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EXISTENCE OF ENTIRE SOLUTIONS FOR SEMILINEAR
ELLIPTIC SYSTEMS UNDER THE KELLER-OSSERMAN
CONDITION

ZHIJUN ZHANG, YONGXIU SHI, YANXING XUE

ABSTRACT. Under the Keller-Osserman condition on f + g, we show the ex-
istence and nonexistence of entire solutions for the semilinear elliptic system
Au = p(x)f(v), Av = q(x)g(u), =z € RN, where p,q : RN — [0,00) are
continuous functions.

1. INTRODUCTION

The purpose of this paper is to investigate the existence and nonexistence of
entire solutions to the semilinear elliptic system

Au=p(2)f(v), =eRY (N >3),

Av = g(x)g(u), =RV, (1)

By an entire large solution (u,v), we mean a pair of functions u,v € C*(RY) that

satisfies (1.1]) and
lim wu(z) = lim wv(z) = 4oc. (1.2)

In this article, we assume that p, q, f and g satisfy the following hypotheses:
(H1) p,q:RY —[0,00) and f, g : [0,00) — [0, 00) are continuous and nontrivial;
(H2) f and g are nondecreasing on [0,00) and f(t) > 0, g(¢) > 0 for all ¢t > 0;
(H3) H(oo) :=lim,_,o0 H(r) = oo,

where
" dt
H(r):= /a ROETEG)) r>a>0, (1.3)
Flt) = /0 F(s)ds, G(t) = /0 o(s)ds. (1.4)
We see that
H'(r)= ! >0, Vr>a

2(F(r) + G(r))
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and H has the inverse function H ! on [a, 00). Denote

01(r) = max ple),  Ga(r) i= min p(),

Ed |w|=r
1(r) = max q(x), ¥(r) == min q(z).
lz|=r |z|=r
First we review the single elliptic equation

Au = p(x)f(u), zeRY. (1.6)

For p = 1 on RY and f satisfying (H1) and (H2), Keller-Osserman [8], [15] first
supplied the necessary and sufficient condition

o dt
/1 0] =00 (1.7)

for the existence of entire radial large solutions to (1.6]). For the weight p(z) = p(|z|)
and f(u) = u® with a € (0,1], Lair and Wood [I0] proved that (1.6) has a non-
negation entire radial large solution if and only if

/ rp(r)dr = oco. (1.8)
0
Recently, Lair [11] obtained the following results.

Lemma 1.1. Let f and b satisfy (H1) and (H2) with f(0) = 0. Suppose
(i) (T3 holds;
(ii) there exists a positive constant € such that [;° ¢y (r)dr < oo,
(iii) r2N=2¢,(r) is nondecreasing near oc.
Then (1.6) has one nonnegative nontrivial entire bounded solution. If, on the other
hand, p satisfies

/ r¢o(r)dr = 0o
0
and (iii) holds, then (1.6) has no nonnegative nontrivial entire bounded solution.

Lemma 1.2. Let f and b satisfy (H1) and (H2) with f(0) = 0 and p(x) = p(|z|).
Suppose holds. Then (1.6) has one nonnegative nontrivial entire solution.
Suppose further that (iii) an hold, then any nonnegative nontrivial entire
solution of is large. Conwversely, if has a nonnegative nontrivial entire
large solution, then p satisfies

/ e (r)dr = 0o, Ve > 0.
0

For more works, see for example [T}, 2, [4, @, 10, 11, 18, 20, 2T, 22] and the

references therein.

Now let us return to .

When p(z) = p(|z|), ¢(z) = q(Jz|), f(v) =v*, g(u) =", and 0 < a < =, Lair
and Wood [I2] considered the existence and nonexistence of entire positive radial
solutions to system . Moreover, when 0 < o < 1 and 0 < ~ < 1, Lair [13]
showed that has a nonnegative entire radial large solution if and only if p and
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q satisfy both of the following conditions

/000 tp(t) (t2_N /Ot sN_3Q1(s)ds)adt = 00, (1.9)
/0 Tt G /0 t sN’3P1(s)ds)7dt = o0, (1.10)

A= | Crp(r)dr, Qu(r) = / ()

Ghanmi, Maagli, R&dulescu and Zeddini [5] generalized the results in [12] to the
case when f and g are satisfy the condition that: For all ¢ > 0, there exists L. > 0
such that for all s1, 52 € [¢,00),

£ (s2) = f(s1)| +19(s2) = g(s1)] < Le|sz — s1]. (L.11)

Recently, the authors in [I4] showed the existence of entire positive radial large
solutions for (|1.1)) under the condition

i ds
/1 [ tels) -

For related works, see [3] [4, Bl [16], 19, 211, 22| 23] and the references therein.

