo = 55 min{F(x, s0), F(x,—s0)} > 0.

Considering condition (A4), we obtain that for some constant k(u) > 0 there holds
1
J(tug) = / Az, tVug)dr + f/ |tu0|pdac—)\/ F(z,tug)dx
Q bJa Q

tp/ Az, Vug)dx + 1tp/ lug|Pdx — k(u)|N|t? 4 [N Mim(Q),
Q p Ja

where M; = sup{|F(x,s)| : ¢ € Q,|s| < sp}. Since § > p, we choose ug such that
m{z € Q:ug(x) > so} > 0. We deduce that J(tug) — —o0, as t — +o0. For fixed
ug # 0 and sufficiently large ¢t > 0, we let uy = tug. By Lemma (mountain
pass lemma), we obtain the existence of a non-trivial solution « to (1.1 . The
proof is completed.

3.2. Proof of Theorem [3.2l We denote

:/A(x,Vu)dm—l—l/ |ulPdx

and F(u) = [, F(x,u)dz, then the functional J is given by J(u) = A(u) — AF (u).

Lemma 3.3 ([4]). For every A € R, the functional J : V. — R is sequentially
weakly lower semicontinuous.

Proof. The functional A being locally uniformly convex is weakly lower semicon-
tionous. From the condition (F}), we have |f(z,s)| < c5(1+|s[P~1) for every s € R.
Since the embedding V. C WP(Q) — LP(Q) is compact, we obtain that F is
sequentially weakly lower semicontinuous in the standard method. [

Lemma 3.4. For every A € R, the functional J is coercive and satisfies the Palais-
Smale condition.

Proof. By (F4), for ¢ > 0 small enough, there exists § such that |f(x,s)| < g|s[P~!
for every |s| > §. Integrating this inequality, we have

(P9 < CJsl? + max (. 0)lls]. Vs € R

Thus, for every u € V', we obtain

J(u) = A(u) — [A|[F (u)]
1 €
: - P _ |\ Py _
me{A,p}IIUII IAIp/QIUI dx IA\‘rﬂglf(fc,t)l/QIU\dw

. 1 5|)\|/ Ly / 1/p
> A, =HulP — == Pdx — | Alm(Q)1/P t Pd
> min{ ,p}IIUII QIU\ z — [Alm(€2) Tﬂglf(x, )I( QIU\ fﬂ)

: 1 5‘)‘|Cp ol !
> z p_ /p 1/p .
2 (mm{mp} )II I = & P INm(Q) ¥ maxc| £z, t)][|ul
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elX|cp

Since ¢ is small enough, min{A, %} > , so we have J(u) — 400, whenever
|lu|] = 4o00. Hence J is coercive.
The proof of the functional J satisfying the Palais-Smale condition is similar to

Theorem The proof is complete. (I
Proof of Theorem[3.2. From condition (F5), we have
Flu) _ F(s")
= sup >
P iz Alw) © AT
Let pr =1/p. Fix X € (u, +00). From the definition of p, there exists some u* € V,
with min{A(u*), F(u*)} > 0, such that
1 F(u*
—< )
A A(ur)

This implies J(u*) = A(u*) — AF(uv*) < 0. By Lemma the functional J is
bounded from below, coercive and satisfies the (P-S) condition on V for every
A > 0. This implies the functional J has a global minimizer u; i.e.,

J(ur) < J(u) YueV.

Let u = u*. We have
J(ur) < J(u*) < 0.
By (F3), there exists § > 0 such that |f(z,s)| < g|s|P~! for |s| < &, for all z € Q.
We have
|F(z,s)] < %|u\pfor|s| <4 (3.2)

Using (F4), there exists k(d) > 0 such that |F(x,s)| < k(d)|s]? < k(d)|s]?, p < ¢ <
NN—_I’p, for |s| > d. Considering this fact and (3.2]), for A € (u, +00) we have

J(u) > / A(m,Vu)derl/ |u|pd:c—>\/ £|U‘pdx
Q P Ja {zeQ:|u(z)|<6} P

- /\/ k(0)|u|?dz
{zeQ:|u|>6}

. 1 Ae
> min{A, ;}lluH” - ?CpHUII” — AK(8)|ul?

> (min{A, 7} = 26, ) fulP — M(3) ] = B(r),
p p
where r = |ju||” and ¢ > p. We can take € small enough, such that min{A, %} >
%cp. Moreover, 3r > 0 small enough and a > 0, such that ®(r) > a > 0.
Obviously, J(0) = 0. If we denote by I' the set of all continuous functions = :

[0,1] — V, such that v(0) = 0 and v(1) = u;. From the mountain pass lemma,
there exists uz such that J'(ug) = 0 and

J(ug) = B = inf sup J(u) > a > 0.
vEL ueny

This completes the proof. (I
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