In this paper, we extend some of the existence results for entire positive solutions
in Keller [8], Osserman [15] and Lair [11] to (I.I). Our main results are as the
following.

where

Theorem 1.3. Under the hypotheses (H1)-(H3). Suppose that
(H4) r2N=2(¢1(r) + ¥1(r)) is nondecreasing for large r;
(H5) there exists a positive constant € such that

/000 rlte (¢1(r) + wl(r))dr < 00,

then (1.1) has a positive entire bounded solution (u,v).
From Theorem|[L.3] we have the following corollaries for the spherically symmetric
case p(x) = p(|lz|) and g(x) = q(|z|).

Corollary 1.4. Under hypotheses (H1)-(H3), (1.1) has one positive solution (u,v).
Suppose furthermore that

(H6) P(o0) = Q(o0) = o0, where

P(c0) := lim P(r), P(r) /Otl N / ds)dt r>0,

T™—00

of (1.1)) is large and satisfies
u(r) > u(0) + f(v(0))P(r), () )+ (()) (r), V¥r=o0.

Corollary 1.5. Assume (H1)-(H4). If (1.1) has a non-negative radial entire large
solution, then

Then every positive radial entire solution (

(

Q(o0) := lim Q(r), Q(r): /0 - N(/ ds)dt r > 0.
,0)
v(0

/0OO e (p(r) + q(r))dr = 00, Ve > 0. (1.13)
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Corollary 1.6. Under hypotheses (H1)—(H3), (1.1) has no radial entire large so-
lutions if p + q satisfies one of the following conditions:

(i) p(r) +q(r) < Cr2=2N for large r;
(ii) r*N=2(p(r) + q(r)) is nondecreasing near co and

/0 ) T < oo;

(iii) [y~ /A(r)dr < oo, where
A(r) = tré1[6a?:] (p(t) +4q(t)), r=>0. (1.14)

Theorem 1.7. Under hypotheses (H1)—(H3), (1.1) has no radial entire large solu-
tions if p + q satisifes

0 < lim inf ng(r) < lim sup M

r—oo r 7—00 7"6

Remark 1.8. By (H1) and (H2), we see that (H3) implies

<oo, fB<-2. (1.15)

/°° ds  [* ds ~
a F(s) a VG(9)
Remark 1.9. By [10], we see that P(co0) = oo if and only if [~ rp(r)dr = co.

Remark 1.10. By [0], we see that if [;° —4— < oo, then [;° % < co. In other

V() 1 f(t)
words, if [ % = oo, then [ ‘;f(t) = oo. Conversely, if [/~ \/dFtTt) = 00, then

= % = oo does not hold. For example,

&) =20+t +1)* " (It +1)+0), FE) = (t+1)>*(In(t+1))",

where o > 0. We can see that [ % = oo if and only if ¢ € (0,1/2] and
= \/% = o0 if and only if o € (0,1].

2. PROOF OF MAIN THEOREMS

Proof of Theorem[I.3 Suppose (H4) holds. We will show that has a solution
by finding a supersolution, (%,?) and a subsolution, (u,v), for which u < @ and
v < . To do this, we first prove the existence of (u,v) to by considering the
system of the integral equations

u(r) = 5+ | T () | SN T6u(5)F(u(s)ds)at, 720, o
v(r) =0 +/0 tlfN(/ sNﬁld)l(s)g(g(s))ds)dt, r >0,

0
where 8 > a > 0, a is in (L1.3). Let {v,,}m>0 and {w,,}m>1 be the sequences of
positive continuous functions defined on [0, 00) by

vo(r) = B,
u,,(r) =0+ /OT tlfN(/ sN71¢1(s)f(gm_1(s))ds)dt, r >0, (2.2)

0

v, () =0+ /07‘t1_N</t sN_lwl(s)g(gm(s))ds)dt7 r > 0.

0
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Obviously, for all » > 0 and m € N, w,,(r) > 0, v,,(r) > 0 and v, < v;. (H2)
yields uq(r) < ugz(r) for all » > 0, then v, (r) < w,(r) for all » > 0. By the same
argument, we obtain that the sequences {u,,(r)} and {v,,(r)} are increasing with
respect to m for r € [0, 00). Moreover, for each r > 0,

(1) = ([ 06w (6)s) 2 0
() = ([ )9t ) ds) 0

and

(TN—l (U, (r) + ym(’l“))/)/

= N (G2 f @ (1) + 1 (r)g (wpn (1))

<N (B0 (r) + () (f(ym(r) + U (7)) + 9w (1) + Qm(r)))
Let

A(r) = max (¢1(t) +¢1(t)), 7> 0.

te(0,r]

Multiplying this by 2r¥=! (u,,, (r) +1,,(r))" and integrate on [0, 7], we obtain
(P (1) + 0 (1))
<2 [ D (010 + (1)
0
(f (W () + 1, (1)) + 9(0,, (1) + 2y, (t))) (0 (£) + 0, (1)) dt

Uy, (1) 2, (1)

< 2r?(N=DA(r) /2[3 (f(a) + g(a))da

< 22N TUA () (F(t (1) + 2 (1)) + Gy (1) + 2, (1)),
and

/

(1 () + 0, ()
Thus

< VIR ((F(n (1) + 10 (1) + Ol (1) + 10, (1)) - (23)

() + 0, (1) »
2(F (1 (£) + 0 () + Gl (8) + 0, (1))

)+, <T &
/ (F(r) +G(7))
— H(u (1) + 0, (1) — H(28) < /ﬁdt
Since H~! is increasing on [0, 00), we have
(1) + v, (r) < B (H(28) + / ' VM@at), ¥r=o. (2.4)

It follows by (H3) and (2.2) that the sequences {u,,} and {v,,} are bounded and
equi-continuous on [0, ¢g] for arbitrary ¢y > 0. By Arzela-Ascoli theorem, {u,,}

\
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and {v,,} have subsequences converging uniformly to v and v on [0,¢p]. By the
arbitrariness of ¢y > 0, we see that (u,v) is a positive entire solution of

Au=¢1(r)f(v) > p(x)f(v), ze€RN,

N (2.5)
Av =1 (r)g(u) = q(z)g(w), = eR™;
i.e., (u,v) is a positive entire subsolution of (L.1)).
Next we prove that (u,v) is bounded. Since (u,v) satisfies
(PN () =Nl (r) £ (), (2.6)
(P () = N T () g (w). (2.7)

Choose R > 0 so that r*V=2(¢;(r) 4 ¢1(r)) is nondecreasing on [R, c0) and
u(r) >0, wv(r)>0, Vr>R.

Now, since u/(r ) >0 and v'(r) > 0 for r > 0, and (H2) holds, multiplying (2
and . 2.7) by rN=1u/(r) and »VN~10/(r), respectively, and integrating from 0 to r,
we have

(V1 (r)* < (RY o (R))” +2( / (1) (w0 >dt)

<O+ 22N (G (r) + i (r / g(t))dt)
< C+ 2N (g (r) + n (r )) (v(r) + u(r)),

and
(PV ()" < O+ 22D (01 (r) + 4 () Glulr) + u(r)),
for r > R, where C = (RN ! («/(R) + Q’(R)))Q, which yields

u'(r) + y’(r)

20~ V21 (r) + 0 (1) (Glulr) + u(r)) + F(u(r) +u(r)) ',
and
d/u(r)ﬂ)(?“) dr
dr Ju(R)+uv(R) 2(F(7) + G(1))

< VO N (Glu(r) +0(r) + P(o(r) +u(r) "+ Vi () + ().
Integrating the above inequality and using the facts that
G(u(r) +u(r)) + F(u(r) + u(r)) = G(u(R) + v(R)) + F(u(R) + u(R)) = C1,
for all » > R, and

VO + 91(r) < 4/2152 (61(r) + 91 (1) r =172 <712 (61 (1) + (1)) + 77 (05

for € > 0, we have

H(u(r) + u(r)) < H@(R) + o(R)) + /R S (pa(s) + () ds + (R

+4/CCTH(NRN)~L,
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Letting r — oo, we find that (u,v) is bounded since ¢ + 1, satisfies (H5) and f+g¢
satisfies (H3). Thus, Since (u,v) is nondecreasing, we have
lim u(r) = M; >0, lim v(r) = My > 0.
In the same way, we can see that the system
w(0) = v(0) = max{ My, Ma}, @' (r)=20'(r)=0,

L) = a0 ), >0, 2.8
Av(z) =0"(r) + fﬁl(r) =1pa(r)g(u(r)), >0

,,, N -1
has a bounded solution (@, ?) which is a supersolution for ([1.1)). It is also clear that
a(r) > My > u(r), o(r)> My >v(r), Vr>0.

Au(z) =u"(r) +

Hence the standard super-sub solution principle (see [I7, [7]) implies that (1.1)) has
a bounded solution (u,v) such that u(z) < u(x) < @(z) and v(z) < v(z) < v(x) on
RY. This completes the proof. (Il

Proof of Theorem[1.7. We follow the arguments in (|6, Theorem 4.3] and [22, The-
orem 3.4]) for studying the nonexistence of entire radial large solutions to (1.6).
Let

a(r) = re/ t(p(t) + q(t))dt, r=>0. (2.9)
By (1.15)), there exist Ry > 0,Cy > C7 > 0 such that
Crr? < p(r) +q(r) < Cor”, v > Ry,

S0
o (r) = Or01 / £(p(t) + q())dt — 1+ (p(r) + q(r))
Csy0
— _pBto+1 _ 2
T (Cl —ﬁ — 2) <0
provided 6 € (O7 Cngl(—ﬁ — 2)); i.e., a is decreasing in [Ry, 00). Define

b(r) = /00 t(p(t) +q(t))dt, r>0. (2.10)

Now suppose that (1.1) has a radial entire large solution (u,v) with u(r) > 0
and v(r) > 0 for all » > R, then for r > Ry

u(r) +v(r) = u(0) + v(0) + 1 /T (1 — (I)N72>T(p(7)f(v(7))

N -2 r
+q(r)g(ulr)))dr,

< u(0) +v(0) + ﬁ /T (1 — (;)NﬁQ)T(p(T) +q(7))
><((() u)) g(u(r) +(r)))dr

— Ot ( ()77 () +a()

x (f(u(r) + U() g(u(r) +v(7)))dr.
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Let 7 = b71(s), w = (u+v)ob~!. By the monotonicity of b and a = r%b in [Ry, ),
t(b’l(t))e is increasing in (0, to], where tg = b(Rp), and

1—r*<Cq(l—r), Vrel0,1] and and fixed a > 0, (2.11)

we obtain, for ¢ € (0, ],

wl) =0+ g [ (1= G ) (wl) + slats))as

<o+ /t (1= () (Pl + glan(s)))ds

S

N -2 s
It is easy to see that 2/(t) < 0 for ¢ € (0, %] and

C(f(w®) +g(w®)) _ C(f(=(1) +9((1)))
t = t

<0 s [ (- ) ) +gtwn)as = =0

Z//(t) _

which yields
Z’Q(to) _ ZIQ(t) _ 2/t 0 z//(S)Z'(S)ds
220/%<f@@”+9““ﬂﬂ%@

S

ds

20 ('
> 27
=5
20
= = (F(2(t0)) + G(=(to)) = F(2(1)) — G(2(1))).
Since lim;_,o w(t) = oo, so is F(z(t)) + G(z(t)). We obtain, for 0 < ¢ < t; small
enough,

(f(2(5)) + g(2(5))) 2/ (s)ds

C(F(z(t) + G(2(1)))
; ;

Z/2 (t) S

and
_C . 2 () <.
VT V) +GE) T

Integrating from ¢ to t; and letting ¢ — 0, we obtain

o0 do boqe
4444444444,§(7/p — =20Vt < .
/zm) Fo)+Glo) ~ Jo Vi '

This is a contradiction. The proof is completed. O
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